-
Moises Fernandez authoredMoises Fernandez authored
diffmodels.cu 10.99 KiB
/* diffmodels.cu
Tim Behrens, Saad Jbabdi, Stam Sotiropoulos, Moises Hernandez - FMRIB Image Analysis Group
Copyright (C) 2005 University of Oxford */
/* CCOPYRIGHT */
#include "newmat.h"
#include "newimage/newimageall.h"
#include "xfibresoptions.h"
#include "diffmodels.h"
#include "PVM_single.cu"
#include "PVM_single_c.cu"
#include "PVM_multi.cu"
#include "fit_gpu_kernels.h"
#include "sync_check.h"
#include <time.h>
#include <sys/time.h>
#include "init_gpu.h"
using namespace Xfibres;
//////////////////////////////////////////////////////
// FIT IN GPU
//////////////////////////////////////////////////////
void fit_PVM_single( //INPUT
const vector<ColumnVector> datam_vec,
const vector<Matrix> bvecs_vec,
const vector<Matrix> bvals_vec,
thrust::device_vector<double> datam_gpu,
thrust::device_vector<double> bvecs_gpu,
thrust::device_vector<double> bvals_gpu,
int ndirections,
bool m_include_f0,
string output_file,
//OUTPUT
thrust::device_vector<double>& params_gpu)
{
std::ofstream myfile;
myfile.open (output_file.data(), ios::out | ios::app );
xfibresOptions& opts = xfibresOptions::getInstance();
int nvox = datam_vec.size();
int nfib = opts.nfibres.value();
int nparams;
if (m_include_f0)
nparams = nfib*3 + 3;
else
nparams = nfib*3 + 2;
thrust::host_vector<double> params_host;
params_host.resize(nvox*nparams);
for(int vox=0;vox<nvox;vox++){
// initialise with a tensor
DTI dti(datam_vec[vox],bvecs_vec[vox],bvals_vec[vox]);
dti.linfit();
// set starting parameters for nonlinear fitting
float _th,_ph;
cart2sph(dti.get_v1(),_th,_ph);
params_host[vox*nparams] = dti.get_s0();
//start(2) = dti.get_md()>0?dti.get_md()*2:0.001; // empirically found that d~2*MD
params_host[vox*nparams+1] = dti.get_l1()>0?dti.get_l1():0.002; // empirically found that d~L1
params_host[vox*nparams+2] = dti.get_fa()<1?f2x(dti.get_fa()):f2x(0.95); // first pvf = FA
params_host[vox*nparams+3] = _th;
params_host[vox*nparams+4] = _ph;
float sumf=x2f(params_host[vox*nparams+2]);
float tmpsumf=sumf;
for(int ii=2,i=5;ii<=nfib;ii++,i+=3){
float denom=2;
do{
params_host[vox*nparams+i] = f2x(x2f(params_host[vox*nparams+i-3])/denom);
denom *= 2;
tmpsumf = sumf + x2f(params_host[vox*nparams+i]);
}while(tmpsumf>=1);
sumf += x2f(params_host[vox*nparams+i]);
cart2sph(dti.get_v(ii),_th,_ph);
params_host[vox*nparams+i+1] = _th;
params_host[vox*nparams+i+2] = _ph;
}
if (m_include_f0)
params_host[vox*nparams+nparams-1]=f2x(FSMALL);
}
thrust::copy(params_host.begin(), params_host.end(), params_gpu.begin());
int blocks = nvox;
dim3 Dim_Grid(blocks,1);
dim3 Dim_Block(THREADS_BLOCK_FIT,1);
int amount_shared = (THREADS_BLOCK_FIT+5*nparams+2*nparams*nparams+4*nfib+8)*sizeof(double)+(2+nparams)*sizeof(int);
myfile << "Shared Memory Used in fit_PVM_single: " << amount_shared << "\n";
fit_PVM_single_kernel<<<Dim_Grid, Dim_Block, amount_shared>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()) ,nvox, ndirections, nfib, nparams, m_include_f0, thrust::raw_pointer_cast(params_gpu.data()));
sync_check("fit_PVM_single_kernel");
myfile.close();
}
void fit_PVM_single_c( //INPUT
const vector<ColumnVector> datam_vec,
const vector<Matrix> bvecs_vec,
const vector<Matrix> bvals_vec,
thrust::device_vector<double> datam_gpu,
thrust::device_vector<double> bvecs_gpu,
thrust::device_vector<double> bvals_gpu,
int ndirections,
bool m_include_f0,
string output_file,
//OUTPUT
thrust::device_vector<double>& params_gpu)
{
std::ofstream myfile;
myfile.open (output_file.data(), ios::out | ios::app );
xfibresOptions& opts = xfibresOptions::getInstance();
int nvox = datam_vec.size();
int nfib = opts.nfibres.value();
int nparams;
if (m_include_f0)
nparams = nfib*3 + 3;
else
nparams = nfib*3 + 2;
thrust::host_vector<double> params_host;
params_host.resize(nvox*nparams);
for(int vox=0;vox<nvox;vox++){
// initialise with a tensor
DTI dti(datam_vec[vox],bvecs_vec[vox],bvals_vec[vox]);
dti.linfit();
// set starting parameters for nonlinear fitting
float _th,_ph;
cart2sph(dti.get_v1(),_th,_ph);
ColumnVector start(nparams);
//Initialize the non-linear fitter. Use the DTI estimates for most parameters, apart from the volume fractions
start(1) = dti.get_s0();
//start(2) = d2lambda(dti.get_md()>0?dti.get_md()*2:0.001); // empirically found that d~2*MD
start(2) = d2lambda(dti.get_l1()>0?dti.get_l1():0.002); // empirically found that d~L1
start(4) = _th;
start(5) = _ph;
for(int ii=2,i=6;ii<=nfib;ii++,i+=3){
cart2sph(dti.get_v(ii),_th,_ph);
start(i+1) = _th;
start(i+2) = _ph;
}
// do a better job for initializing the volume fractions
PVM_single_c pvm(datam_vec[vox],bvecs_vec[vox],bvals_vec[vox],opts.nfibres.value(),false,m_include_f0,false);
pvm.fit_pvf(start);
for(int i=0;i<nparams;i++){
params_host[vox*nparams+i]=start(i+1);
}
}
thrust::copy(params_host.begin(), params_host.end(), params_gpu.begin());
int blocks = nvox;
dim3 Dim_Grid(blocks,1);
dim3 Dim_Block(THREADS_BLOCK_FIT,1);
int amount_shared = (THREADS_BLOCK_FIT+5*nparams+2*nparams*nparams+4*nfib+nfib*nfib+8)*sizeof(double)+(2+nparams)*sizeof(int);
myfile << "Shared Memory Used in fit_PVM_single_c: " << amount_shared << "\n";
fit_PVM_single_c_kernel<<<Dim_Grid, Dim_Block, amount_shared>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()) ,nvox, ndirections, nfib, nparams, false, m_include_f0, false, thrust::raw_pointer_cast(params_gpu.data()));
sync_check("fit_PVM_single_c_kernel");
myfile.close();
}
void fit_PVM_multi( //INPUT
thrust::device_vector<double> datam_gpu,
thrust::device_vector<double> bvecs_gpu,
thrust::device_vector<double> bvals_gpu,
int nvox,
int ndirections,
bool m_include_f0,
string output_file,
//OUTPUT
thrust::device_vector<double>& params_gpu)
{
std::ofstream myfile;
myfile.open (output_file.data(), ios::out | ios::app );
xfibresOptions& opts = xfibresOptions::getInstance();
int nfib = opts.nfibres.value();
int blocks = nvox;
dim3 Dim_Grid(blocks,1);
dim3 Dim_Block(THREADS_BLOCK_FIT,1);
int nparams;
if (m_include_f0)
nparams = nfib*3 + 4;
else
nparams = nfib*3 + 3;
thrust::device_vector<double> params_PVM_single_c_gpu; //copy params to an auxiliar structure because there are different number of nparams
params_PVM_single_c_gpu.resize(nvox*nparams); //between single_c and multi. We must read and write in different structures,
thrust::copy(params_gpu.begin(), params_gpu.end(), params_PVM_single_c_gpu.begin());
//maybe 1 block finish before other one read their params.
int amount_shared = (THREADS_BLOCK_FIT+5*nparams+2*nparams*nparams+4*nfib+9)*sizeof(double)+(2+nparams)*sizeof(int);
myfile << "Shared Memory Used in fit_PVM_multi: " << amount_shared << "\n";
fit_PVM_multi_kernel<<<Dim_Grid, Dim_Block, amount_shared>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(params_PVM_single_c_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()) ,nvox, ndirections, nfib, nparams, m_include_f0, thrust::raw_pointer_cast(params_gpu.data()));
sync_check("fit_PVM_multi_kernel");
myfile.close();
}
void calculate_tau( //INPUT
thrust::device_vector<double> datam_gpu,
thrust::device_vector<double> params_gpu,
thrust::device_vector<double> bvecs_gpu,
thrust::device_vector<double> bvals_gpu,
thrust::host_vector<int> vox_repeat,
int nrepeat,
int ndirections,
string output_file,
//OUTPUT
thrust::host_vector<float>& tau)
{
std::ofstream myfile;
myfile.open (output_file.data(), ios::out | ios::app );
myfile << "--------- CALCULATE TAU/RESIDULAS IN GPU ------------ " << "\n";
struct timeval t1,t2;
double time;
gettimeofday(&t1,NULL);
xfibresOptions& opts = xfibresOptions::getInstance();
int nvox = vox_repeat.size();
int nfib = opts.nfibres.value();
int nparams;
if (opts.f0.value())
nparams = nfib*3 + 3;
else
nparams = nfib*3 + 2;
if(opts.modelnum.value()==2) nparams++;
thrust::device_vector<bool> includes_f0_gpu;
includes_f0_gpu.resize(nvox);
thrust::fill(includes_f0_gpu.begin(), includes_f0_gpu.end(), opts.f0.value());
if(opts.f0.value()){
for(int i=0;i<nrepeat;i++){
includes_f0_gpu[vox_repeat[i]]=false; //if has been reprocessed f0 will be 0.
}
}
int blocks = nvox;
dim3 Dim_Grid(blocks,1);
dim3 Dim_Block(THREADS_BLOCK_FIT,1);
int amount_shared = (nparams+4*nfib+3)*sizeof(double) + sizeof(int);
thrust::device_vector<double> residuals_gpu;
residuals_gpu.resize(nvox*ndirections);
if(opts.modelnum.value()==1){
if(opts.nonlin.value()){
get_residuals_PVM_single_kernel<<<Dim_Grid, Dim_Block,amount_shared>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(params_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()), nvox, ndirections, nfib, nparams, opts.f0.value(), thrust::raw_pointer_cast(includes_f0_gpu.data()), thrust::raw_pointer_cast(residuals_gpu.data()));
sync_check("get_residuals_PVM_single_kernel");
}else{
get_residuals_PVM_single_c_kernel<<<Dim_Grid, Dim_Block,amount_shared>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(params_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()), nvox, ndirections, nfib, nparams, opts.f0.value(), thrust::raw_pointer_cast(includes_f0_gpu.data()), thrust::raw_pointer_cast(residuals_gpu.data()));
sync_check("get_residuals_PVM_single_c_kernel");
}
}else{
//model 2 : non-mono-exponential
get_residuals_PVM_multi_kernel<<<Dim_Grid, Dim_Block,amount_shared>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(params_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()), nvox, ndirections, nfib, nparams, opts.f0.value(), thrust::raw_pointer_cast(includes_f0_gpu.data()), thrust::raw_pointer_cast(residuals_gpu.data()));
sync_check("get_residuals_PVM_multi_kernel");
}
thrust::host_vector<double> residuals_host;
residuals_host.resize(nvox*ndirections);
thrust::copy(residuals_gpu.begin(), residuals_gpu.end(), residuals_host.begin());
ColumnVector res(ndirections);
for(int vox=0;vox<nvox;vox++){
for(int i=0;i<ndirections;i++) res(i+1)= residuals_host[vox*ndirections+i];
float variance=var(res).AsScalar();
tau[vox]=1.0/variance;
}
gettimeofday(&t2,NULL);
time=timeval_diff(&t2,&t1);
myfile << "TIME TOTAL: " << time << " seconds\n";
myfile << "-----------------------------------------------------" << "\n\n" ;
myfile.close();
}