-
Tim Behrens authoredTim Behrens authored
fibre.h 16.30 KiB
/* Copyright (C) 2005 University of Oxford */
/* CCOPYRIGHT */
#ifndef __FIBRE_H_
#define __FIBRE_H_
#include <iostream>
#include "stdlib.h"
#include "libprob.h"
#include <cmath>
#include "miscmaths/miscprob.h"
#include "xfibresoptions.h"
using namespace std;
using namespace NEWMAT;
using namespace MISCMATHS;
using namespace Xfibres;
namespace FIBRE{
class Fibre{
float m_th;
float m_ph;
float m_f;
float m_lam;
float m_th_prop;
float m_ph_prop;
float m_f_prop;
float m_lam_prop;
float m_th_old;
float m_ph_old;
float m_f_old;
float m_lam_old;
float m_th_prior;
float m_ph_prior;
float m_f_prior;
float m_lam_prior;
float m_th_old_prior;
float m_ph_old_prior;
float m_f_old_prior;
float m_lam_old_prior;
float m_prior_en;
float m_old_prior_en;
int m_th_acc;
int m_th_rej;
int m_ph_acc;
int m_ph_rej;
int m_f_acc;
int m_f_rej;
int m_lam_acc;
int m_lam_rej;
bool m_lam_jump;
ColumnVector m_Signal;
ColumnVector m_Signal_old;
const float& m_d;
const ColumnVector& m_alpha;
const ColumnVector& m_beta;
const Matrix& m_bvals;
<<<<<<< fibre.h
xfibresOptions& opts;
public:
=======
xfibresOptions& opts;
public:
>>>>>>> 1.10
//constructors::
Fibre( const ColumnVector& alpha, const ColumnVector& beta,
const Matrix& bvals,const float& d):
m_d(d), m_alpha(alpha), m_beta(beta), m_bvals(bvals),opts(xfibresOptions::getInstance()){
m_th=M_PI/2;
m_th_old=m_th;
m_ph=0;
m_ph_old=m_ph;
m_f=0.01;
m_f_old=m_f;
m_lam=10;
m_lam_old=m_lam;
m_lam_jump=true;
m_th_prop=0.2;
m_ph_prop=0.2;
m_f_prop=0.2;
m_lam_prop=1;
m_th_prior=0;
compute_th_prior();
m_ph_prior=0;
compute_ph_prior();
m_f_prior=0;
compute_f_prior();
m_lam_prior=0;
compute_lam_prior();
m_Signal.ReSize(alpha.Nrows());
m_Signal=0;
m_Signal_old=m_Signal;
compute_prior();
compute_signal();
m_th_acc=0; m_th_rej=0;
m_ph_acc=0; m_ph_rej=0;
m_f_acc=0; m_f_rej=0;
m_lam_acc=0; m_lam_rej=0;
}
Fibre(const ColumnVector& alpha,
const ColumnVector& beta, const Matrix& bvals, const float& d,
const float& th, const float& ph, const float& f,
const float& lam, const bool lam_jump=true) :
m_th(th), m_ph(ph), m_f(f), m_lam(lam),m_lam_jump(lam_jump), m_d(d),
m_alpha(alpha), m_beta(beta), m_bvals(bvals),opts(xfibresOptions::getInstance())
{
m_th_old=m_th;
m_ph_old=m_ph;
m_f_old=m_f;
m_lam_old=m_lam;
m_th_prop=0.2;
m_ph_prop=0.2;
m_f_prop=0.2;
m_lam_prop=1;
m_th_prior=0;
compute_th_prior();
m_ph_prior=0;
compute_ph_prior();
m_f_prior=0;
compute_f_prior();
m_lam_prior=0;
compute_lam_prior();
m_Signal.ReSize(alpha.Nrows());
m_Signal=0;
m_Signal_old=m_Signal;
compute_prior();
compute_signal();
m_th_acc=0; m_th_rej=0;
m_ph_acc=0; m_ph_rej=0;
m_f_acc=0; m_f_rej=0;
m_lam_acc=0; m_lam_rej=0;
}
Fibre(const Fibre& rhs):
m_d(rhs.m_d), m_alpha(rhs.m_alpha), m_beta(rhs.m_beta), m_bvals(rhs.m_bvals),opts(xfibresOptions::getInstance()){
*this=rhs;
}
~Fibre(){}
inline float get_th() const{ return m_th;}
inline void set_th(const float th){ m_th=th; }
inline float get_ph() const{ return m_ph;}
inline void set_ph(const float ph){ m_ph=ph; }
inline float get_f() const{ return m_f;}
inline void set_f(const float f){ m_f=f; }
inline float get_lam() const{ return m_lam;}
inline void set_lam(const float lam){ m_lam=lam; }
inline const ColumnVector& getSignal() const{
return m_Signal;
}
inline void restoreSignal() {
m_Signal=m_Signal_old;
}
inline void setSignal(const ColumnVector& Signal){
m_Signal=Signal;
}
inline void setSignal(const int i, const float val){
m_Signal(i)=val;
}
inline float get_prior() const{ return m_prior_en;}
inline void update_proposals(){
m_th_prop*=sqrt(float(m_th_acc+1)/float(m_th_rej+1));
m_ph_prop*=sqrt(float(m_ph_acc+1)/float(m_ph_rej+1));
m_f_prop*=sqrt(float(m_f_acc+1)/float(m_f_rej+1));
m_lam_prop*=sqrt(float(m_lam_acc+1)/float(m_lam_rej+1));
m_th_acc=0;
m_th_rej=0;
m_ph_acc=0;
m_ph_rej=0;
m_f_acc=0;
m_f_rej=0;
m_lam_acc=0;
m_lam_rej=0;
}
inline bool compute_th_prior(){
m_th_old_prior=m_th_prior;
if(m_th==0){m_th_prior=0;}
else{
m_th_prior=-log(fabs(sin(m_th)/2));
}
return false; //instant rejection flag
}
inline bool compute_ph_prior(){
m_ph_old_prior=m_ph_prior;
m_ph_prior=0;
return false;
}
inline bool compute_f_prior(){
//note(gamma(lam+1)/(gamma(1)*gamma(lam)) = lam
// the following is a beta distribution with alpha=0
m_f_old_prior=m_f_prior;
if (m_f<0 | m_f>=1 )
return true;
else{
//m_f_prior=-(log(m_lam) + (m_lam-1)*log(1-m_f));
if(m_lam_jump)
m_f_prior=log(1-f)+2*log(fabs(log(1-f))); //marginalised with uniform prior on lambda
else
m_f_prior=0;
m_f_prior=opts.fudge.value()*m_f_prior;
return false;
}
}
inline bool compute_lam_prior(){
m_lam_old_prior=m_lam_prior;
if(m_lam <0 | m_lam > 1e16 )
return true;
else{
m_lam_prior=0;
return false;
}
}
inline void compute_prior(){
m_old_prior_en=m_prior_en;
m_prior_en=m_th_prior+m_ph_prior+m_f_prior+m_lam_prior;
}
void compute_signal(){
m_Signal_old=m_Signal;
for (int i = 1; i <= m_alpha.Nrows(); i++){
float angtmp=cos(m_ph-m_beta(i))*sin(m_alpha(i))*sin(m_th) + cos(m_alpha(i))*cos(m_th);
angtmp=angtmp*angtmp;
m_Signal(i)=exp(-m_d*m_bvals(1,i)*angtmp);
}
}
inline bool propose_th(){
m_th_old=m_th;
m_th+=normrnd().AsScalar()*m_th_prop;
bool rejflag=compute_th_prior();//inside this it stores the old prior
compute_prior();
compute_signal();
return rejflag;
};
inline void accept_th(){
m_th_acc++;
}
inline void reject_th(){
m_th=m_th_old;
m_th_prior=m_th_old_prior;
m_prior_en=m_old_prior_en;
m_Signal=m_Signal_old;//Is there a better way of doing this??
m_th_rej++;
}
inline bool propose_ph(){
m_ph_old=m_ph;
m_ph+=normrnd().AsScalar()*m_ph_prop;
bool rejflag=compute_ph_prior();//inside this it stores the old prior
compute_prior();
compute_signal();
return rejflag;
};
inline void accept_ph(){
m_ph_acc++;
}
inline void reject_ph(){
m_ph=m_ph_old;
m_ph_prior=m_ph_old_prior;
m_prior_en=m_old_prior_en;
m_Signal=m_Signal_old;//Is there a better way of doing this??
m_ph_rej++;
}
inline bool propose_f(){
m_f_old=m_f;
m_f+=normrnd().AsScalar()*m_f_prop;
bool rejflag=compute_f_prior();
compute_prior();
return rejflag;
};
inline void accept_f(){
m_f_acc++;
}
inline void reject_f(){
m_f=m_f_old;
m_f_prior=m_f_old_prior;
m_prior_en=m_old_prior_en;
m_f_rej++;
}
inline bool propose_lam(){
if(m_lam_jump){
m_lam_old=m_lam;
m_lam+=normrnd().AsScalar()*m_lam_prop;
bool rejflag=compute_lam_prior();
compute_f_prior();
compute_prior();
return rejflag;
}
else {return true;}
};
inline void accept_lam(){
m_lam_acc++;
}
inline void reject_lam(){
m_lam=m_lam_old;
m_lam_prior=m_lam_old_prior;
m_prior_en=m_old_prior_en;
m_lam_rej++;
}
Fibre& operator=(const Fibre& rhs){
m_th=rhs.m_th;
m_ph=rhs.m_ph;
m_f=rhs.m_f;
m_lam=rhs.m_lam;
m_th_prop=rhs. m_th_prop;
m_ph_prop=rhs.m_ph_prop;
m_f_prop=rhs.m_f_prop;
m_lam_prop=rhs.m_lam_prop;
m_th_old=rhs.m_th_old;
m_ph_old=rhs.m_ph_old;
m_f_old=rhs.m_f_old;
m_lam_old=rhs.m_lam_old;
m_th_prior=rhs.m_th_prior;
m_ph_prior=rhs.m_ph_prior;
m_f_prior=rhs. m_f_prior;
m_lam_prior=rhs.m_lam_prior;
m_th_old_prior=rhs.m_th_old_prior;
m_ph_old_prior=rhs.m_ph_old_prior;
m_f_old_prior=rhs.m_f_old_prior;
m_lam_old_prior=rhs.m_lam_old_prior;
m_prior_en=rhs.m_prior_en;
m_old_prior_en=rhs. m_old_prior_en;
m_th_acc=rhs.m_th_acc;
m_th_rej=rhs.m_th_rej;
m_ph_acc=rhs.m_ph_acc;
m_ph_rej=rhs. m_ph_rej;
m_f_acc=rhs.m_f_acc;
m_f_rej=rhs.m_f_rej;
m_lam_acc=rhs.m_lam_acc;
m_lam_rej=rhs.m_lam_rej;
m_lam_jump=rhs.m_lam_jump;
m_Signal=rhs.m_Signal;
m_Signal_old=rhs. m_Signal_old;
return *this;
}
friend ostream& operator<<(ostream& ostr,const Fibre& p);
};
//overload <<
inline ostream& operator<<(ostream& ostr,const Fibre& p){
ostr<<p.m_th<<" "<<p.m_ph<<" "<<p.m_f<<endl;
return ostr;
}
class Multifibre{
vector<Fibre> m_fibres;
float m_d;
float m_d_old;
float m_d_prop;
float m_d_prior;
float m_d_old_prior;
float m_d_acc;
float m_d_rej;
float m_S0;
float m_S0_old;
float m_S0_prop;
float m_S0_prior;
float m_S0_old_prior;
float m_S0_acc;
float m_S0_rej;
float m_prior_en;
float m_old_prior_en;
float m_likelihood_en;
float m_old_likelihood_en;
float m_energy;
float m_old_energy;
const ColumnVector& m_data;
const ColumnVector& m_alpha;
const ColumnVector& m_beta;
const Matrix& m_bvals;
public:
Multifibre(const ColumnVector& data,const ColumnVector& alpha,
const ColumnVector& beta, const Matrix& b, int N ):
m_data(data), m_alpha(alpha), m_beta(beta), m_bvals(b){
// initialise(Amat,N);
}
~Multifibre(){}
const vector<Fibre>& fibres() const{
return m_fibres;
}
void addfibre(const float th, const float ph, const float f,const float lam, const bool lam_jump=true){
Fibre fib(m_alpha,m_beta,m_bvals,m_d,th,ph,f,lam,lam_jump);
m_fibres.push_back(fib);
}
void addfibre(){
Fibre fib(m_alpha,m_beta,m_bvals,m_d);
m_fibres.push_back(fib);
}
void initialise_energies(){
compute_d_prior();
compute_S0_prior();
m_prior_en=0;
compute_prior();
m_likelihood_en=0;
compute_likelihood();
compute_energy();
}
void initialise_props(){
m_S0_prop=m_S0/10; //must have set inital values before this is called;
m_d_prop=m_d/10;
}
inline float get_d() const{ return m_d;}
inline void set_d(const float d){ m_d=d; }
inline float get_S0() const{ return m_S0;}
inline void set_S0(const float S0){ m_S0=S0; }
inline bool compute_d_prior(){
m_d_old_prior=m_d_prior;
if(m_d<0)
return true;
else{
m_d_prior=0;
return false;
}
}
inline bool compute_S0_prior(){
m_S0_old_prior=m_S0_prior;
if(m_S0<0) return true;
else
{
m_S0_prior=0;
return false;
}
}
bool reject_f_sum(){
float fsum=0;
for(unsigned int f=0;f<m_fibres.size();f++){
fsum+=m_fibres[f].get_f();
}
return fsum>1; //true if sum(f) > 1 and therefore, we should reject f
}
inline void compute_prior(){
m_old_prior_en=m_prior_en;
m_prior_en=m_d_prior+m_S0_prior;
for(unsigned int f=0;f<m_fibres.size(); f++){
m_prior_en=m_prior_en+m_fibres[f].get_prior();
}
}
void compute_likelihood(){
m_old_likelihood_en=m_likelihood_en;
ColumnVector pred(m_alpha.Nrows());
pred=0;
float fsum=0;
for(unsigned int f=0;f<m_fibres.size();f++){
pred=pred+m_fibres[f].get_f()*m_fibres[f].getSignal();
fsum+=m_fibres[f].get_f();
}
for(int i=1;i<=pred.Nrows();i++){
pred(i)=pred(i)+(1-fsum)*exp(-m_d*m_bvals(1,i));
}
pred=pred*m_S0;
float sumsquares=(m_data-pred).SumSquare();
m_likelihood_en=(m_data.Nrows()/2)*log(sumsquares/2);
}
inline void compute_energy(){
m_old_energy=m_energy;
m_energy=m_prior_en+m_likelihood_en;
}
bool test_energy(){
float tmp=exp(m_old_energy-m_energy);
return (tmp>unifrnd().AsScalar());
}
inline void restore_energy(){
m_prior_en=m_old_prior_en;
m_likelihood_en=m_old_likelihood_en;
m_energy=m_old_energy;
}
inline void restore_energy_no_lik(){
m_prior_en=m_old_prior_en;
m_energy=m_old_energy;
}
inline bool propose_d(){
m_d_old=m_d;
m_d+=normrnd().AsScalar()*m_d_prop;
bool rejflag=compute_d_prior();//inside this it stores the old prior
for(unsigned int f=0;f<m_fibres.size();f++)
m_fibres[f].compute_signal();
return rejflag;
};
inline void accept_d(){
m_d_acc++;
}
inline void reject_d(){
m_d=m_d_old;
m_d_prior=m_d_old_prior;
m_prior_en=m_old_prior_en;
for(unsigned int f=0;f<m_fibres.size();f++)
m_fibres[f].restoreSignal();
m_d_rej++;
}
inline bool propose_S0(){
m_S0_old=m_S0;
m_S0+=normrnd().AsScalar()*m_S0_prop;
bool rejflag=compute_S0_prior();//inside this it stores the old prior
return rejflag;
};
inline void accept_S0(){
m_S0_acc++;
}
inline void reject_S0(){
m_S0=m_S0_old;
m_S0_prior=m_S0_old_prior;
m_prior_en=m_old_prior_en;
m_S0_rej++;
}
inline void update_proposals(){
m_d_prop*=sqrt(float(m_d_acc+1)/float(m_d_rej+1));
m_S0_prop*=sqrt(float(m_S0_acc+1)/float(m_S0_rej+1));
m_d_acc=0;
m_d_rej=0;
m_S0_acc=0;
m_S0_rej=0;
for(unsigned int f=0; f<m_fibres.size();f++){
m_fibres[f].update_proposals();
}
}
void jump(){
if(!propose_d()){
compute_prior();
compute_likelihood();
compute_energy();
if(test_energy()){
accept_d();
}
else{
reject_d();
restore_energy();
}
}
else{
reject_d();
}
if(!propose_S0()){
compute_prior();
compute_likelihood();
compute_energy();
if(test_energy())
accept_S0();
else{
reject_S0();
restore_energy();
}
}
else{
reject_S0();
}
for(unsigned int f=0;f<m_fibres.size();f++){
//cout<<"pre th"<<m_fibres[f].get_th()<<endl;
// cout << m_fibres[f].getSignal()<<endl;
//cout<<"prior"<<m_prior_en<<endl;
//cout<<"lik"<<m_likelihood_en<<endl;
//cout<<"energy"<<m_energy<<endl;
//cout <<endl;
if(!m_fibres[f].propose_th()){
compute_prior();
compute_likelihood();
compute_energy();
//cout<<"pre th"<<m_fibres[f].get_th()<<endl;
// cout << m_fibres[f].getSignal()<<endl;
//cout<<"prior"<<m_prior_en<<endl;
//cout<<"lik"<<m_likelihood_en<<endl;
//cout<<"energy"<<m_energy<<endl;
if(test_energy()){
m_fibres[f].accept_th();
//cout<<"accepted"<<endl;}
}
else{
m_fibres[f].reject_th();
restore_energy();
//cout<<"rejected"<<endl;
}
//cout <<endl<<endl;
}
else {
m_fibres[f].reject_th();
}
if(!m_fibres[f].propose_ph()){
compute_prior();
compute_likelihood();
compute_energy();
if(test_energy())
m_fibres[f].accept_ph();
else{
m_fibres[f].reject_ph();
restore_energy();
}
}
else{
m_fibres[f].reject_ph();
}
if(!m_fibres[f].propose_f()){
if(!reject_f_sum()){
compute_prior();
compute_likelihood();
compute_energy();
if(test_energy()){
m_fibres[f].accept_f();
}
else{
m_fibres[f].reject_f();
restore_energy();
}
}
else{//else for rejectin fsum>1
m_fibres[f].reject_f();
}
}
else{//else for rejecting rejflag returned from propose_f()
m_fibres[f].reject_f();
}
// if(!m_fibres[f].propose_lam()){
// compute_prior();
// compute_energy();
// if(test_energy()){
// m_fibres[f].accept_lam();
// }
// else{
// m_fibres[f].reject_lam();
// restore_energy_no_lik();
// }
// }
// else{
// m_fibres[f].reject_lam();
// }
}
}
};
}
#endif