Skip to content
Snippets Groups Projects
fibre.h 16.30 KiB
/*  Copyright (C) 2005 University of Oxford  */

/*  CCOPYRIGHT  */

#ifndef __FIBRE_H_
#define __FIBRE_H_


#include <iostream>
#include "stdlib.h"
#include "libprob.h"
#include <cmath>
#include "miscmaths/miscprob.h"
#include "xfibresoptions.h"

using namespace std; 
using namespace NEWMAT;
using namespace MISCMATHS;
using namespace Xfibres;

namespace FIBRE{
  
  class Fibre{
    float m_th;
    float m_ph;
    float m_f;
    float m_lam;
    float m_th_prop;
    float m_ph_prop;
    float m_f_prop;
    float m_lam_prop;
    float m_th_old;
    float m_ph_old;
    float m_f_old;
    float m_lam_old;
    float m_th_prior;
    float m_ph_prior;
    float m_f_prior;
    float m_lam_prior;
    float m_th_old_prior;
    float m_ph_old_prior;
    float m_f_old_prior;
    float m_lam_old_prior;
    float m_prior_en;
    float m_old_prior_en;
    int m_th_acc; 
    int m_th_rej;
    int m_ph_acc;
    int m_ph_rej; 
    int m_f_acc;
    int m_f_rej;
    int m_lam_acc; 
    int m_lam_rej;
    bool m_lam_jump;
    ColumnVector m_Signal; 
    ColumnVector m_Signal_old; 
    const float& m_d;
    const ColumnVector& m_alpha;
    const ColumnVector& m_beta;
    const Matrix& m_bvals;
<<<<<<< fibre.h
    xfibresOptions& opts;
  public:
=======
    xfibresOptions& opts;
 public:
>>>>>>> 1.10
    //constructors::
    Fibre( const ColumnVector& alpha, const ColumnVector& beta, 
	   const Matrix& bvals,const float& d):
      m_d(d), m_alpha(alpha), m_beta(beta), m_bvals(bvals),opts(xfibresOptions::getInstance()){

	m_th=M_PI/2;
	m_th_old=m_th;
	m_ph=0;
	m_ph_old=m_ph;
	m_f=0.01;
	m_f_old=m_f;
	m_lam=10;
	m_lam_old=m_lam;
	m_lam_jump=true;
	m_th_prop=0.2;
	m_ph_prop=0.2;
	m_f_prop=0.2;
	m_lam_prop=1;

	m_th_prior=0;
	compute_th_prior();
	
	m_ph_prior=0;
	compute_ph_prior();
	
	m_f_prior=0;
      compute_f_prior();
      
      m_lam_prior=0;
      compute_lam_prior();

      m_Signal.ReSize(alpha.Nrows());
      m_Signal=0;
      m_Signal_old=m_Signal;

      compute_prior();
      compute_signal();

      m_th_acc=0; m_th_rej=0;
      m_ph_acc=0; m_ph_rej=0;
      m_f_acc=0; m_f_rej=0;
      m_lam_acc=0; m_lam_rej=0;

    }
    Fibre(const ColumnVector& alpha, 
	  const ColumnVector& beta, const Matrix& bvals, const float& d, 
	  const float& th, const float& ph, const float& f, 
	  const float& lam, const bool lam_jump=true) : 
      m_th(th), m_ph(ph), m_f(f), m_lam(lam),m_lam_jump(lam_jump), m_d(d),  
      m_alpha(alpha), m_beta(beta), m_bvals(bvals),opts(xfibresOptions::getInstance())
     {
      m_th_old=m_th;
      m_ph_old=m_ph;
      m_f_old=m_f;
      m_lam_old=m_lam;
      m_th_prop=0.2;
      m_ph_prop=0.2;
      m_f_prop=0.2;
      m_lam_prop=1;
      
      m_th_prior=0;
      compute_th_prior();

      m_ph_prior=0;
      compute_ph_prior();
      
      m_f_prior=0;
      compute_f_prior();
      
      m_lam_prior=0;
      compute_lam_prior();

      m_Signal.ReSize(alpha.Nrows());
      m_Signal=0;
      m_Signal_old=m_Signal;

      compute_prior();
      compute_signal();
	    
      m_th_acc=0; m_th_rej=0;
      m_ph_acc=0; m_ph_rej=0;
      m_f_acc=0; m_f_rej=0;
      m_lam_acc=0; m_lam_rej=0;
     
    }
    Fibre(const Fibre& rhs): 
      m_d(rhs.m_d), m_alpha(rhs.m_alpha), m_beta(rhs.m_beta), m_bvals(rhs.m_bvals),opts(xfibresOptions::getInstance()){
      *this=rhs;
    }

      
    ~Fibre(){}
    
    inline float get_th() const{ return m_th;}
    inline void set_th(const float th){ m_th=th; }
    
    inline float get_ph() const{ return m_ph;}
    inline void set_ph(const float ph){ m_ph=ph; }
    
    inline float get_f() const{ return m_f;}
    inline void set_f(const float f){ m_f=f; }
    
    inline float get_lam() const{ return m_lam;}
    inline void set_lam(const float lam){ m_lam=lam; }
    
    
    inline const ColumnVector& getSignal() const{  
      return m_Signal;                      
    }
    
    inline void restoreSignal() {
      m_Signal=m_Signal_old;
    }
    inline void setSignal(const ColumnVector& Signal){
      m_Signal=Signal;
    }
    
    inline void setSignal(const int i, const float val){
      m_Signal(i)=val;
    }

    inline float get_prior() const{ return m_prior_en;}
    

    inline void update_proposals(){
      m_th_prop*=sqrt(float(m_th_acc+1)/float(m_th_rej+1));
      m_ph_prop*=sqrt(float(m_ph_acc+1)/float(m_ph_rej+1));
      m_f_prop*=sqrt(float(m_f_acc+1)/float(m_f_rej+1));
      m_lam_prop*=sqrt(float(m_lam_acc+1)/float(m_lam_rej+1));
      m_th_acc=0; 
      m_th_rej=0;
      m_ph_acc=0; 
      m_ph_rej=0;
      m_f_acc=0; 
      m_f_rej=0;
      m_lam_acc=0; 
      m_lam_rej=0;
    }
    
    
    inline bool compute_th_prior(){
      m_th_old_prior=m_th_prior;
      if(m_th==0){m_th_prior=0;}
      else{
	m_th_prior=-log(fabs(sin(m_th)/2));
      }
      return false; //instant rejection flag
    }
    inline bool compute_ph_prior(){
      m_ph_old_prior=m_ph_prior;
      m_ph_prior=0;
      return false;
    }
    inline bool compute_f_prior(){
      //note(gamma(lam+1)/(gamma(1)*gamma(lam)) = lam
      // the following is a beta distribution with alpha=0
      m_f_old_prior=m_f_prior;
      if (m_f<0 | m_f>=1 )
	return true;
      else{
	//m_f_prior=-(log(m_lam) + (m_lam-1)*log(1-m_f));
	if(m_lam_jump)
	  m_f_prior=log(1-f)+2*log(fabs(log(1-f))); //marginalised with uniform prior on lambda
	else
	  m_f_prior=0;
	
	m_f_prior=opts.fudge.value()*m_f_prior;
	return false;
      }
    }
    
    inline bool compute_lam_prior(){
      m_lam_old_prior=m_lam_prior;
      if(m_lam <0 | m_lam > 1e16 )
	return true;
      else{
	m_lam_prior=0;
	return false;
      }
    }
    
    inline void compute_prior(){
      m_old_prior_en=m_prior_en;
      m_prior_en=m_th_prior+m_ph_prior+m_f_prior+m_lam_prior;
    }

     void compute_signal(){
       m_Signal_old=m_Signal;
       for (int i = 1; i <= m_alpha.Nrows(); i++){
 	float angtmp=cos(m_ph-m_beta(i))*sin(m_alpha(i))*sin(m_th) + cos(m_alpha(i))*cos(m_th);
 	angtmp=angtmp*angtmp;
 	m_Signal(i)=exp(-m_d*m_bvals(1,i)*angtmp);
       }
     }


    inline bool propose_th(){
      m_th_old=m_th;
      m_th+=normrnd().AsScalar()*m_th_prop;
      bool rejflag=compute_th_prior();//inside this it stores the old prior
      compute_prior();
      compute_signal();
      return rejflag;
    };
    
    inline void accept_th(){
      m_th_acc++;      
    }
    
    inline void reject_th(){
      m_th=m_th_old;
      m_th_prior=m_th_old_prior;
      m_prior_en=m_old_prior_en;
      m_Signal=m_Signal_old;//Is there a better way of doing this??
      m_th_rej++;
    }
    
    inline bool propose_ph(){
      m_ph_old=m_ph;
      m_ph+=normrnd().AsScalar()*m_ph_prop;
       bool rejflag=compute_ph_prior();//inside this it stores the old prior
      compute_prior();
      compute_signal();
      return rejflag;
    };
    
    inline void accept_ph(){
      m_ph_acc++;
    }
    
    inline void reject_ph(){
      m_ph=m_ph_old;
      m_ph_prior=m_ph_old_prior;
      m_prior_en=m_old_prior_en;
      m_Signal=m_Signal_old;//Is there a better way of doing this??
      m_ph_rej++;
    }
    
    inline bool propose_f(){
      m_f_old=m_f;
      m_f+=normrnd().AsScalar()*m_f_prop;
      bool rejflag=compute_f_prior();
      compute_prior();
      return rejflag;
    };
    
    inline void accept_f(){
      m_f_acc++;
    }
    
    inline void reject_f(){
      m_f=m_f_old;
      m_f_prior=m_f_old_prior;
      m_prior_en=m_old_prior_en;
      m_f_rej++;
    }
    
    inline bool propose_lam(){
      if(m_lam_jump){
	m_lam_old=m_lam;
	m_lam+=normrnd().AsScalar()*m_lam_prop;
	bool rejflag=compute_lam_prior();
	compute_f_prior();
	compute_prior();
	return rejflag;
      }
      else {return true;}
    };
    
    inline void accept_lam(){
      m_lam_acc++;
    }
    
    inline void reject_lam(){
      m_lam=m_lam_old;
      m_lam_prior=m_lam_old_prior;
      m_prior_en=m_old_prior_en;
      m_lam_rej++;
    }
    
    
    Fibre& operator=(const Fibre& rhs){
      m_th=rhs.m_th;
      m_ph=rhs.m_ph;
      m_f=rhs.m_f;
      m_lam=rhs.m_lam;
      m_th_prop=rhs. m_th_prop;
      m_ph_prop=rhs.m_ph_prop;
      m_f_prop=rhs.m_f_prop;
      m_lam_prop=rhs.m_lam_prop;
      m_th_old=rhs.m_th_old;
      m_ph_old=rhs.m_ph_old;
      m_f_old=rhs.m_f_old;
      m_lam_old=rhs.m_lam_old;
      m_th_prior=rhs.m_th_prior;
      m_ph_prior=rhs.m_ph_prior;
      m_f_prior=rhs. m_f_prior;
      m_lam_prior=rhs.m_lam_prior;
      m_th_old_prior=rhs.m_th_old_prior;
      m_ph_old_prior=rhs.m_ph_old_prior;
      m_f_old_prior=rhs.m_f_old_prior;
      m_lam_old_prior=rhs.m_lam_old_prior;
      m_prior_en=rhs.m_prior_en;
      m_old_prior_en=rhs. m_old_prior_en;
      m_th_acc=rhs.m_th_acc; 
      m_th_rej=rhs.m_th_rej;
      m_ph_acc=rhs.m_ph_acc;
      m_ph_rej=rhs. m_ph_rej; 
      m_f_acc=rhs.m_f_acc;
      m_f_rej=rhs.m_f_rej;
      m_lam_acc=rhs.m_lam_acc; 
      m_lam_rej=rhs.m_lam_rej;
      m_lam_jump=rhs.m_lam_jump;
      m_Signal=rhs.m_Signal; 
      m_Signal_old=rhs. m_Signal_old; 
      return *this;
    }

    friend  ostream& operator<<(ostream& ostr,const Fibre& p);

  };
//overload <<
  inline ostream& operator<<(ostream& ostr,const Fibre& p){
    ostr<<p.m_th<<" "<<p.m_ph<<" "<<p.m_f<<endl;
    return ostr;
  }


  class Multifibre{
    vector<Fibre> m_fibres;
    float m_d;
    float m_d_old;
    float m_d_prop;
    float m_d_prior; 
    float m_d_old_prior;
    float m_d_acc;
    float m_d_rej;
    float m_S0;
    float m_S0_old;
    float m_S0_prop;
    float m_S0_prior;
    float m_S0_old_prior;
    float m_S0_acc;
    float m_S0_rej;
    float m_prior_en;
    float m_old_prior_en;
    float m_likelihood_en;
    float m_old_likelihood_en;
    float m_energy;
    float m_old_energy;
    
    const ColumnVector& m_data;
    const ColumnVector& m_alpha;
    const ColumnVector& m_beta;
    const Matrix& m_bvals;
    
  public:
    Multifibre(const ColumnVector& data,const ColumnVector& alpha, 
	       const ColumnVector& beta, const Matrix& b, int N ):
    m_data(data), m_alpha(alpha), m_beta(beta), m_bvals(b){
      
      //      initialise(Amat,N);
    }
    
    ~Multifibre(){}
    
    const vector<Fibre>& fibres() const{
      return m_fibres;
    }
    
    void addfibre(const float th, const float ph, const float f,const float lam, const bool lam_jump=true){
      Fibre fib(m_alpha,m_beta,m_bvals,m_d,th,ph,f,lam,lam_jump);
      m_fibres.push_back(fib);
    }

    void addfibre(){
      Fibre fib(m_alpha,m_beta,m_bvals,m_d);
      m_fibres.push_back(fib);
    }
    
    void initialise_energies(){
      compute_d_prior();
      compute_S0_prior();
      m_prior_en=0;
      compute_prior();
      m_likelihood_en=0;
      compute_likelihood();
      compute_energy();
    }
    
    void initialise_props(){
      m_S0_prop=m_S0/10; //must have set inital values before this is called;
      m_d_prop=m_d/10;
    }
    
    inline float get_d() const{ return m_d;}
    inline void set_d(const float d){ m_d=d; }
    

    inline float get_S0() const{ return m_S0;}
    inline void set_S0(const float S0){ m_S0=S0; }
    

    inline bool compute_d_prior(){
      m_d_old_prior=m_d_prior;
      if(m_d<0)
	return true;
      else{
	m_d_prior=0;
	return false;
      }
    }
    
    inline bool compute_S0_prior(){
      m_S0_old_prior=m_S0_prior;
      if(m_S0<0) return true;
      else
	{    
	  m_S0_prior=0;
	  return false;
	}
    }

    bool reject_f_sum(){
      float fsum=0;
      for(unsigned int f=0;f<m_fibres.size();f++){
	fsum+=m_fibres[f].get_f();	
      }
      return fsum>1; //true if sum(f) > 1 and therefore, we should reject f
    }
    
    inline void compute_prior(){
      m_old_prior_en=m_prior_en;
      m_prior_en=m_d_prior+m_S0_prior;
      for(unsigned int f=0;f<m_fibres.size(); f++){
	m_prior_en=m_prior_en+m_fibres[f].get_prior();
      } 
    }
    
    void compute_likelihood(){
      m_old_likelihood_en=m_likelihood_en;
      ColumnVector pred(m_alpha.Nrows());
      pred=0;
      float fsum=0;
      for(unsigned int f=0;f<m_fibres.size();f++){
	pred=pred+m_fibres[f].get_f()*m_fibres[f].getSignal();
	fsum+=m_fibres[f].get_f();
	
      }
      for(int i=1;i<=pred.Nrows();i++){
	pred(i)=pred(i)+(1-fsum)*exp(-m_d*m_bvals(1,i));
      }
      pred=pred*m_S0;
      
      float sumsquares=(m_data-pred).SumSquare();
      m_likelihood_en=(m_data.Nrows()/2)*log(sumsquares/2);
    }
    
  
    inline  void  compute_energy(){
      m_old_energy=m_energy;
      m_energy=m_prior_en+m_likelihood_en;
    }
    
    bool test_energy(){
      float tmp=exp(m_old_energy-m_energy);
      return (tmp>unifrnd().AsScalar());
    }
    
    inline void restore_energy(){
      m_prior_en=m_old_prior_en;
      m_likelihood_en=m_old_likelihood_en;
      m_energy=m_old_energy;
    }
    
    inline void restore_energy_no_lik(){
      m_prior_en=m_old_prior_en;
      m_energy=m_old_energy;
    }

    inline bool propose_d(){
      m_d_old=m_d;
      m_d+=normrnd().AsScalar()*m_d_prop;
      bool rejflag=compute_d_prior();//inside this it stores the old prior
      for(unsigned int f=0;f<m_fibres.size();f++)
	m_fibres[f].compute_signal();
      return rejflag;
    };
    
    inline void accept_d(){
      m_d_acc++;      
    }
    
    inline void reject_d(){
      m_d=m_d_old;
      m_d_prior=m_d_old_prior;
      m_prior_en=m_old_prior_en;
      for(unsigned int f=0;f<m_fibres.size();f++)
	m_fibres[f].restoreSignal();
      m_d_rej++;
    }
    
    inline bool propose_S0(){
      m_S0_old=m_S0;
      m_S0+=normrnd().AsScalar()*m_S0_prop;
      bool rejflag=compute_S0_prior();//inside this it stores the old prior
      return rejflag;
    };
    
    inline void accept_S0(){
      m_S0_acc++;      
    }
    
    inline void reject_S0(){
      m_S0=m_S0_old;
      m_S0_prior=m_S0_old_prior;
      m_prior_en=m_old_prior_en;
      m_S0_rej++;
    }
    
    inline void update_proposals(){
      m_d_prop*=sqrt(float(m_d_acc+1)/float(m_d_rej+1));
      m_S0_prop*=sqrt(float(m_S0_acc+1)/float(m_S0_rej+1));
      m_d_acc=0; 
      m_d_rej=0;
      m_S0_acc=0; 
      m_S0_rej=0;
      for(unsigned int f=0; f<m_fibres.size();f++){
	m_fibres[f].update_proposals();
      }
      
    }

    
    
    

    void jump(){
      
      if(!propose_d()){
	compute_prior();
	compute_likelihood();
	compute_energy();
	if(test_energy()){
	  accept_d();
	}
	else{
	  reject_d();
	  restore_energy();
	}
      }
      else{ 
	reject_d();
      }
      
      if(!propose_S0()){
	compute_prior();
	compute_likelihood();
	compute_energy();
	if(test_energy())
	  accept_S0();
	else{
	  reject_S0();
	  restore_energy();
	}
      }
      else{
	reject_S0();
      } 
      
      for(unsigned int f=0;f<m_fibres.size();f++){
	//cout<<"pre th"<<m_fibres[f].get_th()<<endl;	
	//	cout << m_fibres[f].getSignal()<<endl;
	//cout<<"prior"<<m_prior_en<<endl;
	//cout<<"lik"<<m_likelihood_en<<endl;
	//cout<<"energy"<<m_energy<<endl;
	//cout <<endl;
	if(!m_fibres[f].propose_th()){
	  
	  compute_prior();
	  compute_likelihood();
	  compute_energy();
	  //cout<<"pre th"<<m_fibres[f].get_th()<<endl;	
	  //	cout << m_fibres[f].getSignal()<<endl;
	  //cout<<"prior"<<m_prior_en<<endl;
	  //cout<<"lik"<<m_likelihood_en<<endl;
	  //cout<<"energy"<<m_energy<<endl;
	  	  
	  if(test_energy()){
	    m_fibres[f].accept_th();
	  //cout<<"accepted"<<endl;}
	  }
	  else{
	    m_fibres[f].reject_th();
	    restore_energy();
	    //cout<<"rejected"<<endl;
	  }
	    //cout <<endl<<endl;
	}
	else {
	  m_fibres[f].reject_th();
	}
	
	  if(!m_fibres[f].propose_ph()){
	    compute_prior();
	    compute_likelihood();
	    compute_energy();
	    if(test_energy())
	      m_fibres[f].accept_ph();
	    else{
	      m_fibres[f].reject_ph();
	      restore_energy();
	    }
	  }
	  else{
	    m_fibres[f].reject_ph();
	  }
	  
	  if(!m_fibres[f].propose_f()){
	    if(!reject_f_sum()){
	      compute_prior();
	      compute_likelihood();
	      compute_energy();
	      if(test_energy()){
		m_fibres[f].accept_f();
	      }
	      else{
		m_fibres[f].reject_f();
		restore_energy();
	      }
	    }
	    else{//else for rejectin fsum>1
	      m_fibres[f].reject_f();
	    }
	  }
	  else{//else for rejecting rejflag returned from propose_f()
	    m_fibres[f].reject_f();
	  }
	  
	  
//	   if(!m_fibres[f].propose_lam()){
// 	    compute_prior();
// 	    compute_energy();
// 	    if(test_energy()){
// 	      m_fibres[f].accept_lam();
// 	    }
// 	    else{
// 	      m_fibres[f].reject_lam();
// 	      restore_energy_no_lik();
// 	    }
// 	  }
// 	  else{
// 	    m_fibres[f].reject_lam();
// 	  }
      
 
      }
      
      
      
    }
    
    
  };
  
  
}

#endif