Skip to content
Snippets Groups Projects
diffmodels.cc 32.28 KiB
/*  Diffusion model fitting

    Timothy Behrens, Saad Jbabdi  - FMRIB Image Analysis Group
 
    Copyright (C) 2005 University of Oxford  */

/*  CCOPYRIGHT  */

#include "diffmodels.h"



////////////////////////////////////////////////
//       DIFFUSION TENSOR MODEL
////////////////////////////////////////////////
void DTI::linfit(){
  ColumnVector logS(npts);
  ColumnVector Dvec(7);
  for (int i=1;i<=npts; i++){
    if(Y(i)>0)
      logS(i)=log(Y(i));
    else
      logS(i)=0;
  }
  Dvec = -iAmat*logS;
  if(Dvec(7)>-23)
    m_s0=exp(-Dvec(7));
  else
    m_s0=Y.MaximumAbsoluteValue();
  for (int i=1;i<=Y.Nrows();i++){
    if(m_s0<Y.Sum()/Y.Nrows()){ m_s0=Y.MaximumAbsoluteValue();  }
    logS(i)=(Y(i)/m_s0)>0.01 ? log(Y(i)):log(0.01*m_s0);
  }
  Dvec = -iAmat*logS;
  m_sse = (Amat*Dvec+logS).SumSquare();
  m_s0=exp(-Dvec(7));
  if(m_s0<Y.Sum()/Y.Nrows()){ m_s0=Y.Sum()/Y.Nrows();  }
  vec2tens(Dvec);
  calc_tensor_parameters();

  m_covar.ReSize(7);
  float dof=logS.Nrows()-7;
  float sig2=m_sse/dof;
  m_covar << sig2*(Amat.t()*Amat).i();
}
ColumnVector DTI::calc_md_grad(const ColumnVector& _tens)const{
  ColumnVector g(6);
  g = 0;
  g(1) = 1/3.0;
  g(4) = 1/3.0;
  g(6) = 1/3.0;
  return g;
}
// this will only work if the determinant is strictly positive
ReturnMatrix DTI::calc_fa_grad(const ColumnVector& _intens)const{
  ColumnVector gradv(6),ik(6),k(6);
  float m = (_intens(1)+_intens(4)+_intens(6))/3.0;
  SymmetricMatrix K(3),iK(3),M(3);

  // rescale input matrix
  vec2tens(_intens,M);
  //M /=m;

  m = M.Trace()/3.0;

  K = M - m*IdentityMatrix(3);
  tens2vec(K,k);
  iK << K.i();
  tens2vec(iK,ik);
  float p   = K.SumSquare()/6.0;
  float q   = K.Determinant()/2.0;
  float h   = std::sqrt(p*p*p-q*q)/q;
  float phi = std::atan(h)/3.0;
  if(q<0)phi+=M_PI;


  float _l1 = m + 2.0*std::sqrt(p)*std::cos(phi);
  float _l2 = m - std::sqrt(p)*(std::cos(phi)+std::sqrt(3.0)*std::sin(phi));
  float _l3 = m - std::sqrt(p)*(std::cos(phi)-std::sqrt(3.0)*std::sin(phi));

  float t  = 6.0/9.0*(_l1*_l1+_l2*_l2+_l3*_l3 - _l1*_l2-_l1*_l3-_l2*_l3);
  float b  = _l1*_l1+_l2*_l2+_l3*_l3;

  float _fa  = std::sqrt(3.0/2.0)*std::sqrt(t/b);
  

  float dfadl1 = 3.0/4.0/_fa * ( 6.0/9.0*(2.0*_l1-_l2-_l3)/b - t/b/b*2.0*_l1 );
  float dfadl2 = 3.0/4.0/_fa * ( 6.0/9.0*(2.0*_l2-_l1-_l3)/b - t/b/b*2.0*_l2 );
  float dfadl3 = 3.0/4.0/_fa * ( 6.0/9.0*(2.0*_l3-_l1-_l2)/b - t/b/b*2.0*_l3 );

  

  // determine dkdx
  ColumnVector dkdx(6);
  dkdx << 2.0/3.0 << 1.0 << 1.0 << 2.0/3.0 << 1.0 << 2.0/3.0;

  for(int i=1;i<=6;i++){
    float dL1dx=0,dL2dx=0,dL3dx=0;
    if(i==1||i==4||i==6){
      dL1dx=1.0/3.0;dL2dx=1.0/3.0;dL3dx=1.0/3.0;
    }
    //
    float p_p = k(i)/3.0 * dkdx(i);
    float q_p = q*ik(i) * dkdx(i);
    float h_p = (3.0*p*p*p_p - 2.0*q_p*q*(1+h*h))/2.0/h/q/q;

    float phi_p = h_p/(1+h*h)/3.0;

    dL1dx += p_p/std::sqrt(p)*std::cos(phi) - 2.0*std::sqrt(p)*phi_p*std::sin(phi);
    dL2dx -= std::sqrt(p)*(.5*p_p*(m-_l2)+phi_p*(std::sin(phi)-std::sqrt(3.0)*std::cos(phi)));
    dL3dx -= std::sqrt(p)*(.5*p_p*(m-_l3)+phi_p*(std::sin(phi)+std::sqrt(3.0)*std::cos(phi)));

    //
    gradv(i) = dfadl1*dL1dx + dfadl2*dL2dx + dfadl3*dL3dx;
  }
  gradv.Release();
  return gradv;
}
float DTI::calc_fa_var()const{
  ColumnVector grd;
  ColumnVector vtens;
  tens2vec(m_tens,vtens);
  grd = calc_fa_grad(vtens);
  ColumnVector g(7);
  g.SubMatrix(1,6,1,1) = grd;
  g(7) = 0;
  
  return((g.t()*m_covar*g).AsScalar());
}

void DTI::rot2angles(const Matrix& rot,float& th1,float& th2,float& th3)const{
  if(rot(3,1)!=1 && rot(3,1)!=-1){
    th2 = -asin(rot(3,1));
    float c=std::cos(th2);
    th1 = atan2(rot(3,2)/c,rot(3,3)/c);
    th3 = atan2(rot(2,1)/c,rot(1,1)/c);
  }
  else{
    th1 = atan2(rot(1,2),rot(1,3));
    th2 = -sign(rot(3,1))*M_PI/2;
    th3 = 0;
  }
}
void DTI::angles2rot(const float& th1,const float& th2,const float& th3,Matrix& rot)const{
  float c1=std::cos(th1),s1=std::sin(th1);
  float c2=std::cos(th2),s2=std::sin(th2);
  float c3=std::cos(th3),s3=std::sin(th3);

  rot(1,1) = c2*c3;    rot(1,2) = s1*s2*c3-c1*s3;    rot(3,1) = c1*s2*c3+s1*s3;
  rot(2,1) = c2*s3;    rot(2,2) = s1*s2*s3+c1*c3;    rot(3,2) = c1*s2*s3-s1*c3;
  rot(3,1) = -s2;      rot(3,2) = s1*c2;             rot(3,3) = c1*c2;
}


// nonlinear tensor fitting 
void DTI::nonlinfit(){
  // initialise with linear fitting
  linfit();

  print();

  // set starting parameters
  // params = s0, log(l1),log(l2), log(l3), th1, th2, th3
  ColumnVector start(nparams);

  start(1) = m_s0;
  // eigenvalues
  start(2) = m_l1>0?std::log(m_l1):std::log(1e-5);
  start(3) = m_l2>0?std::log(m_l2):std::log(1e-5);
  start(4) = m_l3>0?std::log(m_l3):std::log(1e-5);
  // angles
  float th1,th2,th3;
  Matrix rot(3,3);
  rot.Row(1) = m_v1.t();
  rot.Row(2) = m_v2.t();
  rot.Row(3) = m_v3.t();
  rot2angles(rot,th1,th2,th3);
  start(5) = th1;
  start(6) = th2;
  start(7) = th3;


  // do the fit
  NonlinParam  lmpar(start.Nrows(),NL_LM); 
  lmpar.SetGaussNewtonType(LM_L);
  lmpar.SetStartingEstimate(start);


  NonlinOut status;
  status = nonlin(lmpar,(*this));
  ColumnVector final_par(nparams);
  final_par = lmpar.Par();


  // finalise parameters
  m_s0 = final_par(1);
  m_l1 = exp(final_par(2));
  m_l2 = exp(final_par(3));
  m_l3 = exp(final_par(4));

  angles2rot(final_par(5),final_par(6),final_par(7),rot);
  m_v1 = rot.Row(1).t();
  m_v2 = rot.Row(2).t();
  m_v3 = rot.Row(3).t();

  sort();

  m_tens << m_l1*m_v1*m_v1.t() + m_l2*m_v2*m_v2.t() + m_l3*m_v3*m_v3.t();
  calc_tensor_parameters();

  print();
  //exit(1);

}
void DTI::sort(){
  vector< pair<float,int> > ls(3);
  vector<ColumnVector> vs(3);
  ls[0].first=m_l1;
  ls[0].second=0;
  ls[1].first=m_l2;
  ls[1].second=1;
  ls[2].first=m_l3;
  ls[2].second=2;
  vs[0]=m_v1;vs[1]=m_v2;vs[2]=m_v3;
  
  std::sort(ls.begin(),ls.end());

  m_l1 = ls[2].first;
  m_v1 = vs[ ls[2].second ];
  m_l2 = ls[1].first;
  m_v2 = vs[ ls[1].second ];
  m_l3 = ls[0].first;
  m_v3 = vs[ ls[0].second ];
  
}
void DTI::calc_tensor_parameters(){
  Matrix Vd;
  DiagonalMatrix Dd(3);
  // mean, eigenvalues and eigenvectors
  EigenValues(m_tens,Dd,Vd);
  m_md = Dd.Sum()/Dd.Nrows();
  m_l1 = Dd(3,3);
  m_l2 = Dd(2,2);
  m_l3 = Dd(1,1);
  m_v1 = Vd.Column(3);
  m_v2 = Vd.Column(2);
  m_v3 = Vd.Column(1);
  // mode
  float e1=m_l1-m_md, e2=m_l2-m_md, e3=m_l3-m_md;
  float n = (e1 + e2 - 2*e3)*(2*e1 - e2 - e3)*(e1 - 2*e2 + e3);
  float d = (e1*e1 + e2*e2 + e3*e3 - e1*e2 - e2*e3 - e1*e3);
  d = sqrt(bigger(0, d));
  d = 2*d*d*d;
  m_mo = smaller(bigger(d ? n/d : 0.0, -1),1);
  // fa
  float numer=1.5*((m_l1-m_md)*(m_l1-m_md)+(m_l2-m_md)*(m_l2-m_md)+(m_l3-m_md)*(m_l3-m_md));
  float denom=(m_l1*m_l1+m_l2*m_l2+m_l3*m_l3);
  if(denom>0) m_fa=numer/denom;
  else m_fa=0;
  if(m_fa>0){m_fa=sqrt(m_fa);}
  else{m_fa=0;}
}
// now the nonlinear fitting routines
double DTI::cf(const NEWMAT::ColumnVector& p)const{
  //cout << "CF" << endl;
  //OUT(p.t());
  double cfv = 0.0;
  double err = 0.0;
  ////////////////////////////////////
  ColumnVector ls(3);
  Matrix rot(3,3);
  angles2rot(p(5),p(6),p(7),rot);
  for(int k=2;k<=4;k++){
    ls(k-1) = exp(p(k));
  }
  ////////////////////////////////////
  for(int i=1;i<=Y.Nrows();i++){
    err = p(1)*anisoterm(i,ls,rot) - Y(i); 
    cfv += err*err; 
  }  
  //OUT(cfv);
  //cout<<"--------"<<endl;
  return(cfv);
}

NEWMAT::ReturnMatrix DTI::grad(const NEWMAT::ColumnVector& p)const{
  NEWMAT::ColumnVector gradv(p.Nrows());

  cout<<"grad"<<endl;
  OUT(p.t());

  gradv = 0.0;
  ////////////////////////////////////
  ColumnVector ls(3);
  Matrix rot(3,3);
  Matrix rot1(3,3),rot2(3,3),rot3(3,3);
  angles2rot(p(5),p(6),p(7),rot);

  angles2rot(p(5)+M_PI/2.0,p(6),p(7),rot1);
  angles2rot(p(5),p(6)+M_PI/2.0,p(7),rot2);
  angles2rot(p(5),p(6),p(7)+M_PI/2.0,rot3);
  for(int k=2;k<=4;k++){
    ls(k-1) = exp(p(k));
  }
  ////////////////////////////////////
  Matrix J(npts,nparams);
  ColumnVector x(3);
  ColumnVector diff(npts);
  float sig;
  for(int i=1;i<=Y.Nrows();i++){
    sig = p(1)*anisoterm(i,ls,rot);
    
    J(i,1) = sig/p(1);

    x = rotproduct(bvecs.Column(i),rot);
    J(i,2) = -bvals(1,i)*x(1)*sig*ls(1);
    J(i,3) = -bvals(1,i)*x(2)*sig*ls(2);
    J(i,4) = -bvals(1,i)*x(3)*sig*ls(3);

    x = rotproduct(bvecs.Column(i),rot1,rot);
    J(i,5) = -2.0*bvals(1,i)*(ls(1)*x(1)+ls(2)*x(2)+ls(3)*x(3))*sig;
    x = rotproduct(bvecs.Column(i),rot2,rot);
    J(i,6) = -2.0*bvals(1,i)*(ls(1)*x(1)+ls(2)*x(2)+ls(3)*x(3))*sig;
    x = rotproduct(bvecs.Column(i),rot3,rot);
    J(i,7) = -2.0*bvals(1,i)*(ls(1)*x(1)+ls(2)*x(2)+ls(3)*x(3))*sig;

    diff(i) = sig - Y(i);
  }

  OUT(diff.t());
  OUT(J.t());
  
  gradv = 2.0*J.t()*diff;

  OUT(gradv.t());
  cout<<"------"<<endl;

  gradv.Release();
  return gradv;
}

//this uses Gauss-Newton approximation
boost::shared_ptr<BFMatrix> DTI::hess(const NEWMAT::ColumnVector& p,boost::shared_ptr<BFMatrix> iptr)const{
  boost::shared_ptr<BFMatrix>   hessm;
  if (iptr && iptr->Nrows()==(unsigned int)p.Nrows() && iptr->Ncols()==(unsigned int)p.Nrows()) hessm = iptr;
  else hessm = boost::shared_ptr<BFMatrix>(new FullBFMatrix(p.Nrows(),p.Nrows()));

  cout<<"hess"<<endl;
  OUT(p.t());
  
  ////////////////////////////////////
  ColumnVector ls(3);
  Matrix rot(3,3);
  Matrix rot1(3,3),rot2(3,3),rot3(3,3);
  angles2rot(p(5),p(6),p(7),rot);

  angles2rot(p(5)+M_PI/2,p(6),p(7),rot1);
  angles2rot(p(5),p(6)+M_PI/2,p(7),rot2);
  angles2rot(p(5),p(6),p(7)+M_PI/2,rot3);
  for(int k=2;k<=4;k++){
    ls(k-1) = exp(p(k));
  }
  ////////////////////////////////////
  Matrix J(npts,nparams);
  ColumnVector x(3);
  float sig;
  for(int i=1;i<=Y.Nrows();i++){
    sig = p(1)*anisoterm(i,ls,rot);
    
    J(i,1) = sig/p(1);

    x = rotproduct(bvecs.Column(i),rot);
    J(i,2) = -bvals(1,i)*x(1)*sig*ls(1);
    J(i,3) = -bvals(1,i)*x(2)*sig*ls(2);
    J(i,4) = -bvals(1,i)*x(3)*sig*ls(3);

    x = rotproduct(bvecs.Column(i),rot1,rot);
    J(i,5) = -2.0*bvals(1,i)*(ls(1)*x(1)+ls(2)*x(2)+ls(3)*x(3))*sig;
    x = rotproduct(bvecs.Column(i),rot2,rot);
    J(i,6) = -2.0*bvals(1,i)*(ls(1)*x(1)+ls(2)*x(2)+ls(3)*x(3))*sig;
    x = rotproduct(bvecs.Column(i),rot3,rot);
    J(i,7) = -2.0*bvals(1,i)*(ls(1)*x(1)+ls(2)*x(2)+ls(3)*x(3))*sig;
  }
  

  for (int i=1; i<=p.Nrows(); i++){
    for (int j=i; j<=p.Nrows(); j++){
      sig = 0.0;
      for(int k=1;k<=J.Nrows();k++)
	sig += 2.0*(J(k,i)*J(k,j));
      hessm->Set(i,j,sig);
    }
  }
  for (int j=1; j<=p.Nrows(); j++) {
    for (int i=j+1; i<=p.Nrows(); i++) {
      hessm->Set(i,j,hessm->Peek(j,i));
    }
  }

  hessm->Print();
  cout<<"------"<<endl;

  return(hessm);
}

ColumnVector DTI::rotproduct(const ColumnVector& x,const Matrix& R)const{
  ColumnVector ret(3);
  
  for(int i=1;i<=3;i++)
    ret(i) = x(1)*x(1)*R(1,i)*R(1,i)+x(2)*x(2)*R(2,i)*R(2,i)+x(3)*x(3)*R(3,i)*R(3,i)
      +2.0*( x(1)*R(1,i)*(x(2)*R(2,i)+x(3)*R(3,i)) +x(2)*x(3)*R(2,i)*R(3,i) );   
  
  return ret;
}
ColumnVector DTI::rotproduct(const ColumnVector& x,const Matrix& R1,const Matrix& R2)const{
  ColumnVector ret(3);
  
  for(int i=1;i<=3;i++)
    ret(i) = x(1)*x(1)*R1(1,i)*R2(1,i)+x(2)*x(2)*R1(2,i)*R2(2,i)+x(3)*x(3)*R1(3,i)*R2(3,i)
      +( x(1)*R1(1,i)*(x(2)*R2(2,i)+x(3)*R2(3,i)) +x(2)*x(3)*R1(2,i)*R2(3,i) )
      +( x(1)*R2(1,i)*(x(2)*R1(2,i)+x(3)*R1(3,i)) +x(2)*x(3)*R2(2,i)*R1(3,i) );   
  
  return ret;
}

float DTI::anisoterm(const int& pt,const ColumnVector& ls,const Matrix& rot)const{
  ColumnVector x(3);
  x = rotproduct(bvecs.Column(pt),rot);

  return exp(-bvals(1,pt)*(ls(1)*x(1)+ls(2)*x(2)+ls(3)*x(3)));
}


////////////////////////////////////////////////
//       PARTIAL VOLUME MODEL - SINGLE SHELL
////////////////////////////////////////////////

void PVM_single::fit(){

  // initialise with a tensor
  DTI dti(Y,bvecs,bvals);
  dti.linfit();

  // set starting parameters for nonlinear fitting
  float _th,_ph;
  cart2sph(dti.get_v1(),_th,_ph);

  ColumnVector start(nparams);
  start(1) = dti.get_s0();
  start(2) = dti.get_md()>0?dti.get_md()*2:0.001; // empirically found that d~2*MD
  start(3) = dti.get_fa()<1?f2x(dti.get_fa()):f2x(0.95); // first pvf = FA 
  start(4) = _th;
  start(5) = _ph;
  float sumf=x2f(start(2));
  float tmpsumf=sumf;
  for(int ii=2,i=6;ii<=nfib;ii++,i+=3){
    float denom=2;
    do{
      start(i) = f2x(x2f(start(i-3))/denom);
      denom *= 2;
      tmpsumf = sumf + x2f(start(i));
    }while(tmpsumf>=1);
    sumf += x2f(start(i));
    cart2sph(dti.get_v(ii),_th,_ph);
    start(i+1) = _th;
    start(i+2) = _ph;
  }


  // do the fit
  NonlinParam  lmpar(start.Nrows(),NL_LM); 
  lmpar.SetGaussNewtonType(LM_L);
  lmpar.SetStartingEstimate(start);

  NonlinOut status;
  status = nonlin(lmpar,(*this));
  ColumnVector final_par(nparams);
  final_par = lmpar.Par();


  // finalise parameters
  m_s0 = final_par(1);
  m_d  = std::abs(final_par(2));
  for(int k=1;k<=nfib;k++){
    int kk = 3 + 3*(k-1);
    m_f(k)  = x2f(final_par(kk));
    m_th(k) = final_par(kk+1);
    m_ph(k) = final_par(kk+2);
  }
  sort();
  fix_fsum();
}
void PVM_single::sort(){
  vector< pair<float,int> > fvals(nfib);
  ColumnVector ftmp(nfib),thtmp(nfib),phtmp(nfib);
  ftmp=m_f;thtmp=m_th;phtmp=m_ph;
  for(int i=1;i<=nfib;i++){
    pair<float,int> p(m_f(i),i);
    fvals[i-1] = p;
  }
  std::sort(fvals.begin(),fvals.end());
  for(int i=1,ii=nfib-1;ii>=0;i++,ii--){
    m_f(i)  = ftmp(fvals[ii].second);
    m_th(i) = thtmp(fvals[ii].second);
    m_ph(i) = phtmp(fvals[ii].second);
  }
}
void PVM_single::fix_fsum(){
  float sumf=0;
  for(int i=1;i<=nfib;i++){
    sumf+=m_f(i);
    if(sumf>=1){for(int j=i;j<=nfib;j++)m_f(j)=0;break;}
  }
}
ReturnMatrix PVM_single::get_prediction()const{
  ColumnVector pred(npts);
  ColumnVector p(nparams);
  p(1) = m_s0;
  p(2) = m_d;
  for(int i=3,ii=1;ii<=nfib;i+=3,ii++){
    p(i)   = f2x(m_f(ii));
    p(i+1) = m_th(ii);
    p(i+2) = m_ph(ii);
  }
  pred = forwardModel(p);

  pred.Release();
  return pred;
}
NEWMAT::ReturnMatrix PVM_single::forwardModel(const NEWMAT::ColumnVector& p)const{
  //cout<<"FORWARD"<<endl;
  //OUT(p.t());
  ColumnVector pred(npts);
  pred = 0;
  float val;
  float _d = std::abs(p(2));
  ////////////////////////////////////
  ColumnVector fs(nfib);
  Matrix x(nfib,3);
  float sumf=0;
  for(int k=1;k<=nfib;k++){
    int kk = 3+3*(k-1);
    fs(k) = x2f(p(kk));
    sumf += fs(k);
    x(k,1) = sin(p(kk+1))*cos(p(kk+2));
    x(k,2) = sin(p(kk+1))*sin(p(kk+2));
    x(k,3) = cos(p(kk+1));
  }
  ////////////////////////////////////
  for(int i=1;i<=Y.Nrows();i++){
    val = 0.0;
    for(int k=1;k<=nfib;k++){
      val += fs(k)*anisoterm(i,_d,x.Row(k).t());
    }
    pred(i) = p(1)*((1-sumf)*isoterm(i,_d)+val); 
  }  
  pred.Release();
  //cout<<"----"<<endl;
  return pred;
}
double PVM_single::cf(const NEWMAT::ColumnVector& p)const{
  //cout<<"CF"<<endl;
  //OUT(p.t());
  double cfv = 0.0;
  double err;
  float _d = std::abs(p(2));
  ////////////////////////////////////
  ColumnVector fs(nfib);
  Matrix x(nfib,3);
  float sumf=0;
  for(int k=1;k<=nfib;k++){
    int kk = 3+3*(k-1);
    fs(k) = x2f(p(kk));
    sumf += fs(k);
    x(k,1) = sin(p(kk+1))*cos(p(kk+2));
    x(k,2) = sin(p(kk+1))*sin(p(kk+2));
    x(k,3) = cos(p(kk+1));
  }
  ////////////////////////////////////
  for(int i=1;i<=Y.Nrows();i++){
    err = 0.0;
    for(int k=1;k<=nfib;k++){
      err += fs(k)*anisoterm(i,_d,x.Row(k).t());
    }
    err = (p(1)*((1-sumf)*isoterm(i,_d)+err) - Y(i)); 
    cfv += err*err; 
  }  
  //OUT(cfv);
  //cout<<"----"<<endl;
  return(cfv);
}

NEWMAT::ReturnMatrix PVM_single::grad(const NEWMAT::ColumnVector& p)const{
  //cout<<"GRAD"<<endl;
  //OUT(p.t());
  NEWMAT::ColumnVector gradv(p.Nrows());
  gradv = 0.0;
  float _d = std::abs(p(2));
  ////////////////////////////////////
  ColumnVector fs(nfib);
  Matrix x(nfib,3);ColumnVector xx(3);
  float sumf=0;
  for(int k=1;k<=nfib;k++){
    int kk = 3+3*(k-1);
    fs(k) = x2f(p(kk));
    sumf += fs(k);
    x(k,1) = sin(p(kk+1))*cos(p(kk+2));
    x(k,2) = sin(p(kk+1))*sin(p(kk+2));
    x(k,3) = cos(p(kk+1));
  }
  ////////////////////////////////////
  Matrix J(npts,nparams);
  ColumnVector diff(npts);
  float sig;
  for(int i=1;i<=Y.Nrows();i++){
    sig = 0;
    J.Row(i)=0;
    for(int k=1;k<=nfib;k++){
      int kk = 3+3*(k-1);
      xx = x.Row(k).t();
      sig += fs(k)*anisoterm(i,_d,xx);
      // other stuff for derivatives
      // d
      J(i,2) += (p(2)>0?1.0:-1.0)*p(1)*fs(k)*anisoterm_d(i,_d,xx);
      // f
      J(i,kk) = p(1)*(anisoterm(i,_d,xx)-isoterm(i,_d)) * two_pi*sign(p(kk))*1/(1+p(kk)*p(kk));
      // th
      J(i,kk+1) = p(1)*fs(k)*anisoterm_th(i,_d,xx,p(kk+1),p(kk+2));
      // ph
      J(i,kk+2) = p(1)*fs(k)*anisoterm_ph(i,_d,xx,p(kk+1),p(kk+2));
    }
    sig = p(1)*((1-sumf)*isoterm(i,_d)+sig);
    diff(i) = sig - Y(i);
    // other stuff for derivatives
    J(i,1) = sig/p(1);
    J(i,2) += (p(2)>0?1.0:-1.0)*p(1)*(1-sumf)*isoterm_d(i,_d);
  }
  
  gradv = 2*J.t()*diff;
  //OUT(gradv.t());
  //cout<<"----"<<endl;
  gradv.Release();
  return gradv;


}
//this uses Gauss-Newton approximation
boost::shared_ptr<BFMatrix> PVM_single::hess(const NEWMAT::ColumnVector& p,boost::shared_ptr<BFMatrix> iptr)const{
  //cout<<"HESS"<<endl;
  //OUT(p.t());
  boost::shared_ptr<BFMatrix>   hessm;
  if (iptr && iptr->Nrows()==(unsigned int)p.Nrows() && iptr->Ncols()==(unsigned int)p.Nrows()) hessm = iptr;
  else hessm = boost::shared_ptr<BFMatrix>(new FullBFMatrix(p.Nrows(),p.Nrows()));

  float _d = std::abs(p(2));
  ////////////////////////////////////
  ColumnVector fs(nfib);
  Matrix x(nfib,3);ColumnVector xx(3);
  float sumf=0;
  for(int k=1;k<=nfib;k++){
    int kk = 3+3*(k-1);
    fs(k) = x2f(p(kk));
    sumf += fs(k);
    x(k,1) = sin(p(kk+1))*cos(p(kk+2));
    x(k,2) = sin(p(kk+1))*sin(p(kk+2));
    x(k,3) = cos(p(kk+1));
  }
  ////////////////////////////////////
  Matrix J(npts,nparams);
  float sig;
  for(int i=1;i<=Y.Nrows();i++){
    sig = 0;
    J.Row(i)=0;
    for(int k=1;k<=nfib;k++){
      int kk = 3+3*(k-1);
      xx = x.Row(k).t();
      sig += fs(k)*anisoterm(i,_d,xx);
      // other stuff for derivatives
      // d
      J(i,2) += (p(2)>0?1.0:-1.0)*p(1)*fs(k)*anisoterm_d(i,_d,xx);
      // f
      J(i,kk) = p(1)*(anisoterm(i,_d,xx)-isoterm(i,_d)) * two_pi*sign(p(kk))*1/(1+p(kk)*p(kk));
      // th
      J(i,kk+1) = p(1)*fs(k)*anisoterm_th(i,_d,xx,p(kk+1),p(kk+2));
      // ph
      J(i,kk+2) = p(1)*fs(k)*anisoterm_ph(i,_d,xx,p(kk+1),p(kk+2));
    }
    sig = p(1)*((1-sumf)*isoterm(i,_d)+sig);
    // other stuff for derivatives
    J(i,1) = sig/p(1);
    J(i,2) += (p(2)>0?1.0:-1.0)*p(1)*(1-sumf)*isoterm_d(i,_d);
    
  }
  

  for (int i=1; i<=p.Nrows(); i++){
    for (int j=i; j<=p.Nrows(); j++){
      sig = 0.0;
      for(int k=1;k<=J.Nrows();k++)
	sig += 2*(J(k,i)*J(k,j));
      hessm->Set(i,j,sig);
    }
  }
  for (int j=1; j<=p.Nrows(); j++) {
    for (int i=j+1; i<=p.Nrows(); i++) {
      hessm->Set(i,j,hessm->Peek(j,i));
    }
  }
  //hessm->Print();
  //cout<<"----"<<endl;
  return(hessm);
}




////////////////////////////////////////////////
//       PARTIAL VOLUME MODEL - MULTIPLE SHELLS
////////////////////////////////////////////////

void PVM_multi::fit(){

  // initialise with a tensor
  DTI dti(Y,bvecs,bvals);
  dti.linfit();

  // initialise with simple pvm
  PVM_single pvm1(Y,bvecs,bvals,nfib);
  pvm1.fit();

  float _a,_b;
  _a = 1; // start with d=d_std
  _b = pvm1.get_d();

  ColumnVector start(nparams);
  start(1) = pvm1.get_s0();
  start(2) = _a;
  start(3) = _b;
  for(int i=1,ii=4;i<=nfib;i++,ii+=3){
    start(ii) = pvm1.get_f(i);
    start(ii+1) = pvm1.get_th(i);
    start(ii+2) = pvm1.get_ph(i);
  }
  
  // do the fit
  NonlinParam  lmpar(start.Nrows(),NL_LM); 
  lmpar.SetGaussNewtonType(LM_L);
  lmpar.SetStartingEstimate(start);

  NonlinOut status;
  status = nonlin(lmpar,(*this));
  ColumnVector final_par(nparams);
  final_par = lmpar.Par();


  // finalise parameters
  m_s0     = final_par(1);
  m_d      = std::abs(final_par(2)*final_par(3));
  m_d_std  = std::sqrt(std::abs(final_par(2)))*std::abs(final_par(3));
  for(int i=4,k=1;k<=nfib;i+=3,k++){
    m_f(k)  = x2f(final_par(i));
    m_th(k) = final_par(i+1);
    m_ph(k) = final_par(i+2);
  }
  sort();
  fix_fsum();
}
void PVM_multi::sort(){
  vector< pair<float,int> > fvals(nfib);
  ColumnVector ftmp(nfib),thtmp(nfib),phtmp(nfib);
  ftmp=m_f;thtmp=m_th;phtmp=m_ph;
  for(int i=1;i<=nfib;i++){
    pair<float,int> p(m_f(i),i);
    fvals[i-1] = p;
  }
  std::sort(fvals.begin(),fvals.end());
  for(int i=1,ii=nfib-1;ii>=0;i++,ii--){
    m_f(i)  = ftmp(fvals[ii].second);
    m_th(i) = thtmp(fvals[ii].second);
    m_ph(i) = phtmp(fvals[ii].second);
  }
}
void PVM_multi::fix_fsum(){
  float sumf=0;
  for(int i=1;i<=nfib;i++){
    sumf+=m_f(i);
    if(sumf>=1){for(int j=i;j<=nfib;j++)m_f(j)=0;break;}
  }
}
ReturnMatrix PVM_multi::get_prediction()const{
  ColumnVector pred(npts);
  ColumnVector p(nparams);
  p(1) = m_s0;
  p(2) = m_d*m_d/m_d_std/m_d_std;
  p(3) = m_d_std*m_d_std/m_d;
  for(int k=1;k<=nfib;k++){
    int kk = 4+3*(k-1);
    p(kk)   = f2x(m_f(k));
    p(kk+1) = m_th(k);
    p(kk+2) = m_ph(k);
  }
  pred = forwardModel(p);
  pred.Release();
  return pred;
}
NEWMAT::ReturnMatrix PVM_multi::forwardModel(const NEWMAT::ColumnVector& p)const{
  ColumnVector pred(npts);
  pred = 0;
  float val;
  float _a = std::abs(p(2));
  float _b = std::abs(p(3));
  ////////////////////////////////////
  ColumnVector fs(nfib);
  Matrix x(nfib,3);
  float sumf=0;
  for(int k=1;k<=nfib;k++){
    int kk = 4+3*(k-1);
    fs(k) = x2f(p(kk));
    sumf += fs(k);
    x(k,1) = sin(p(kk+1))*cos(p(kk+2));
    x(k,2) = sin(p(kk+1))*sin(p(kk+2));
    x(k,3) = cos(p(kk+1));
  }
  ////////////////////////////////////
  for(int i=1;i<=Y.Nrows();i++){
    val = 0.0;
    for(int k=1;k<=nfib;k++){
      val += fs(k)*anisoterm(i,_a,_b,x.Row(k).t());
    }
    pred(i) = p(1)*((1-sumf)*isoterm(i,_a,_b)+val); 
  }  
  pred.Release();
  return pred;
}
double PVM_multi::cf(const NEWMAT::ColumnVector& p)const{
  //cout<<"CF"<<endl;
  //OUT(p.t());
  double cfv = 0.0;
  double err;
  float _a = std::abs(p(2));
  float _b = std::abs(p(3));
  ////////////////////////////////////
  ColumnVector fs(nfib);
  Matrix x(nfib,3);
  float sumf=0;
  for(int k=1;k<=nfib;k++){
    int kk = 4+3*(k-1);
    fs(k) = x2f(p(kk));
    sumf += fs(k);
    x(k,1) = sin(p(kk+1))*cos(p(kk+2));
    x(k,2) = sin(p(kk+1))*sin(p(kk+2));
    x(k,3) = cos(p(kk+1));
  }
  ////////////////////////////////////
  for(int i=1;i<=Y.Nrows();i++){
    err = 0.0;
    for(int k=1;k<=nfib;k++){
      err += fs(k)*anisoterm(i,_a,_b,x.Row(k).t());
    }
    err = (p(1)*((1-sumf)*isoterm(i,_a,_b)+err) - Y(i)); 
    cfv += err*err; 
  }  
  //OUT(cfv);
  //cout<<"----"<<endl;
  return(cfv);
}

NEWMAT::ReturnMatrix PVM_multi::grad(const NEWMAT::ColumnVector& p)const{
  //cout<<"GRAD"<<endl;
  //OUT(p.t());
  NEWMAT::ColumnVector gradv(p.Nrows());
  gradv = 0.0;
  float _a = std::abs(p(2));
  float _b = std::abs(p(3));
  ////////////////////////////////////
  ColumnVector fs(nfib);
  Matrix x(nfib,3);ColumnVector xx(3);
  float sumf=0;
  for(int k=1;k<=nfib;k++){
    int kk = 4+3*(k-1);
    fs(k) = x2f(p(kk));
    sumf += fs(k);
    x(k,1) = sin(p(kk+1))*cos(p(kk+2));
    x(k,2) = sin(p(kk+1))*sin(p(kk+2));
    x(k,3) = cos(p(kk+1));
  }
  ////////////////////////////////////
  Matrix J(npts,nparams);
  ColumnVector diff(npts);
  float sig;
  for(int i=1;i<=Y.Nrows();i++){
    sig = 0;
    J.Row(i)=0;
    for(int k=1;k<=nfib;k++){
      int kk = 4+3*(k-1);
      xx = x.Row(k).t();
      sig += fs(k)*anisoterm(i,_a,_b,xx);
      // other stuff for derivatives
      // alpha
      J(i,2) += (p(2)>0?1.0:-1.0)*p(1)*fs(k)*anisoterm_a(i,_a,_b,xx);
      // beta
      J(i,3) += (p(3)>0?1.0:-1.0)*p(1)*fs(k)*anisoterm_b(i,_a,_b,xx) * (-p(3)*p(3)); // change of variable beta=1/beta
      // f
      J(i,kk) = p(1)*(anisoterm(i,_a,_b,xx)-isoterm(i,_a,_b)) * two_pi*sign(p(kk))*1/(1+p(kk)*p(kk));
      // th
      J(i,kk+1) = p(1)*fs(k)*anisoterm_th(i,_a,_b,xx,p(kk+1),p(kk+2));
      // ph
      J(i,kk+2) = p(1)*fs(k)*anisoterm_ph(i,_a,_b,xx,p(kk+1),p(kk+2));
    }
    sig = p(1)*((1-sumf)*isoterm(i,_a,_b)+sig);
    diff(i) = sig - Y(i);
    // other stuff for derivatives
    J(i,1) = sig/p(1);
    J(i,2) += (p(2)>0?1.0:-1.0)*p(1)*(1-sumf)*isoterm_a(i,_a,_b);
    J(i,3) += (p(3)>0?1.0:-1.0)*p(1)*(1-sumf)*isoterm_b(i,_a,_b) * (-p(3)*p(3));
  }
  
  gradv = 2*J.t()*diff;
  //OUT(gradv.t());
  //cout<<"----"<<endl;
  gradv.Release();
  return gradv;


}
//this uses Gauss-Newton approximation
boost::shared_ptr<BFMatrix> PVM_multi::hess(const NEWMAT::ColumnVector& p,boost::shared_ptr<BFMatrix> iptr)const{
  //cout<<"HESS"<<endl;
  //OUT(p.t());
  boost::shared_ptr<BFMatrix>   hessm;
  if (iptr && iptr->Nrows()==(unsigned int)p.Nrows() && iptr->Ncols()==(unsigned int)p.Nrows()) hessm = iptr;
  else hessm = boost::shared_ptr<BFMatrix>(new FullBFMatrix(p.Nrows(),p.Nrows()));

  float _a = std::abs(p(2));
  float _b = std::abs(p(3));
  ////////////////////////////////////
  ColumnVector fs(nfib);
  Matrix x(nfib,3);ColumnVector xx(3);
  float sumf=0;
  for(int k=1;k<=nfib;k++){
    int kk = 4+3*(k-1);
    fs(k) = x2f(p(kk));
    sumf += fs(k);
    x(k,1) = sin(p(kk+1))*cos(p(kk+2));
    x(k,2) = sin(p(kk+1))*sin(p(kk+2));
    x(k,3) = cos(p(kk+1));
  }
  ////////////////////////////////////
  Matrix J(npts,nparams);
  ColumnVector diff(npts);
  float sig;
  for(int i=1;i<=Y.Nrows();i++){
    sig = 0;
    J.Row(i)=0;
    for(int k=1;k<=nfib;k++){
      int kk = 4+3*(k-1);
      xx = x.Row(k).t();
      sig += fs(k)*anisoterm(i,_a,_b,xx);
      // other stuff for derivatives
      // change of variable
      float cov = two_pi*sign(p(kk))*1/(1+p(kk)*p(kk));
      // alpha
      J(i,2) += (p(2)>0?1.0:-1.0)*p(1)*fs(k)*anisoterm_a(i,_a,_b,xx);
      // beta
      J(i,3) += (p(3)>0?1.0:-1.0)*p(1)*fs(k)*anisoterm_b(i,_a,_b,xx) * (-p(3)*p(3));
      // f
      J(i,kk) = p(1)*(anisoterm(i,_a,_b,xx)-isoterm(i,_a,_b)) * cov;
      // th
      J(i,kk+1) = p(1)*fs(k)*anisoterm_th(i,_a,_b,xx,p(kk+1),p(kk+2));
      // ph
      J(i,kk+2) = p(1)*fs(k)*anisoterm_ph(i,_a,_b,xx,p(kk+1),p(kk+2));
    }
    sig = p(1)*((1-sumf)*isoterm(i,_a,_b)+sig);
    diff(i) = sig - Y(i);
    // other stuff for derivatives
    J(i,1) = sig/p(1);
    J(i,2) += (p(2)>0?1.0:-1.0)*p(1)*(1-sumf)*isoterm_a(i,_a,_b);
    J(i,3) += (p(3)>0?1.0:-1.0)*p(1)*(1-sumf)*isoterm_b(i,_a,_b) * (-p(3)*p(3));
  }
  

  for (int i=1; i<=p.Nrows(); i++){
    for (int j=i; j<=p.Nrows(); j++){
      sig = 0.0;
      for(int k=1;k<=J.Nrows();k++)
	sig += 2*(J(k,i)*J(k,j));
      hessm->Set(i,j,sig);
    }
  }
  for (int j=1; j<=p.Nrows(); j++) {
    for (int i=j+1; i<=p.Nrows(); i++) {
      hessm->Set(i,j,hessm->Peek(j,i));
    }
  }
  //hessm->Print();
  //cout<<"----"<<endl;
  return(hessm);
}





///////////////////////////////////////////////////////////////////////////////////////////////
//               USEFUL FUNCTIONS TO CALCULATE DERIVATIVES
///////////////////////////////////////////////////////////////////////////////////////////////
// functions
float PVM_single::isoterm(const int& pt,const float& _d)const{
  return(std::exp(-bvals(1,pt)*_d));
}
float PVM_single::anisoterm(const int& pt,const float& _d,const ColumnVector& x)const{
  float dp = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  return(std::exp(-bvals(1,pt)*_d*dp*dp));
}
float PVM_single::bvecs_fibre_dp(const int& pt,const float& _th,const float& _ph)const{
  float angtmp = cos(_ph-beta(pt))*sinalpha(pt)*sin(_th) + cosalpha(pt)*cos(_th);
  return(angtmp*angtmp);
}
float PVM_single::bvecs_fibre_dp(const int& pt,const ColumnVector& x)const{
  float dp = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  return(dp*dp);
}
// 1st order derivatives
float PVM_single::isoterm_d(const int& pt,const float& _d)const{
  return(-bvals(1,pt)*std::exp(-bvals(1,pt)*_d));
}
float PVM_single::anisoterm_d(const int& pt,const float& _d,const ColumnVector& x)const{
  float dp = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  return(-bvals(1,pt)*dp*dp*std::exp(-bvals(1,pt)*_d*dp*dp));
}
float PVM_single::anisoterm_th(const int& pt,const float& _d,const ColumnVector& x,const float& _th,const float& _ph)const{
  float dp  = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  float dp1 = cos(_th)*(bvecs(1,pt)*cos(_ph) + bvecs(2,pt)*sin(_ph)) - bvecs(3,pt)*sin(_th);
  return(-2*bvals(1,pt)*_d*dp*dp1*std::exp(-bvals(1,pt)*_d*dp*dp));
}
float PVM_single::anisoterm_ph(const int& pt,const float& _d,const ColumnVector& x,const float& _th,const float& _ph)const{
  float dp  = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  float dp1 = sin(_th)*(-bvecs(1,pt)*sin(_ph) + bvecs(2,pt)*cos(_ph));
  return(-2*bvals(1,pt)*_d*dp*dp1*std::exp(-bvals(1,pt)*_d*dp*dp));
}
// 2nd order derivatives
float PVM_single::isoterm_dd(const int& pt,const float& _d)const{
  return(bvals(1,pt)*bvals(1,pt)*std::exp(-bvals(1,pt)*_d));
}
float PVM_single::anisoterm_dd(const int& pt,const float& _d,const ColumnVector& x)const{
  float dp = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  dp *= dp;
  return(bvals(1,pt)*dp*bvals(1,pt)*dp*std::exp(-bvals(1,pt)*_d*dp));
}
float PVM_single::anisoterm_dth(const int& pt,const float& _d,const ColumnVector& x,const float& _th,const float& _ph)const{
  float dp  = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  float dp1 = cos(_th)*(bvecs(1,pt)*cos(_ph) + bvecs(2,pt)*sin(_ph)) - bvecs(3,pt)*sin(_th);
  return( -2*bvals(1,pt)*dp*dp1*(1-bvals(1,pt)*_d*dp*dp)*std::exp(-bvals(1,pt)*_d*dp*dp) );
}
float PVM_single::anisoterm_dph(const int& pt,const float& _d,const ColumnVector& x,const float& _th,const float& _ph)const{
  float dp  = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  float dp1 = sin(_th)*(-bvecs(1,pt)*sin(_ph) + bvecs(2,pt)*cos(_ph));
  return( -2*bvals(1,pt)*dp*dp1*(1-bvals(1,pt)*_d*dp*dp)*std::exp(-bvals(1,pt)*_d*dp*dp) );
}
float PVM_single::anisoterm_thth(const int& pt,const float& _d,const ColumnVector& x,const float& _th,const float& _ph)const{
  float dp  = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  return( -2*bvals(1,pt)*_d*std::exp(-bvals(1,pt)*_d*dp*dp)* ( (1-2*bvals(1,pt)*dp*dp) -dp*dp ) );
}
float PVM_single::anisoterm_phph(const int& pt,const float& _d,const ColumnVector& x,const float& _th,const float& _ph)const{
  float dp  = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  float dp1 = (1-cos(2*_th))/2.0;
  float dp2 = -bvecs(1,pt)*x(1) - bvecs(2,pt)*x(2);
  return( -2*bvals(1,pt)*_d*std::exp(-bvals(1,pt)*_d*dp*dp)* ( (1-2*bvals(1,pt)*dp*dp)*dp1 +dp*dp2 ) );
}
float PVM_single::anisoterm_thph(const int& pt,const float& _d,const ColumnVector& x,const float& _th,const float& _ph)const{
  float dp  = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  float dp2 = cos(_th)*(-bvecs(1,pt)*sin(_ph) + bvecs(2,pt)*cos(_ph));
  return( -2*bvals(1,pt)*_d*std::exp(-bvals(1,pt)*_d*dp*dp)* ( dp*dp2 ) );
}



////// NOW FOR MULTISHELL
// functions
float PVM_multi::isoterm(const int& pt,const float& _a,const float& _b)const{
  return(std::exp(-_a*std::log(1+bvals(1,pt)*_b)));
}
float PVM_multi::anisoterm(const int& pt,const float& _a,const float& _b,const ColumnVector& x)const{
  float dp = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  return(std::exp(-_a*std::log(1+bvals(1,pt)*_b*dp*dp)));
}
// 1st order derivatives
float PVM_multi::isoterm_a(const int& pt,const float& _a,const float& _b)const{
    return(-std::log(1+bvals(1,pt)*_b)*std::exp(-_a*std::log(1+bvals(1,pt)*_b)));
}
float PVM_multi::isoterm_b(const int& pt,const float& _a,const float& _b)const{
      return(-_a*bvals(1,pt)/(1+bvals(1,pt)*_b)*std::exp(-_a*std::log(1+bvals(1,pt)*_b)));
}
float PVM_multi::anisoterm_a(const int& pt,const float& _a,const float& _b,const ColumnVector& x)const{
  float dp = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  return(-std::log(1+bvals(1,pt)*dp*dp*_b)*std::exp(-_a*std::log(1+bvals(1,pt)*dp*dp*_b)));
}
float PVM_multi::anisoterm_b(const int& pt,const float& _a,const float& _b,const ColumnVector& x)const{
  float dp = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  return(-_a*bvals(1,pt)*dp*dp/(1+bvals(1,pt)*dp*dp*_b)*std::exp(-_a*std::log(1+bvals(1,pt)*dp*dp*_b)));
}
float PVM_multi::anisoterm_th(const int& pt,const float& _a,const float& _b,const ColumnVector& x,const float& _th,const float& _ph)const{
  float dp = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  float dp1 = cos(_th)*(bvecs(1,pt)*cos(_ph) + bvecs(2,pt)*sin(_ph)) - bvecs(3,pt)*sin(_th);
  return(-_a*_b*bvals(1,pt)/(1+bvals(1,pt)*dp*dp*_b)*std::exp(-_a*std::log(1+bvals(1,pt)*dp*dp*_b))*2*dp*dp1);
}
float PVM_multi::anisoterm_ph(const int& pt,const float& _a,const float& _b,const ColumnVector& x,const float& _th,const float& _ph)const{
  float dp = bvecs(1,pt)*x(1)+bvecs(2,pt)*x(2)+bvecs(3,pt)*x(3);
  float dp1 = sin(_th)*(-bvecs(1,pt)*sin(_ph) + bvecs(2,pt)*cos(_ph));
  return(-_a*_b*bvals(1,pt)/(1+bvals(1,pt)*dp*dp*_b)*std::exp(-_a*std::log(1+bvals(1,pt)*dp*dp*_b))*2*dp*dp1);
}