Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FSL
fdt
Commits
186030cd
Commit
186030cd
authored
12 years ago
by
Moises Fernandez
Browse files
Options
Downloads
Patches
Plain Diff
Implementation of the new Sample class prepared for save multi Voxels
parent
86f8df70
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
CUDA/samples.cu
+350
-0
350 additions, 0 deletions
CUDA/samples.cu
with
350 additions
and
0 deletions
CUDA/samples.cu
0 → 100644
+
350
−
0
View file @
186030cd
#include
"newmat.h"
#include
"newimage/newimageall.h"
#include
"xfibresoptions.h"
#include
"samples.h"
using
namespace
Xfibres
;
////////////////////////////////////////////
// MCMC SAMPLE STORAGE
////////////////////////////////////////////
Samples
::
Samples
(
NEWIMAGE
::
volume
<
int
>
vol2matrixkey
,
Matrix
matrix2volkey
,
int
nvoxels
,
int
nmeasures
)
:
opts
(
xfibresOptions
::
getInstance
()),
m_vol2matrixkey
(
vol2matrixkey
),
m_matrix2volkey
(
matrix2volkey
){
/////////////// GPU version /////////////////////
m_sum_d
=
new
float
[
nvoxels
];
m_sum_S0
=
new
float
[
nvoxels
];
for
(
int
i
=
0
;
i
<
nvoxels
;
i
++
){
m_sum_d
[
i
]
=
0
;
m_sum_S0
[
i
]
=
0
;
}
m_vec
=
new
ColumnVector
[
nvoxels
];
m_dyad
=
new
vector
<
SymmetricMatrix
>
[
nvoxels
];
m_sum_f
=
new
vector
<
float
>
[
nvoxels
];
m_sum_lam
=
new
vector
<
float
>
[
nvoxels
];
////////////////////////////////////////////////
m_beenhere
=
m_vol2matrixkey
*
0
;
int
count
=
0
;
int
nsamples
=
0
;
for
(
int
i
=
0
;
i
<
opts
.
njumps
.
value
();
i
++
){
count
++
;
if
(
count
==
opts
.
sampleevery
.
value
()){
count
=
0
;
nsamples
++
;
}
}
m_dsamples
.
ReSize
(
nsamples
,
nvoxels
);
m_dsamples
=
0
;
m_S0samples
.
ReSize
(
nsamples
,
nvoxels
);
m_S0samples
=
0
;
m_lik_energy
.
ReSize
(
nsamples
,
nvoxels
);
// m_mean_sig.ReSize(nmeasures,nvoxels);
// m_mean_sig=0;
// m_std_sig.ReSize(nmeasures,nvoxels);
// m_std_sig=0;
// m_sig2.ReSize(nmeasures,nvoxels);
// m_sig2=0;
m_mean_dsamples
.
ReSize
(
nvoxels
);
m_mean_dsamples
=
0
;
m_mean_S0samples
.
ReSize
(
nvoxels
);
m_mean_S0samples
=
0
;
Matrix
tmpvecs
(
3
,
nvoxels
);
tmpvecs
=
0
;
//m_sum_d=0; changed GPU version
//m_sum_S0=0; changed GPU version
if
(
opts
.
modelnum
.
value
()
==
2
){
m_d_stdsamples
.
ReSize
(
nsamples
,
nvoxels
);
m_d_stdsamples
=
0
;
m_mean_d_stdsamples
.
ReSize
(
nvoxels
);
m_mean_d_stdsamples
=
0
;
//m_sum_d_std=0; changed GPU version
/////////////// GPU version /////////////////////
m_sum_d_std
=
new
float
[
nvoxels
];
for
(
int
i
=
0
;
i
<
nvoxels
;
i
++
){
m_sum_d_std
[
i
]
=
0
;
}
////////////////////////////////////////////////
}
if
(
opts
.
f0
.
value
()){
m_f0samples
.
ReSize
(
nsamples
,
nvoxels
);
m_f0samples
=
0
;
m_mean_f0samples
.
ReSize
(
nvoxels
);
m_mean_f0samples
=
0
;
//m_sum_f0=0; changed GPU version
/////////////// GPU version /////////////////////
m_sum_f0
=
new
float
[
nvoxels
];
for
(
int
i
=
0
;
i
<
nvoxels
;
i
++
)
m_sum_f0
[
i
]
=
0
;
////////////////////////////////////////////////
}
if
(
opts
.
rician
.
value
()){
m_mean_tausamples
.
ReSize
(
nvoxels
);
m_mean_tausamples
=
0
;
//m_sum_tau=0; changed GPU version
/////////////// GPU version /////////////////////
m_sum_tau
=
new
float
[
nvoxels
];
for
(
int
i
=
0
;
i
<
nvoxels
;
i
++
)
m_sum_tau
[
i
]
=
0
;
////////////////////////////////////////////////
}
SymmetricMatrix
tmpdyad
(
3
);
tmpdyad
=
0
;
m_nsamps
=
nsamples
;
//m_vec.ReSize(3); changed GPU version
/////////////// GPU version /////////////////////
for
(
int
i
=
0
;
i
<
nvoxels
;
i
++
){
m_vec
[
i
].
ReSize
(
3
);
for
(
int
f
=
0
;
f
<
opts
.
nfibres
.
value
();
f
++
){
m_dyad
[
i
].
push_back
(
tmpdyad
);
m_sum_f
[
i
].
push_back
(
0
);
m_sum_lam
[
i
].
push_back
(
0
);
}
}
////////////////////////////////////////////////
for
(
int
f
=
0
;
f
<
opts
.
nfibres
.
value
();
f
++
){
m_thsamples
.
push_back
(
m_S0samples
);
m_phsamples
.
push_back
(
m_S0samples
);
m_fsamples
.
push_back
(
m_S0samples
);
m_lamsamples
.
push_back
(
m_S0samples
);
m_dyadic_vectors
.
push_back
(
tmpvecs
);
m_mean_fsamples
.
push_back
(
m_mean_S0samples
);
m_mean_lamsamples
.
push_back
(
m_mean_S0samples
);
//m_sum_lam.push_back(0); changed GPU version
//m_sum_f.push_back(0); changed GPU version
//m_dyad.push_back(tmpdyad); changed GPU version
}
}
//new version for GPU
void
Samples
::
record
(
float
rd
,
float
rf0
,
float
rtau
,
float
rdstd
,
float
rs0
,
float
rlikelihood_energy
,
float
*
rth
,
float
*
rph
,
float
*
rf
,
int
vox
,
int
samp
){
m_dsamples
(
samp
,
vox
)
=
rd
;
m_sum_d
[
vox
-
1
]
+=
rd
;
if
(
opts
.
modelnum
.
value
()
==
2
){
m_d_stdsamples
(
samp
,
vox
)
=
rdstd
;
m_sum_d_std
[
vox
-
1
]
+=
rdstd
;
}
if
(
opts
.
f0
.
value
()){
m_f0samples
(
samp
,
vox
)
=
rf0
;
m_sum_f0
[
vox
-
1
]
+=
rf0
;
}
if
(
opts
.
rician
.
value
()){
m_sum_tau
[
vox
-
1
]
+=
rtau
;
}
m_S0samples
(
samp
,
vox
)
=
rs0
;
m_sum_S0
[
vox
-
1
]
+=
rs0
;
m_lik_energy
(
samp
,
vox
)
=
rlikelihood_energy
;
for
(
int
f
=
0
;
f
<
opts
.
nfibres
.
value
();
f
++
){
float
th
=
rth
[
f
];
float
ph
=
rph
[
f
];
m_thsamples
[
f
](
samp
,
vox
)
=
th
;
m_phsamples
[
f
](
samp
,
vox
)
=
ph
;
m_fsamples
[
f
](
samp
,
vox
)
=
rf
[
f
];
//for means
m_vec
[
vox
-
1
]
<<
sin
(
th
)
*
cos
(
ph
)
<<
sin
(
th
)
*
sin
(
ph
)
<<
cos
(
th
)
;
m_dyad
[
vox
-
1
][
f
]
<<
m_dyad
[
vox
-
1
][
f
]
+
m_vec
[
vox
-
1
]
*
m_vec
[
vox
-
1
].
t
();
m_sum_f
[
vox
-
1
][
f
]
+=
rf
[
f
];
m_sum_lam
[
vox
-
1
][
f
]
+=
0
;
}
}
//new version for GPU
void
Samples
::
finish_voxel
(
int
vox
){
m_mean_dsamples
(
vox
)
=
m_sum_d
[
vox
-
1
]
/
m_nsamps
;
if
(
opts
.
modelnum
.
value
()
==
2
)
m_mean_d_stdsamples
(
vox
)
=
m_sum_d_std
[
vox
-
1
]
/
m_nsamps
;
if
(
opts
.
f0
.
value
())
m_mean_f0samples
(
vox
)
=
m_sum_f0
[
vox
-
1
]
/
m_nsamps
;
if
(
opts
.
rician
.
value
())
m_mean_tausamples
(
vox
)
=
m_sum_tau
[
vox
-
1
]
/
m_nsamps
;
m_mean_S0samples
(
vox
)
=
m_sum_S0
[
vox
-
1
]
/
m_nsamps
;
m_sum_d
[
vox
-
1
]
=
0
;
m_sum_S0
[
vox
-
1
]
=
0
;
if
(
opts
.
rician
.
value
())
m_sum_tau
[
vox
-
1
]
=
0
;
if
(
opts
.
modelnum
.
value
()
==
2
)
m_sum_d_std
[
vox
-
1
]
=
0
;
if
(
opts
.
f0
.
value
())
m_sum_f0
[
vox
-
1
]
=
0
;
DiagonalMatrix
dyad_D
;
//eigenvalues
Matrix
dyad_V
;
//eigenvectors
int
nfibs
=
0
;
for
(
int
f
=
0
;
f
<
opts
.
nfibres
.
value
();
f
++
){
EigenValues
(
m_dyad
[
vox
-
1
][
f
],
dyad_D
,
dyad_V
);
int
maxeig
;
if
(
dyad_D
(
1
)
>
dyad_D
(
2
)){
if
(
dyad_D
(
1
)
>
dyad_D
(
3
))
maxeig
=
1
;
else
maxeig
=
3
;
}
else
{
if
(
dyad_D
(
2
)
>
dyad_D
(
3
))
maxeig
=
2
;
else
maxeig
=
3
;
}
m_dyadic_vectors
[
f
](
1
,
vox
)
=
dyad_V
(
1
,
maxeig
);
m_dyadic_vectors
[
f
](
2
,
vox
)
=
dyad_V
(
2
,
maxeig
);
m_dyadic_vectors
[
f
](
3
,
vox
)
=
dyad_V
(
3
,
maxeig
);
if
((
m_sum_f
[
vox
-
1
][
f
]
/
m_nsamps
)
>
0.05
){
nfibs
++
;
}
m_mean_fsamples
[
f
](
vox
)
=
m_sum_f
[
vox
-
1
][
f
]
/
m_nsamps
;
m_mean_lamsamples
[
f
](
vox
)
=
m_sum_lam
[
vox
-
1
][
f
]
/
m_nsamps
;
m_dyad
[
vox
-
1
][
f
]
=
0
;
m_sum_f
[
vox
-
1
][
f
]
=
0
;
m_sum_lam
[
vox
-
1
][
f
]
=
0
;
}
m_beenhere
(
int
(
m_matrix2volkey
(
vox
,
1
)),
int
(
m_matrix2volkey
(
vox
,
2
)),
int
(
m_matrix2volkey
(
vox
,
3
)))
=
nfibs
;
}
void
Samples
::
save
(
const
NEWIMAGE
::
volume
<
float
>&
mask
){
NEWIMAGE
::
volume4D
<
float
>
tmp
;
//So that I can sort the output fibres into
// files ordered by fibre fractional volume..
vector
<
Matrix
>
thsamples_out
=
m_thsamples
;
vector
<
Matrix
>
phsamples_out
=
m_phsamples
;
vector
<
Matrix
>
fsamples_out
=
m_fsamples
;
vector
<
Matrix
>
lamsamples_out
=
m_lamsamples
;
vector
<
Matrix
>
dyadic_vectors_out
=
m_dyadic_vectors
;
vector
<
Matrix
>
mean_fsamples_out
;
for
(
unsigned
int
f
=
0
;
f
<
m_mean_fsamples
.
size
();
f
++
)
mean_fsamples_out
.
push_back
(
m_mean_fsamples
[
f
]);
Log
&
logger
=
LogSingleton
::
getInstance
();
if
(
opts
.
modelnum
.
value
()
==
1
){
tmp
.
setmatrix
(
m_mean_dsamples
,
mask
);
tmp
.
setDisplayMaximumMinimum
(
tmp
.
max
(),
0
);
save_volume4D
(
tmp
,
logger
.
appendDir
(
"mean_dsamples"
));
}
else
if
(
opts
.
modelnum
.
value
()
==
2
){
tmp
.
setmatrix
(
m_mean_dsamples
,
mask
);
tmp
.
setDisplayMaximumMinimum
(
tmp
.
max
(),
0
);
save_volume4D
(
tmp
,
logger
.
appendDir
(
"mean_dsamples"
));
tmp
.
setmatrix
(
m_mean_d_stdsamples
,
mask
);
tmp
.
setDisplayMaximumMinimum
(
tmp
.
max
(),
0
);
save_volume4D
(
tmp
,
logger
.
appendDir
(
"mean_d_stdsamples"
));
tmp
.
setmatrix
(
m_dsamples
,
mask
);
tmp
.
setDisplayMaximumMinimum
(
tmp
.
max
(),
0
);
save_volume4D
(
tmp
,
logger
.
appendDir
(
"dsamples"
));
tmp
.
setmatrix
(
m_d_stdsamples
,
mask
);
tmp
.
setDisplayMaximumMinimum
(
tmp
.
max
(),
0
);
save_volume4D
(
tmp
,
logger
.
appendDir
(
"d_stdsamples"
));
}
if
(
opts
.
f0
.
value
()){
tmp
.
setmatrix
(
m_mean_f0samples
,
mask
);
tmp
.
setDisplayMaximumMinimum
(
1
,
0
);
save_volume4D
(
tmp
,
logger
.
appendDir
(
"mean_f0samples"
));
tmp
.
setmatrix
(
m_f0samples
,
mask
);
tmp
.
setDisplayMaximumMinimum
(
1
,
0
);
save_volume4D
(
tmp
,
logger
.
appendDir
(
"f0samples"
));
}
if
(
opts
.
rician
.
value
()){
tmp
.
setmatrix
(
m_mean_tausamples
,
mask
);
tmp
.
setDisplayMaximumMinimum
(
tmp
.
max
(),
0
);
save_volume4D
(
tmp
,
logger
.
appendDir
(
"mean_tausamples"
));
}
tmp
.
setmatrix
(
m_mean_S0samples
,
mask
);
tmp
.
setDisplayMaximumMinimum
(
tmp
.
max
(),
0
);
save_volume4D
(
tmp
,
logger
.
appendDir
(
"mean_S0samples"
));
//tmp.setmatrix(m_lik_energy,mask);
//save_volume4D(tmp,logger.appendDir("lik_energy"));
//Sort the output based on mean_fsamples
//
vector
<
Matrix
>
sumf
;
for
(
int
f
=
0
;
f
<
opts
.
nfibres
.
value
();
f
++
){
Matrix
tmp
=
sum
(
m_fsamples
[
f
],
1
);
sumf
.
push_back
(
tmp
);
}
for
(
int
vox
=
1
;
vox
<=
m_dsamples
.
Ncols
();
vox
++
){
vector
<
pair
<
float
,
int
>
>
sfs
;
pair
<
float
,
int
>
ftmp
;
for
(
int
f
=
0
;
f
<
opts
.
nfibres
.
value
();
f
++
){
ftmp
.
first
=
sumf
[
f
](
1
,
vox
);
ftmp
.
second
=
f
;
sfs
.
push_back
(
ftmp
);
}
sort
(
sfs
.
begin
(),
sfs
.
end
());
for
(
int
samp
=
1
;
samp
<=
m_dsamples
.
Nrows
();
samp
++
){
for
(
int
f
=
0
;
f
<
opts
.
nfibres
.
value
();
f
++
){;
thsamples_out
[
f
](
samp
,
vox
)
=
m_thsamples
[
sfs
[(
sfs
.
size
()
-
1
)
-
f
].
second
](
samp
,
vox
);
phsamples_out
[
f
](
samp
,
vox
)
=
m_phsamples
[
sfs
[(
sfs
.
size
()
-
1
)
-
f
].
second
](
samp
,
vox
);
fsamples_out
[
f
](
samp
,
vox
)
=
m_fsamples
[
sfs
[(
sfs
.
size
()
-
1
)
-
f
].
second
](
samp
,
vox
);
lamsamples_out
[
f
](
samp
,
vox
)
=
m_lamsamples
[
sfs
[(
sfs
.
size
()
-
1
)
-
f
].
second
](
samp
,
vox
);
}
}
for
(
int
f
=
0
;
f
<
opts
.
nfibres
.
value
();
f
++
){
mean_fsamples_out
[
f
](
1
,
vox
)
=
m_mean_fsamples
[
sfs
[(
sfs
.
size
()
-
1
)
-
f
].
second
](
vox
);
dyadic_vectors_out
[
f
](
1
,
vox
)
=
m_dyadic_vectors
[
sfs
[(
sfs
.
size
()
-
1
)
-
f
].
second
](
1
,
vox
);
dyadic_vectors_out
[
f
](
2
,
vox
)
=
m_dyadic_vectors
[
sfs
[(
sfs
.
size
()
-
1
)
-
f
].
second
](
2
,
vox
);
dyadic_vectors_out
[
f
](
3
,
vox
)
=
m_dyadic_vectors
[
sfs
[(
sfs
.
size
()
-
1
)
-
f
].
second
](
3
,
vox
);
}
}
// save the sorted fibres
for
(
int
f
=
0
;
f
<
opts
.
nfibres
.
value
();
f
++
){
// element_mod_n(thsamples_out[f],M_PI);
// element_mod_n(phsamples_out[f],2*M_PI);
tmp
.
setmatrix
(
thsamples_out
[
f
],
mask
);
tmp
.
setDisplayMaximumMinimum
(
tmp
.
max
(),
tmp
.
min
());
string
oname
=
"th"
+
num2str
(
f
+
1
)
+
"samples"
;
save_volume4D
(
tmp
,
logger
.
appendDir
(
oname
));
tmp
.
setmatrix
(
phsamples_out
[
f
],
mask
);
tmp
.
setDisplayMaximumMinimum
(
tmp
.
max
(),
tmp
.
min
());
oname
=
"ph"
+
num2str
(
f
+
1
)
+
"samples"
;
save_volume4D
(
tmp
,
logger
.
appendDir
(
oname
));
tmp
.
setmatrix
(
fsamples_out
[
f
],
mask
);
tmp
.
setDisplayMaximumMinimum
(
1
,
0
);
oname
=
"f"
+
num2str
(
f
+
1
)
+
"samples"
;
save_volume4D
(
tmp
,
logger
.
appendDir
(
oname
));
// tmp.setmatrix(lamsamples_out[f],mask);
// oname="lam"+num2str(f+1)+"samples";
// save_volume4D(tmp,logger.appendDir(oname));
tmp
.
setmatrix
(
mean_fsamples_out
[
f
],
mask
);
tmp
.
setDisplayMaximumMinimum
(
1
,
0
);
oname
=
"mean_f"
+
num2str
(
f
+
1
)
+
"samples"
;
save_volume
(
tmp
[
0
],
logger
.
appendDir
(
oname
));
tmp
.
setmatrix
(
dyadic_vectors_out
[
f
],
mask
);
tmp
.
setDisplayMaximumMinimum
(
1
,
-
1
);
oname
=
"dyads"
+
num2str
(
f
+
1
);
save_volume4D
(
tmp
,
logger
.
appendDir
(
oname
));
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment