Skip to content
Snippets Groups Projects
Commit 5e5c3762 authored by Stamatios Sotiropoulos's avatar Stamatios Sotiropoulos
Browse files

Functions for approximating Bingham and Watson distribution constants

parent e35d4994
No related branches found
No related tags found
No related merge requests found
/* Directional Statistics Functions
Bingham and Watson Distributions and functions to approximate their normalizing constant
Stam Sotiropoulos - FMRIB Image Analysis Group
Copyright (C) 2011 University of Oxford */
/* CCOPYRIGHT */
#include "Bingham_Watson_approx.h"
//Cubic root
float croot(const float& x){
float res;
if (x>=0)
res=pow(x,INV3);
else
res=-(pow(-x,INV3));
return res;
}
//Saddlepoint approximation of confluent hypergeometric function of a matrix argument B (Kume & Wood, 2005)
//Vector x has the eigenvalues of B.
float hyp_Sapprox(ColumnVector &x){
float c1;
//SortDescending(x); //Not needed??
if (x(1)==0 && x(2)==0 && x(3)==0)
c1=1;
else{
float t=find_t(x);
float T,R=1, K2=0, K3=0, K4=0;
for (int i=1; i<=3; i++){
R=R/sqrt(-x(i)-t);
K2=K2+1.0/(2*pow(x(i)+t,2.0));
K3=K3-1.0/pow(x(i)+t,3.0);
K4=K4+3.0/pow(x(i)+t,4.0);
}
T=K4/(8*K2*K2)-5*K3*K3/(24*K2*K2*K2);
//c1=sqrt(2.0/K2)*pi*R*exp(-t);
//float c3=c1*exp(T);
//c1=c3/(4*pi);
c1=0.25*sqrt(2.0/K2)*R*exp(-t+T);
}
return c1;
}
//Saddlepoint approximation of confluent hypergeometric function of a matrix argument, with its eigenvalues being l1,l1,l2 or l1,l2,l2 with l1!=l2.
//Vector x has the three eigenvalues. This function can be also used to approximate a confluent hypergeometric function of a scalar argument k
//by providing x=[k 0 0].
float hyp_Sapprox_twoequal(ColumnVector& x){
float c1, R, t, Bm, Bp, K2, K3, K4,T,q;
//SortDescending(x); //Not needed??
if (x(1)==x(2)){
q=1;
x(2)=x(3);
}
else
q=2;
R=sqrt(4*(x(1)-x(2))*(x(1)-x(2))+9+4*(2*q-3)*(x(2)-x(1)));
t=(-2*(x(1)+x(2))-3-R)/4.0;
Bm=1/(R+3-2*(x(2)-x(1)));
Bp=1/(R+3+2*(x(2)-x(1)));
K2=1.0/(2*pow(x(1)+t,2.0))+1.0/pow(x(2)+t,2.0);
K3=-1.0/pow(x(1)+t,3.0)-2.0/pow(x(2)+t,3.0);
K4=3.0/pow(x(1)+t,4.0)+6.0/pow(x(2)+t,4.0);
T=K4/(8.0*K2*K2)-5.0*K3*K3/(24.0*K2*K2*K2);
c1=sqrt(pow(Bm,q-1)*pow(Bp,2-q)/R)*exp(-t+T);
return c1;
}
//Saddlepoint approximation of the ratio of two hypergeometric functions, with matrix arguments L and B (3x3). Vectors xL & xB contain the eigenvalues of L and B.
//Used for the ball & Binghams model, B has two non-zero eigenvalues that represent fanning indices.
float hyp_SratioB(ColumnVector& xL,ColumnVector& xB){
float c, T1, t1, Norm1, T2,t2,Norm2;
float R,K2,K3,K4,tmp,tmp2,tmp3;
//Approximate Numerator
if (xL(1)==0 && xL(2)==0 && xL(3)==0){
Norm1=1; t1=0; T1=0;
}
else{
//SortDescending(xL); //Not needed, performed by eigen-decomposition?
t1=find_t(xL);
R=1; K2=0; K3=0; K4=0;
for (int i=1; i<=3; i++){
tmp=xL(i)+t1;
tmp2=tmp*tmp; tmp3=tmp2*tmp;
R=-R*tmp;
K2=K2+0.5/tmp2;
K3=K3-1.0/tmp3;
K4=K4+3.0/(tmp3*tmp);
}
T1=K4/(8*K2*K2)-5*K3*K3/(24.0*K2*K2*K2);
Norm1=K2*R;
}
//Approximate Denominator
//SortDescending(xB); //Not needed, performed by eigen-decomposition?
t2=find_t(xB);
R=1; K2=0; K3=0; K4=0;
for (int i=1; i<=3; i++){
tmp=xB(i)+t2;
tmp2=tmp*tmp; tmp3=tmp2*tmp;
R=-R*tmp;
K2=K2+0.5/tmp2;
K3=K3-1.0/tmp3;
K4=K4+3.0/(tmp3*tmp);
}
T2=K4/(8*K2*K2)-5*K3*K3/(24*K2*K2*K2);
Norm2=K2*R;
//Final Ratio
c=sqrt(Norm2/Norm1)*exp(-t1+T1+t2-T2);
return c;
}
//Saddlepoint aproximation of the ratio ot two hypergeometric functions with matrix arguments L and B in two steps: First denominator, then numerator.
//This allows them to be updated independently, used for the ball & Binghams model to compute the likelihood faster.
//This function returns values used in the denominator approximation. xB containes the two non-zero eigenvalues of matrix B.
ReturnMatrix approx_denominatorB(ColumnVector& xB){
float t2,R,K2,K3,K4,tmp,tmp2,tmp3, T2, Norm2;
ColumnVector Res(3);
SortDescending(xB); //Not needed?
t2=find_t(xB);
R=1; K2=0; K3=0; K4=0;
for (int i=1; i<=3; i++){
tmp=xB(i)+t2;
tmp2=tmp*tmp; tmp3=tmp2*tmp;
R=-R*tmp;
K2=K2+0.5/tmp2;
K3=K3-1.0/tmp3;
K4=K4+3.0/(tmp3*tmp);
}
T2=K4/(8.0*K2*K2)-5.0*K3*K3/(24.0*K2*K2*K2);
Norm2=K2*R;
Res<< t2 << T2 << Norm2;
Res.Release();
return Res;
}
//Second step for saddlepoint approximation of the ratio of two hypergeometric functions with matrix arguments L and B (xL has the eigenvalues of L).
//Assume that the denominator has already been approximated by the function above and the parameters are stored in denomvals.
//Here approximate the numerator and return the total ratio approximation.
float hyp_SratioB_knowndenom(ColumnVector &xL,ColumnVector& denomvals){
float c,Norm1,t1,T1,R,K2,K3,K4,tmp,tmp2,tmp3;
//Approximate Numerator
SortDescending(xL); //Not needed?
if (xL(1)==0 && xL(2)==0 && xL(3)==0){
Norm1=1; t1=0; T1=0;
}
else{
t1=find_t(xL);
R=1; K2=0; K3=0; K4=0;
for (int i=1; i<=3; i++){
tmp=xL(i)+t1;
tmp2=tmp*tmp; tmp3=tmp2*tmp;
R=-R*tmp;
K2=K2+0.5/tmp2;
K3=K3-1.0/tmp3;
K4=K4+3.0/(tmp3*tmp);
}
T1=K4/(8.0*K2*K2)-5.0*K3*K3/(24.0*K2*K2*K2);
Norm1=K2*R;
}
//Final Ratio
if (denomvals(3)/Norm1>0)
c=sqrt(denomvals(3)/Norm1)*exp(-t1+T1+denomvals(1)-denomvals(2));
else
c=0; //Signify that the approximation has failed. c should be >=0. How to treat these voxels???
if (isinf(c)) //In this case again the approximation has failed
c=1e10;
return c;
}
//Saddlepoint approximation of the ratio of two hypergeometric functions, one with matrix argument L and another with scalar argument k. Vector xL contains the eigenvalues of L.
//Used for the ball & Watsons model, L has up to two non-zero eigenvalues and k!=0 is the fanning index.
float hyp_SratioW(ColumnVector& xL,const double k){
float Norm1,t1,T1,R,K2,K3,K4,tmp,tmp2,tmp3,Rf, t2,T2, Norm2,Bm,c;
//Approximate Numerator
if (xL(1)==0 && xL(2)==0){
Norm1=1; t1=0; T1=0;
}
else{
SortDescending(xL); //Not needed, performed by eigen-decomposition?
t1=find_t(xL);
R=1; K2=0; K3=0; K4=0;
for (int i=1; i<=3; i++){
tmp=xL(i)+t1;
tmp2=tmp*tmp; tmp3=tmp2*tmp;
R=-R*tmp;
K2=K2+0.5/tmp2;
K3=K3-1.0/tmp3;
K4=K4+3.0/(tmp3*tmp);
}
T1=K4/(8.0*K2*K2)-5.0*K3*K3/(24.0*K2*K2*K2);
Norm1=0.125/(K2*R);
}
//Approximate Denominator
R=sqrt(4*k*k+9-4*k);
Rf=R+3+2*k;
t2=-0.25*Rf;
tmp=k+t2; tmp2=tmp*tmp; tmp3=tmp2*tmp;
Bm=1.0/Rf;
K2=0.5/tmp2+1.0/(t2*t2);
K3=-1.0/tmp3-2.0/(t2*t2*t2);
K4=3.0/(tmp3*tmp)+6.0/(t2*t2*t2*t2);
T2=K4/(8.0*K2*K2)-5.0*K3*K3/(24.0*K2*K2*K2);
Norm2=Bm/R;
//Final Ratio
c=sqrt(Norm1/Norm2)*exp(-t1+T1+t2-T2);
return c;
}
//Saddlepoint aproximation of the ratio ot two hypergeometric functions, one with matrix arguments L and the other with scalar argument k>0 in two steps:
//First denominator, then numerator. This allows them to be updated independently, used for the ball & Watsons model to compute the likelihood faster.
//This function returns values used in the denominator approximation.
ReturnMatrix approx_denominatorW(const double k){
float t2,R,Bm,Rf,K2,K3,K4,tmp,tmp2,tmp3, T2, Norm2;
ColumnVector Res(3);
R=sqrt(4*k*k+9-4*k);
Rf=R+3+2*k;
t2=-0.25*Rf;
tmp=k+t2; tmp2=tmp*tmp; tmp3=tmp2*tmp;
Bm=1.0/Rf;
K2=0.5/tmp2+1.0/(t2*t2);
K3=-1.0/tmp3-2.0/(t2*t2*t2);
K4=3.0/(tmp3*tmp)+6.0/(t2*t2*t2*t2);
T2=K4/(8.0*K2*K2)-5.0*K3*K3/(24.0*K2*K2*K2);
Norm2=Bm/R;
Res<< t2 << T2 << Norm2;
Res.Release();
return Res;
}
//Second step for saddlepoint approximation of the ratio of two hypergeometric functions, with matrix argument L and scalar argument k (xL has the eigenvalues of L).
//Assume that the denominator has already been approximated by the function above and the parameters are stored in denomvals.
//Here approximate the numerator and return the total ratio approximation.
float hyp_SratioW_knowndenom(ColumnVector &xL,ColumnVector& denomvals){
float c,Norm1,t1,T1,R,K2,K3,K4,tmp,tmp2,tmp3;
//Approximate Numerator
if (xL(1)==0 && xL(2)==0){
Norm1=1; t1=0; T1=0;
}
else{
SortDescending(xL);
t1=find_t(xL);
R=1; K2=0; K3=0; K4=0;
for (int i=1; i<=3; i++){
tmp=xL(i)+t1;
tmp2=tmp*tmp; tmp3=tmp2*tmp;
R=-R*tmp;
K2=K2+0.5/tmp2;
K3=K3-1.0/tmp3;
K4=K4+3.0/(tmp3*tmp);
}
T1=K4/(8.0*K2*K2)-5.0*K3*K3/(24.0*K2*K2*K2);
Norm1=0.125/(K2*R);
}
//Final Ratio
c=sqrt(Norm1/denomvals(3))*exp(-t1+T1+denomvals(1)-denomvals(2));
return c;
}
//Using the values of vector x, construct a qubic equation and solve it analytically.
//Solution used for the saddlepoint approximation of the confluent hypergeometric function with matrix argument B (3x3) (See Kume & Wood, 2005)
//Vector x contains the eigenvalues of B.
float find_t(const ColumnVector& x){
float l1=-x(1), l2=-x(2), l3=-x(3);
float a0,a1,a2,a3,ee,tmp,z1,z2,z3,p,q,D,offset;
a3=l1*l2+l2*l3+l1*l3;
a2=1.5-l1-l2-l3;
a1=a3-l1-l2-l3;
a0=0.5*(a3-2*l1*l2*l3);
p=(a1-a2*a2*INV3)*INV3;
q=(-9*a2*a1+27*a0+2*a2*a2*a2)*INV54;
D=q*q+p*p*p;
offset=a2*INV3;
if (D>0){
ee=sqrt(D);
tmp=-q+ee; z1=croot(tmp);
tmp=-q-ee; z1=z1+croot(tmp);
z1=z1-offset; z2=z1; z3=z1;
}
else if (D<0){
ee=sqrt(-D);
float tmp2=-q;
float angle=2*INV3*atan(ee/(sqrt(tmp2*tmp2+ee*ee)+tmp2));
tmp=cos(angle);
tmp2=sin(angle);
ee=sqrt(-p);
z1=2*ee*tmp-offset;
z2=-ee*(tmp+SQRT3*tmp2)-offset;
z3=-ee*(tmp-SQRT3*tmp2)-offset;
}
else{
tmp=-q;
tmp=croot(tmp);
z1=2*tmp-offset; z2=z1; z3=z1;
if (p!=0 || q!=0)
z2=-tmp-offset; z3=z2;
}
z1=min3(z1,z2,z3); //Pick the smallest root
// if (z2<=l1)
// z1=z2;
//else if (z3<=l1)
// z1=z3;
return z1;
}
/* Directional Statistics Functions
Bingham and Watson Distributions and functions to approximate their normalizing constant
Stam Sotiropoulos - FMRIB Image Analysis Group
Copyright (C) 2011 University of Oxford */
/* CCOPYRIGHT */
#if !defined (Bingham_Watson_approx_h)
#define Bingham_Watson_approx_h
#include <iostream>
#include <fstream>
#include <iomanip>
#define WANT_STREAM
#define WANT_MATH
#include <string>
#include "miscmaths/miscmaths.h"
#include "miscmaths/nonlin.h"
#include "stdlib.h"
using namespace NEWMAT;
using namespace MISCMATHS;
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define INV3 0.333333333333333 // 1/3
#define SQRT3 1.732050807568877 //sqrt(3)
#define INV54 0.018518518518519 // 1/54
#define min3(a,b,c) (a < b ? min(a,c) : min(b,c) )
//Saddlepoint approximation of confluent hypergeometric function of a matrix argument B
//Vector x has the eigenvalues of B.
float hyp_Sapprox(ColumnVector& x);
//Saddlepoint approximation of confluent hypergeometric function of a matrix argument, with its eigenvalues being l1,l1,l2 or l1,l2,l2 with l1!=l2.
//Vector x has the three eigenvalues. This function can be also used to approximate a confluent hypergeometric function of a scalar argument k
//by providing x=[k 0 0].
float hyp_Sapprox_twoequal(ColumnVector& x);
//Saddlepoint approximation of the ratio of two hypergeometric functions, with matrix arguments L and B (3x3). Vectors xL & xB contain the eigenvalues of L and B.
//Used for the ball & Binghams model.
float hyp_SratioB(ColumnVector& xL,ColumnVector& xB);
//Saddlepoint aproximation of the ratio ot two hypergeometric functions with matrix arguments L and B in two steps: First denominator, then numerator.
//This allows them to be updated independently, used for the ball & Binghams model to compute the likelihood faster.
//This function returns values used in the denominator approximation. xB containes the two non-zero eigenvalues of matrix B.
ReturnMatrix approx_denominatorB(ColumnVector& xB);
//Second step for saddlepoint approximation of the ratio of two hypergeometric functions with matrix arguments L and B (xL has the eigenvalues of L).
//Assume that the denominator has already been approximated by the function above and the parameters are stored in denomvals.
//Here approximate the numerator and return the total ratio approximation.
float hyp_SratioB_knowndenom(ColumnVector &xL,ColumnVector& denomvals);
//Saddlepoint approximation of the ratio of two hypergeometric functions, one with matrix argument L and another with scalar argument k. Vector xL contains the eigenvalues of L.
//Used for the ball & Watsons model.
float hyp_SratioW(ColumnVector& xL,const double k);
//Saddlepoint aproximation of the ratio ot two hypergeometric functions, one with matrix arguments L and the other with scalar argument k in two steps:
//First denominator, then numerator. This allows them to be updated independently, used for the ball & Watsons model to compute the likelihood faster.
//This function returns values used in the denominator approximation.
ReturnMatrix approx_denominatorW(const double k);
//Second step for saddlepoint approximation of the ratio of two hypergeometric functions, with matrix argument L and scalar argument k (xL has the eigenvalues of L).
//Assume that the denominator has already been approximated by the function above and the parameters are stored in denomvals.
//Here approximate the numerator and return the total ratio approximation.
float hyp_SratioW_knowndenom(ColumnVector &xL,ColumnVector& denomvals);
//Using the values of vector x, construct a qubic equation and solve it analytically.
//Solution used for the saddlepoint approximation of the confluent hypergeometric function with matrix argument B (3x3) (See Kume & Wood, 2005)
//Vector x contains the eigenvalues of B.
float find_t(const ColumnVector& x);
//cubic root
float croot(const float& x);
#endif
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment