Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FSL
fdt
Commits
b0efb70a
Commit
b0efb70a
authored
17 years ago
by
Saad Jbabdi
Browse files
Options
Downloads
Patches
Plain Diff
modeifs
parent
a5cdc0c3
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
kurtosis.cc
+3
-120
3 additions, 120 deletions
kurtosis.cc
with
3 additions
and
120 deletions
kurtosis.cc
+
3
−
120
View file @
b0efb70a
...
...
@@ -106,7 +106,7 @@ public:
float
evaluate
(
const
ColumnVector
&
x
)
const
{
float
res
=
0
;
res
=
(
m_A
+
m_B
*
x
(
7
)
+
m_C
*
x
.
SubMatrix
(
1
,
6
,
1
,
1
)
+
m_D
*
x
.
SubMatrix
(
8
,
22
,
1
,
1
)
*
(
x
(
1
)
+
x
(
4
)
+
x
(
6
))
*
(
x
(
1
)
+
x
(
4
)
+
x
(
6
))
/
9
).
SumSquare
();
+
m_D
*
x
.
SubMatrix
(
8
,
22
,
1
,
1
)
*
(
x
(
1
)
+
x
(
4
)
+
x
(
6
))
*
(
x
(
1
)
+
x
(
4
)
+
x
(
6
))
/
9
).
SumSquare
();
return
res
;
}
...
...
@@ -161,11 +161,6 @@ public:
};
inline
float
PI
()
{
return
3.14159265358979
;}
inline
float
min
(
float
a
,
float
b
){
return
a
<
b
?
a
:
b
;}
inline
float
max
(
float
a
,
float
b
){
return
a
>
b
?
a
:
b
;}
inline
Matrix
Anis
()
{
Matrix
A
(
3
,
3
);
...
...
@@ -175,41 +170,6 @@ inline Matrix Anis()
return
A
;
}
inline
Matrix
Is
()
{
Matrix
I
(
3
,
3
);
I
<<
1
<<
0
<<
0
<<
0
<<
1
<<
0
<<
0
<<
0
<<
1
;
return
I
;
}
inline
ColumnVector
Cross
(
const
ColumnVector
&
A
,
const
ColumnVector
&
B
)
{
ColumnVector
res
(
3
);
res
<<
A
(
2
)
*
B
(
3
)
-
A
(
3
)
*
B
(
2
)
<<
A
(
3
)
*
B
(
1
)
-
A
(
1
)
*
B
(
3
)
<<
A
(
1
)
*
B
(
2
)
-
B
(
1
)
*
A
(
2
);
return
res
;
}
inline
Matrix
Cross
(
const
Matrix
&
A
,
const
Matrix
&
B
)
{
Matrix
res
(
3
,
1
);
res
<<
A
(
2
,
1
)
*
B
(
3
,
1
)
-
A
(
3
,
1
)
*
B
(
2
,
1
)
<<
A
(
3
,
1
)
*
B
(
1
,
1
)
-
A
(
1
,
1
)
*
B
(
3
,
1
)
<<
A
(
1
,
1
)
*
B
(
2
,
1
)
-
B
(
1
,
1
)
*
A
(
2
,
1
);
return
res
;
}
float
mod
(
float
a
,
float
b
){
while
(
a
>
b
){
a
=
a
-
b
;}
while
(
a
<
0
){
a
=
a
+
b
;}
return
a
;
}
Matrix
form_Amat
(
const
Matrix
&
r
,
const
Matrix
&
b
)
{
Matrix
A
(
r
.
Ncols
(),
7
);
...
...
@@ -239,88 +199,10 @@ inline SymmetricMatrix vec2tens(ColumnVector& Vec){
return
tens
;
}
void
tensorfit
(
DiagonalMatrix
&
Dd
,
ColumnVector
&
evec1
,
ColumnVector
&
evec2
,
ColumnVector
&
evec3
,
float
&
f
,
float
&
s0
,
ColumnVector
&
Dvec
,
const
Matrix
&
Amat
,
const
ColumnVector
&
S
)
{
//Initialise the parameters using traditional DTI analysis
ColumnVector
logS
(
S
.
Nrows
());
SymmetricMatrix
tens
;
//Basser's Diffusion Tensor;
// DiagonalMatrix Dd; //eigenvalues
Matrix
Vd
;
//eigenvectors
DiagonalMatrix
Ddsorted
(
3
);
float
mDd
,
fsquared
;
for
(
int
i
=
1
;
i
<=
S
.
Nrows
();
i
++
)
{
if
(
S
(
i
)
>
0
){
logS
(
i
)
=
log
(
S
(
i
));
}
else
{
logS
(
i
)
=
0
;
}
// logS(i)=(S(i)/S0)>0.01 ? log(S(i))-log(S0):log(0.01);
}
Dvec
=
-
pinv
(
Amat
)
*
logS
;
if
(
Dvec
(
7
)
>
-
maxlogfloat
){
s0
=
exp
(
-
Dvec
(
7
));
}
else
{
s0
=
S
.
MaximumAbsoluteValue
();
}
for
(
int
i
=
1
;
i
<=
S
.
Nrows
();
i
++
)
{
if
(
s0
<
S
.
Sum
()
/
S
.
Nrows
()){
s0
=
S
.
MaximumAbsoluteValue
();
}
logS
(
i
)
=
(
S
(
i
)
/
s0
)
>
0.01
?
log
(
S
(
i
))
:
log
(
0.01
*
s0
);
}
Dvec
=
-
pinv
(
Amat
)
*
logS
;
s0
=
exp
(
-
Dvec
(
7
));
if
(
s0
<
S
.
Sum
()
/
S
.
Nrows
()){
s0
=
S
.
Sum
()
/
S
.
Nrows
();
}
tens
=
vec2tens
(
Dvec
);
EigenValues
(
tens
,
Dd
,
Vd
);
mDd
=
Dd
.
Sum
()
/
Dd
.
Nrows
();
int
maxind
=
Dd
(
1
)
>
Dd
(
2
)
?
1
:
2
;
//finding max,mid and min eigenvalues
maxind
=
Dd
(
maxind
)
>
Dd
(
3
)
?
maxind
:
3
;
int
midind
;
if
(
(
Dd
(
1
)
>=
Dd
(
2
)
&&
Dd
(
2
)
>=
Dd
(
3
))
||
(
Dd
(
1
)
<=
Dd
(
2
)
&&
Dd
(
2
)
<=
Dd
(
3
))
){
midind
=
2
;}
else
if
(
(
Dd
(
2
)
>=
Dd
(
1
)
&&
Dd
(
1
)
>=
Dd
(
3
))
||
(
Dd
(
2
)
<=
Dd
(
1
)
&&
Dd
(
1
)
<=
Dd
(
3
))
){
midind
=
1
;}
else
{
midind
=
3
;}
int
minind
=
Dd
(
1
)
<
Dd
(
2
)
?
1
:
2
;
//finding maximum eigenvalue
minind
=
Dd
(
minind
)
<
Dd
(
3
)
?
minind
:
3
;
Ddsorted
<<
Dd
(
maxind
)
<<
Dd
(
midind
)
<<
Dd
(
minind
);
Dd
=
Ddsorted
;
evec1
<<
Vd
(
1
,
maxind
)
<<
Vd
(
2
,
maxind
)
<<
Vd
(
3
,
maxind
);
evec2
<<
Vd
(
1
,
midind
)
<<
Vd
(
2
,
midind
)
<<
Vd
(
3
,
midind
);
evec3
<<
Vd
(
1
,
minind
)
<<
Vd
(
2
,
minind
)
<<
Vd
(
3
,
minind
);
float
numer
=
1.5
*
((
Dd
(
1
)
-
mDd
)
*
(
Dd
(
1
)
-
mDd
)
+
(
Dd
(
2
)
-
mDd
)
*
(
Dd
(
2
)
-
mDd
)
+
(
Dd
(
3
)
-
mDd
)
*
(
Dd
(
3
)
-
mDd
));
float
denom
=
(
Dd
(
1
)
*
Dd
(
1
)
+
Dd
(
2
)
*
Dd
(
2
)
+
Dd
(
3
)
*
Dd
(
3
));
if
(
denom
>
0
)
fsquared
=
numer
/
denom
;
else
fsquared
=
0
;
if
(
fsquared
>
0
){
f
=
sqrt
(
fsquared
);}
else
{
f
=
0
;}
}
void
kurtosisfit
(
DiagonalMatrix
&
Dd
,
ColumnVector
&
evec1
,
ColumnVector
&
evec2
,
ColumnVector
&
evec3
,
float
&
f
,
float
&
s0
,
ColumnVector
&
Dvec
,
float
&
mk
,
ColumnVector
&
tens4
,
const
Matrix
&
Amat
,
const
Matrix
&
Kmat
,
const
ColumnVector
&
S
,
const
Matrix
&
bvals
,
const
Matrix
&
bvecs
){
// initialise second-order tensor with simple tensor fit
// tensorfit(Dd,evec1,evec2,evec3,f,s0,Dvec,Amat,S);
//SymmetricMatrix tens;
//tens = vec2tens(Dvec);
// // initialise Kurtosis using Linear fit
// ColumnVector v(S.Nrows());
// for(int i=1;i<=S.Nrows();i++){
// float bDi = bvals(1,i)*(bvecs.Column(i).t()*tens*bvecs.Column(i)).AsScalar();
// if(bDi>0)
// v(i) = 6*(log(S(i)/s0)+bDi)/(bDi*bDi);
// else
// v(i) = 0;
// }
// tens4 = pinv(Kmat) * v;
// calculate DT and KT using non-linear fitting
KurtosisNonlinCF
KNL
(
S
,
bvals
,
bvecs
);
...
...
@@ -370,7 +252,8 @@ void kurtosisfit(DiagonalMatrix& Dd,ColumnVector& evec1,ColumnVector& evec2, Col
mk
+=
vec
(
i
)
/
(
bvecs
.
Column
(
i
).
t
()
*
tens
*
bvecs
.
Column
(
i
)).
AsScalar
();
}
mk
*=
mDd
*
mDd
;
//OUT(mk);
mk
/=
float
(
S
.
Nrows
());
}
int
main
(
int
argc
,
char
**
argv
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment