Skip to content
Snippets Groups Projects
Commit b16c3e24 authored by Moises Fernandez's avatar Moises Fernandez
Browse files

Main of FIT functions (in the Host) for the different models. They call the GPU FIT kernels

parent 109eaed0
No related branches found
No related tags found
No related merge requests found
#include "newmat.h"
#include "newimage/newimageall.h"
#include "xfibresoptions.h"
#include "diffmodels.h"
#include "PVM_single.cu"
#include "PVM_single_c.cu"
#include "PVM_multi.cu"
#include "fit_gpu_kernels.h"
#include "dim_blocks.h"
#include "sync_check.h"
#include <time.h>
#include <sys/time.h>
#include "init_gpu.h"
using namespace Xfibres;
//////////////////////////////////////////////////////
// FIT IN GPU
//////////////////////////////////////////////////////
void fit_PVM_single( //INPUT
const vector<ColumnVector> datam_vec,
const vector<Matrix> bvecs_vec,
const vector<Matrix> bvals_vec,
thrust::device_vector<double> datam_gpu,
thrust::device_vector<double> bvecs_gpu,
thrust::device_vector<double> bvals_gpu,
bool m_include_f0,
//OUTPUT
thrust::device_vector<double>& params_gpu)
{
xfibresOptions& opts = xfibresOptions::getInstance();
int nvox = datam_vec.size();
int nfib = opts.nfibres.value();
int nparams;
if (m_include_f0)
nparams = nfib*3 + 3;
else
nparams = nfib*3 + 2;
for(int vox=0;vox<nvox;vox++){
// initialise with a tensor
DTI dti(datam_vec[vox],bvecs_vec[vox],bvals_vec[vox]);
dti.linfit();
// set starting parameters for nonlinear fitting
float _th,_ph;
cart2sph(dti.get_v1(),_th,_ph);
params_gpu[vox*nparams] = dti.get_s0();
//start(2) = dti.get_md()>0?dti.get_md()*2:0.001; // empirically found that d~2*MD
params_gpu[vox*nparams+1] = dti.get_l1()>0?dti.get_l1():0.002; // empirically found that d~L1
params_gpu[vox*nparams+2] = dti.get_fa()<1?f2x(dti.get_fa()):f2x(0.95); // first pvf = FA
params_gpu[vox*nparams+3] = _th;
params_gpu[vox*nparams+4] = _ph;
float sumf=x2f(params_gpu[vox*nparams+2]);
float tmpsumf=sumf;
for(int ii=2,i=5;ii<=nfib;ii++,i+=3){
float denom=2;
do{
params_gpu[vox*nparams+i] = f2x(x2f(params_gpu[vox*nparams+i-3])/denom);
denom *= 2;
tmpsumf = sumf + x2f(params_gpu[vox*nparams+i]);
}while(tmpsumf>=1);
sumf += x2f(params_gpu[vox*nparams+i]);
cart2sph(dti.get_v(ii),_th,_ph);
params_gpu[vox*nparams+i+1] = _th;
params_gpu[vox*nparams+i+2] = _ph;
}
if (m_include_f0)
params_gpu[vox*nparams+nparams-1]=f2x(FSMALL);
}
int blocks = nvox/THREADS_X_BLOCK_FIT;
if (nvox % THREADS_X_BLOCK_FIT) blocks++;
dim3 Dim_Grid(blocks,1);
dim3 Dim_Block(THREADS_X_BLOCK_FIT,1);
fit_PVM_single_kernel<<<Dim_Grid, Dim_Block>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()) ,nvox, nfib, m_include_f0, thrust::raw_pointer_cast(params_gpu.data()));
sync_check("fit_PVM_single_kernel");
}
void fit_PVM_single_c( //INPUT
const vector<ColumnVector> datam_vec,
const vector<Matrix> bvecs_vec,
const vector<Matrix> bvals_vec,
thrust::device_vector<double> datam_gpu,
thrust::device_vector<double> bvecs_gpu,
thrust::device_vector<double> bvals_gpu,
bool m_include_f0,
//OUTPUT
thrust::device_vector<double>& params_gpu)
{
xfibresOptions& opts = xfibresOptions::getInstance();
int nvox = datam_vec.size();
int nfib = opts.nfibres.value();
int nparams;
if (m_include_f0)
nparams = nfib*3 + 3;
else
nparams = nfib*3 + 2;
for(int vox=0;vox<nvox;vox++){
// initialise with a tensor
DTI dti(datam_vec[vox],bvecs_vec[vox],bvals_vec[vox]);
dti.linfit();
// set starting parameters for nonlinear fitting
float _th,_ph;
cart2sph(dti.get_v1(),_th,_ph);
ColumnVector start(nparams);
//Initialize the non-linear fitter. Use the DTI estimates for most parameters, apart from the volume fractions
start(1) = dti.get_s0();
//start(2) = d2lambda(dti.get_md()>0?dti.get_md()*2:0.001); // empirically found that d~2*MD
start(2) = d2lambda(dti.get_l1()>0?dti.get_l1():0.002); // empirically found that d~L1
start(4) = _th;
start(5) = _ph;
for(int ii=2,i=6;ii<=nfib;ii++,i+=3){
cart2sph(dti.get_v(ii),_th,_ph);
start(i+1) = _th;
start(i+2) = _ph;
}
// do a better job for initializing the volume fractions
PVM_single_c pvm(datam_vec[vox],bvecs_vec[vox],bvals_vec[vox],opts.nfibres.value(),false,m_include_f0,false);
pvm.fit_pvf(start);
for(int i=0;i<nparams;i++){
params_gpu[vox*nparams+i]=start(i+1);
}
}
int blocks = nvox/THREADS_X_BLOCK_FIT;
if (nvox % THREADS_X_BLOCK_FIT) blocks++;
dim3 Dim_Grid(blocks,1);
dim3 Dim_Block(THREADS_X_BLOCK_FIT,1);
fit_PVM_single_c_kernel<<<Dim_Grid, Dim_Block>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()) ,nvox, nfib, false, m_include_f0, false, thrust::raw_pointer_cast(params_gpu.data()));
sync_check("fit_PVM_single_c_kernel");
}
void fit_PVM_multi( //INPUT
thrust::device_vector<double> datam_gpu,
thrust::device_vector<double> bvecs_gpu,
thrust::device_vector<double> bvals_gpu,
int nvox,
bool m_include_f0,
//OUTPUT
thrust::device_vector<double>& params_gpu)
{
xfibresOptions& opts = xfibresOptions::getInstance();
int nfib = opts.nfibres.value();
int blocks = nvox/THREADS_X_BLOCK_FIT;
if (nvox % THREADS_X_BLOCK_FIT) blocks++;
dim3 Dim_Grid(blocks,1);
dim3 Dim_Block(THREADS_X_BLOCK_FIT,1);
int nparams;
if (m_include_f0)
nparams = nfib*3 + 4;
else
nparams = nfib*3 + 3;
thrust::device_vector<double> params_PVM_single_c_gpu; //copy params to an auxiliar structure because there are different number of nparams
params_PVM_single_c_gpu.resize(nvox*nparams); //between single_c and multi. We must read and write in different structures,
thrust::copy(params_gpu.begin(), params_gpu.end(), params_PVM_single_c_gpu.begin());
//maybe 1 block finish before other one read their params.
fit_PVM_multi_kernel<<<Dim_Grid, Dim_Block>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(params_PVM_single_c_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()) ,nvox, nfib, m_include_f0, thrust::raw_pointer_cast(params_gpu.data()));
sync_check("fit_PVM_multi_kernel");
}
void calculate_tau( //INPUT
thrust::device_vector<double> datam_gpu,
thrust::device_vector<double>& params_gpu,
thrust::device_vector<double> bvecs_gpu,
thrust::device_vector<double> bvals_gpu,
thrust::host_vector<int>& vox_repeat,
int nrepeat,
string output_file,
//OUTPUT
thrust::host_vector<float>& tau)
{
std::ofstream myfile;
myfile.open (output_file.data(), ios::out | ios::app );
myfile << "----------------------------------------------------- " << "\n";
myfile << "--------- CALCULATE TAU/RESIDULAS IN GPU ------------ " << "\n";
myfile << "----------------------------------------------------- " << "\n";
struct timeval t1,t2;
double time;
gettimeofday(&t1,NULL);
xfibresOptions& opts = xfibresOptions::getInstance();
int nvox = vox_repeat.size();
int nfib = opts.nfibres.value();
thrust::device_vector<bool> includes_f0_gpu;
includes_f0_gpu.resize(nvox);
thrust::fill(includes_f0_gpu.begin(), includes_f0_gpu.end(), opts.f0.value());
if(opts.f0.value()){
for(int i=0;i<nrepeat;i++){
includes_f0_gpu[vox_repeat[i]]=false; //if has been reprocessed f0 will be 0.
}
}
int blocks = nvox/THREADS_X_BLOCK_FIT;
if (nvox % THREADS_X_BLOCK_FIT) blocks++;
dim3 Dim_Grid(blocks,1);
dim3 Dim_Block(THREADS_X_BLOCK_FIT,1);
thrust::device_vector<double> residuals_gpu;
residuals_gpu.resize(nvox*NDIRECTIONS);
if(opts.modelnum.value()==1){
if(opts.nonlin.value()){
get_residuals_PVM_single_kernel<<<Dim_Grid, Dim_Block>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(params_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()), nvox, nfib, opts.f0.value(), thrust::raw_pointer_cast(includes_f0_gpu.data()), thrust::raw_pointer_cast(residuals_gpu.data()));
sync_check("get_residuals_PVM_single_kernel");
}else{
get_residuals_PVM_single_c_kernel<<<Dim_Grid, Dim_Block>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(params_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()), nvox, nfib, opts.f0.value(), thrust::raw_pointer_cast(includes_f0_gpu.data()), thrust::raw_pointer_cast(residuals_gpu.data()));
sync_check("get_residuals_PVM_single_c_kernel");
}
}else{
//model 2 : non-mono-exponential
get_residuals_PVM_multi_kernel<<<Dim_Grid, Dim_Block>>>(thrust::raw_pointer_cast(datam_gpu.data()), thrust::raw_pointer_cast(params_gpu.data()), thrust::raw_pointer_cast(bvecs_gpu.data()), thrust::raw_pointer_cast(bvals_gpu.data()), nvox, nfib, opts.f0.value(), thrust::raw_pointer_cast(includes_f0_gpu.data()), thrust::raw_pointer_cast(residuals_gpu.data()));
sync_check("get_residuals_PVM_multi_kernel");
}
ColumnVector res(NDIRECTIONS);
for(int vox=0;vox<nvox;vox++){
for(int i=0;i<NDIRECTIONS;i++) res(i+1)= residuals_gpu[vox*NDIRECTIONS+i];
float variance=var(res).AsScalar();
tau[vox]=1.0/variance;
}
gettimeofday(&t2,NULL);
time=timeval_diff(&t2,&t1);
myfile << "TIME TOTAL: " << time << " seconds\n";
myfile << "--------------------------------------------" << "\n\n" ;
myfile.close();
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment