Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FSL
fdt
Commits
b16c3e24
Commit
b16c3e24
authored
12 years ago
by
Moises Fernandez
Browse files
Options
Downloads
Patches
Plain Diff
Main of FIT functions (in the Host) for the different models. They call the GPU FIT kernels
parent
109eaed0
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
CUDA/diffmodels.cu
+248
-0
248 additions, 0 deletions
CUDA/diffmodels.cu
with
248 additions
and
0 deletions
CUDA/diffmodels.cu
0 → 100644
+
248
−
0
View file @
b16c3e24
#include
"newmat.h"
#include
"newimage/newimageall.h"
#include
"xfibresoptions.h"
#include
"diffmodels.h"
#include
"PVM_single.cu"
#include
"PVM_single_c.cu"
#include
"PVM_multi.cu"
#include
"fit_gpu_kernels.h"
#include
"dim_blocks.h"
#include
"sync_check.h"
#include
<time.h>
#include
<sys/time.h>
#include
"init_gpu.h"
using
namespace
Xfibres
;
//////////////////////////////////////////////////////
// FIT IN GPU
//////////////////////////////////////////////////////
void
fit_PVM_single
(
//INPUT
const
vector
<
ColumnVector
>
datam_vec
,
const
vector
<
Matrix
>
bvecs_vec
,
const
vector
<
Matrix
>
bvals_vec
,
thrust
::
device_vector
<
double
>
datam_gpu
,
thrust
::
device_vector
<
double
>
bvecs_gpu
,
thrust
::
device_vector
<
double
>
bvals_gpu
,
bool
m_include_f0
,
//OUTPUT
thrust
::
device_vector
<
double
>&
params_gpu
)
{
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
int
nvox
=
datam_vec
.
size
();
int
nfib
=
opts
.
nfibres
.
value
();
int
nparams
;
if
(
m_include_f0
)
nparams
=
nfib
*
3
+
3
;
else
nparams
=
nfib
*
3
+
2
;
for
(
int
vox
=
0
;
vox
<
nvox
;
vox
++
){
// initialise with a tensor
DTI
dti
(
datam_vec
[
vox
],
bvecs_vec
[
vox
],
bvals_vec
[
vox
]);
dti
.
linfit
();
// set starting parameters for nonlinear fitting
float
_th
,
_ph
;
cart2sph
(
dti
.
get_v1
(),
_th
,
_ph
);
params_gpu
[
vox
*
nparams
]
=
dti
.
get_s0
();
//start(2) = dti.get_md()>0?dti.get_md()*2:0.001; // empirically found that d~2*MD
params_gpu
[
vox
*
nparams
+
1
]
=
dti
.
get_l1
()
>
0
?
dti
.
get_l1
()
:
0.002
;
// empirically found that d~L1
params_gpu
[
vox
*
nparams
+
2
]
=
dti
.
get_fa
()
<
1
?
f2x
(
dti
.
get_fa
())
:
f2x
(
0.95
);
// first pvf = FA
params_gpu
[
vox
*
nparams
+
3
]
=
_th
;
params_gpu
[
vox
*
nparams
+
4
]
=
_ph
;
float
sumf
=
x2f
(
params_gpu
[
vox
*
nparams
+
2
]);
float
tmpsumf
=
sumf
;
for
(
int
ii
=
2
,
i
=
5
;
ii
<=
nfib
;
ii
++
,
i
+=
3
){
float
denom
=
2
;
do
{
params_gpu
[
vox
*
nparams
+
i
]
=
f2x
(
x2f
(
params_gpu
[
vox
*
nparams
+
i
-
3
])
/
denom
);
denom
*=
2
;
tmpsumf
=
sumf
+
x2f
(
params_gpu
[
vox
*
nparams
+
i
]);
}
while
(
tmpsumf
>=
1
);
sumf
+=
x2f
(
params_gpu
[
vox
*
nparams
+
i
]);
cart2sph
(
dti
.
get_v
(
ii
),
_th
,
_ph
);
params_gpu
[
vox
*
nparams
+
i
+
1
]
=
_th
;
params_gpu
[
vox
*
nparams
+
i
+
2
]
=
_ph
;
}
if
(
m_include_f0
)
params_gpu
[
vox
*
nparams
+
nparams
-
1
]
=
f2x
(
FSMALL
);
}
int
blocks
=
nvox
/
THREADS_X_BLOCK_FIT
;
if
(
nvox
%
THREADS_X_BLOCK_FIT
)
blocks
++
;
dim3
Dim_Grid
(
blocks
,
1
);
dim3
Dim_Block
(
THREADS_X_BLOCK_FIT
,
1
);
fit_PVM_single_kernel
<<<
Dim_Grid
,
Dim_Block
>>>
(
thrust
::
raw_pointer_cast
(
datam_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvecs_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvals_gpu
.
data
())
,
nvox
,
nfib
,
m_include_f0
,
thrust
::
raw_pointer_cast
(
params_gpu
.
data
()));
sync_check
(
"fit_PVM_single_kernel"
);
}
void
fit_PVM_single_c
(
//INPUT
const
vector
<
ColumnVector
>
datam_vec
,
const
vector
<
Matrix
>
bvecs_vec
,
const
vector
<
Matrix
>
bvals_vec
,
thrust
::
device_vector
<
double
>
datam_gpu
,
thrust
::
device_vector
<
double
>
bvecs_gpu
,
thrust
::
device_vector
<
double
>
bvals_gpu
,
bool
m_include_f0
,
//OUTPUT
thrust
::
device_vector
<
double
>&
params_gpu
)
{
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
int
nvox
=
datam_vec
.
size
();
int
nfib
=
opts
.
nfibres
.
value
();
int
nparams
;
if
(
m_include_f0
)
nparams
=
nfib
*
3
+
3
;
else
nparams
=
nfib
*
3
+
2
;
for
(
int
vox
=
0
;
vox
<
nvox
;
vox
++
){
// initialise with a tensor
DTI
dti
(
datam_vec
[
vox
],
bvecs_vec
[
vox
],
bvals_vec
[
vox
]);
dti
.
linfit
();
// set starting parameters for nonlinear fitting
float
_th
,
_ph
;
cart2sph
(
dti
.
get_v1
(),
_th
,
_ph
);
ColumnVector
start
(
nparams
);
//Initialize the non-linear fitter. Use the DTI estimates for most parameters, apart from the volume fractions
start
(
1
)
=
dti
.
get_s0
();
//start(2) = d2lambda(dti.get_md()>0?dti.get_md()*2:0.001); // empirically found that d~2*MD
start
(
2
)
=
d2lambda
(
dti
.
get_l1
()
>
0
?
dti
.
get_l1
()
:
0.002
);
// empirically found that d~L1
start
(
4
)
=
_th
;
start
(
5
)
=
_ph
;
for
(
int
ii
=
2
,
i
=
6
;
ii
<=
nfib
;
ii
++
,
i
+=
3
){
cart2sph
(
dti
.
get_v
(
ii
),
_th
,
_ph
);
start
(
i
+
1
)
=
_th
;
start
(
i
+
2
)
=
_ph
;
}
// do a better job for initializing the volume fractions
PVM_single_c
pvm
(
datam_vec
[
vox
],
bvecs_vec
[
vox
],
bvals_vec
[
vox
],
opts
.
nfibres
.
value
(),
false
,
m_include_f0
,
false
);
pvm
.
fit_pvf
(
start
);
for
(
int
i
=
0
;
i
<
nparams
;
i
++
){
params_gpu
[
vox
*
nparams
+
i
]
=
start
(
i
+
1
);
}
}
int
blocks
=
nvox
/
THREADS_X_BLOCK_FIT
;
if
(
nvox
%
THREADS_X_BLOCK_FIT
)
blocks
++
;
dim3
Dim_Grid
(
blocks
,
1
);
dim3
Dim_Block
(
THREADS_X_BLOCK_FIT
,
1
);
fit_PVM_single_c_kernel
<<<
Dim_Grid
,
Dim_Block
>>>
(
thrust
::
raw_pointer_cast
(
datam_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvecs_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvals_gpu
.
data
())
,
nvox
,
nfib
,
false
,
m_include_f0
,
false
,
thrust
::
raw_pointer_cast
(
params_gpu
.
data
()));
sync_check
(
"fit_PVM_single_c_kernel"
);
}
void
fit_PVM_multi
(
//INPUT
thrust
::
device_vector
<
double
>
datam_gpu
,
thrust
::
device_vector
<
double
>
bvecs_gpu
,
thrust
::
device_vector
<
double
>
bvals_gpu
,
int
nvox
,
bool
m_include_f0
,
//OUTPUT
thrust
::
device_vector
<
double
>&
params_gpu
)
{
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
int
nfib
=
opts
.
nfibres
.
value
();
int
blocks
=
nvox
/
THREADS_X_BLOCK_FIT
;
if
(
nvox
%
THREADS_X_BLOCK_FIT
)
blocks
++
;
dim3
Dim_Grid
(
blocks
,
1
);
dim3
Dim_Block
(
THREADS_X_BLOCK_FIT
,
1
);
int
nparams
;
if
(
m_include_f0
)
nparams
=
nfib
*
3
+
4
;
else
nparams
=
nfib
*
3
+
3
;
thrust
::
device_vector
<
double
>
params_PVM_single_c_gpu
;
//copy params to an auxiliar structure because there are different number of nparams
params_PVM_single_c_gpu
.
resize
(
nvox
*
nparams
);
//between single_c and multi. We must read and write in different structures,
thrust
::
copy
(
params_gpu
.
begin
(),
params_gpu
.
end
(),
params_PVM_single_c_gpu
.
begin
());
//maybe 1 block finish before other one read their params.
fit_PVM_multi_kernel
<<<
Dim_Grid
,
Dim_Block
>>>
(
thrust
::
raw_pointer_cast
(
datam_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
params_PVM_single_c_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvecs_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvals_gpu
.
data
())
,
nvox
,
nfib
,
m_include_f0
,
thrust
::
raw_pointer_cast
(
params_gpu
.
data
()));
sync_check
(
"fit_PVM_multi_kernel"
);
}
void
calculate_tau
(
//INPUT
thrust
::
device_vector
<
double
>
datam_gpu
,
thrust
::
device_vector
<
double
>&
params_gpu
,
thrust
::
device_vector
<
double
>
bvecs_gpu
,
thrust
::
device_vector
<
double
>
bvals_gpu
,
thrust
::
host_vector
<
int
>&
vox_repeat
,
int
nrepeat
,
string
output_file
,
//OUTPUT
thrust
::
host_vector
<
float
>&
tau
)
{
std
::
ofstream
myfile
;
myfile
.
open
(
output_file
.
data
(),
ios
::
out
|
ios
::
app
);
myfile
<<
"----------------------------------------------------- "
<<
"
\n
"
;
myfile
<<
"--------- CALCULATE TAU/RESIDULAS IN GPU ------------ "
<<
"
\n
"
;
myfile
<<
"----------------------------------------------------- "
<<
"
\n
"
;
struct
timeval
t1
,
t2
;
double
time
;
gettimeofday
(
&
t1
,
NULL
);
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
int
nvox
=
vox_repeat
.
size
();
int
nfib
=
opts
.
nfibres
.
value
();
thrust
::
device_vector
<
bool
>
includes_f0_gpu
;
includes_f0_gpu
.
resize
(
nvox
);
thrust
::
fill
(
includes_f0_gpu
.
begin
(),
includes_f0_gpu
.
end
(),
opts
.
f0
.
value
());
if
(
opts
.
f0
.
value
()){
for
(
int
i
=
0
;
i
<
nrepeat
;
i
++
){
includes_f0_gpu
[
vox_repeat
[
i
]]
=
false
;
//if has been reprocessed f0 will be 0.
}
}
int
blocks
=
nvox
/
THREADS_X_BLOCK_FIT
;
if
(
nvox
%
THREADS_X_BLOCK_FIT
)
blocks
++
;
dim3
Dim_Grid
(
blocks
,
1
);
dim3
Dim_Block
(
THREADS_X_BLOCK_FIT
,
1
);
thrust
::
device_vector
<
double
>
residuals_gpu
;
residuals_gpu
.
resize
(
nvox
*
NDIRECTIONS
);
if
(
opts
.
modelnum
.
value
()
==
1
){
if
(
opts
.
nonlin
.
value
()){
get_residuals_PVM_single_kernel
<<<
Dim_Grid
,
Dim_Block
>>>
(
thrust
::
raw_pointer_cast
(
datam_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
params_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvecs_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvals_gpu
.
data
()),
nvox
,
nfib
,
opts
.
f0
.
value
(),
thrust
::
raw_pointer_cast
(
includes_f0_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
residuals_gpu
.
data
()));
sync_check
(
"get_residuals_PVM_single_kernel"
);
}
else
{
get_residuals_PVM_single_c_kernel
<<<
Dim_Grid
,
Dim_Block
>>>
(
thrust
::
raw_pointer_cast
(
datam_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
params_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvecs_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvals_gpu
.
data
()),
nvox
,
nfib
,
opts
.
f0
.
value
(),
thrust
::
raw_pointer_cast
(
includes_f0_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
residuals_gpu
.
data
()));
sync_check
(
"get_residuals_PVM_single_c_kernel"
);
}
}
else
{
//model 2 : non-mono-exponential
get_residuals_PVM_multi_kernel
<<<
Dim_Grid
,
Dim_Block
>>>
(
thrust
::
raw_pointer_cast
(
datam_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
params_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvecs_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
bvals_gpu
.
data
()),
nvox
,
nfib
,
opts
.
f0
.
value
(),
thrust
::
raw_pointer_cast
(
includes_f0_gpu
.
data
()),
thrust
::
raw_pointer_cast
(
residuals_gpu
.
data
()));
sync_check
(
"get_residuals_PVM_multi_kernel"
);
}
ColumnVector
res
(
NDIRECTIONS
);
for
(
int
vox
=
0
;
vox
<
nvox
;
vox
++
){
for
(
int
i
=
0
;
i
<
NDIRECTIONS
;
i
++
)
res
(
i
+
1
)
=
residuals_gpu
[
vox
*
NDIRECTIONS
+
i
];
float
variance
=
var
(
res
).
AsScalar
();
tau
[
vox
]
=
1.0
/
variance
;
}
gettimeofday
(
&
t2
,
NULL
);
time
=
timeval_diff
(
&
t2
,
&
t1
);
myfile
<<
"TIME TOTAL: "
<<
time
<<
" seconds
\n
"
;
myfile
<<
"--------------------------------------------"
<<
"
\n\n
"
;
myfile
.
close
();
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment