Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FSL
fdt
Commits
b5358685
Commit
b5358685
authored
12 years ago
by
Moises Fernandez
Browse files
Options
Downloads
Patches
Plain Diff
Routines for SINGLE SHELL model
parent
c1ffb543
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
CUDA/PVM_single_c.cu
+643
-0
643 additions, 0 deletions
CUDA/PVM_single_c.cu
with
643 additions
and
0 deletions
CUDA/PVM_single_c.cu
0 → 100644
+
643
−
0
View file @
b5358685
#include
"diffmodels_utils.h"
#include
"levenberg_marquardt.cu"
#include
"options.h"
#include
<fstream>
/////////////////////////////////////
/////////////////////////////////////
/// PVM_single_c ///
/////////////////////////////////////
/////////////////////////////////////
__device__
inline
double
isoterm_PVM_single_c
(
const
int
pt
,
const
double
_d
,
const
double
*
bvals
){
return
exp
(
double
(
-
bvals
[
pt
]
*
_d
));
}
__device__
inline
double
isoterm_lambda_PVM_single_c
(
const
int
pt
,
const
double
lambda
,
const
double
*
bvals
){
return
(
-
2
*
bvals
[
pt
]
*
lambda
*
exp
(
double
(
-
bvals
[
pt
]
*
lambda
*
lambda
)));
}
__device__
inline
double
anisoterm_PVM_single_c
(
const
int
pt
,
const
double
_d
,
const
double3
x
,
const
double
*
bvecs
,
const
double
*
bvals
){
double
dp
=
bvecs
[
pt
]
*
x
.
x
+
bvecs
[
NDIRECTIONS
+
pt
]
*
x
.
y
+
bvecs
[(
2
*
NDIRECTIONS
)
+
pt
]
*
x
.
z
;
return
exp
(
double
(
-
bvals
[
pt
]
*
_d
*
dp
*
dp
));
}
__device__
inline
double
anisoterm_lambda_PVM_single_c
(
const
int
pt
,
const
double
lambda
,
const
double3
x
,
const
double
*
bvecs
,
const
double
*
bvals
){
double
dp
=
bvecs
[
pt
]
*
x
.
x
+
bvecs
[
NDIRECTIONS
+
pt
]
*
x
.
y
+
bvecs
[(
2
*
NDIRECTIONS
)
+
pt
]
*
x
.
z
;
return
(
-
2
*
bvals
[
pt
]
*
lambda
*
dp
*
dp
*
exp
(
double
(
-
bvals
[
pt
]
*
lambda
*
lambda
*
dp
*
dp
)));
}
__device__
inline
double
anisoterm_th_PVM_single_c
(
const
int
pt
,
const
double
_d
,
const
double3
x
,
const
double
_th
,
const
double
_ph
,
const
double
*
bvecs
,
const
double
*
bvals
){
double
dp
=
bvecs
[
pt
]
*
x
.
x
+
bvecs
[
NDIRECTIONS
+
pt
]
*
x
.
y
+
bvecs
[(
2
*
NDIRECTIONS
)
+
pt
]
*
x
.
z
;
double
dp1
=
cos
(
double
(
_th
))
*
(
bvecs
[
pt
]
*
cos
(
double
(
_ph
))
+
bvecs
[
NDIRECTIONS
+
pt
]
*
sin
(
double
(
_ph
)))
-
bvecs
[(
2
*
NDIRECTIONS
)
+
pt
]
*
sin
(
double
(
_th
));
return
(
-
2
*
bvals
[
pt
]
*
_d
*
dp
*
dp1
*
exp
(
double
(
-
bvals
[
pt
]
*
_d
*
dp
*
dp
)));
}
__device__
inline
double
anisoterm_ph_PVM_single_c
(
const
int
pt
,
const
double
_d
,
const
double3
x
,
const
double
_th
,
const
double
_ph
,
const
double
*
bvecs
,
const
double
*
bvals
){
double
dp
=
bvecs
[
pt
]
*
x
.
x
+
bvecs
[
NDIRECTIONS
+
pt
]
*
x
.
y
+
bvecs
[(
2
*
NDIRECTIONS
)
+
pt
]
*
x
.
z
;
double
dp1
=
sin
(
double
(
_th
))
*
(
-
bvecs
[
pt
]
*
sin
(
double
(
_ph
))
+
bvecs
[
NDIRECTIONS
+
pt
]
*
cos
(
double
(
_ph
)));
return
(
-
2
*
bvals
[
pt
]
*
_d
*
dp
*
dp1
*
exp
(
double
(
-
bvals
[
pt
]
*
_d
*
dp
*
dp
)));
}
//If the sum of the fractions is >1, then zero as many fractions
//as necessary, so that the sum becomes smaller than 1.
//in diffmodel.cc
__device__
void
fix_fsum_PVM_single_c
(
//INPUT
int
nfib
,
//INPUT - OUTPUT)
{
double
*
fs
)
{
double
sumf
=
0.0
;
for
(
int
i
=
0
;
i
<
nfib
;
i
++
){
sumf
+=
fs
[
i
];
if
(
sumf
>=
1
){
for
(
int
j
=
i
;
j
<
nfib
;
j
++
)
fs
[
j
]
=
FSMALL_gpu
;
//make the fraction almost zero
break
;
}
}
}
//Returns 1-Sum(f_j), 1<=j<=ii. (ii<=nfib)
//Used for transforming beta to f and vice versa
//in diffmodel.cc
__device__
double
partial_fsum_PVM_single_c
(
double
*
fs
,
int
ii
){
double
fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
ii
;
j
++
){
fsum
-=
fs
[
j
];
}
return
fsum
;
}
//in diffmodel.cc
__device__
void
sort_PVM_single_c
(
int
nfib
,
int
nparams
,
double
*
params
)
{
double
temp_f
,
temp_th
,
temp_ph
;
// Order vector descending using f parameters as index
for
(
int
i
=
1
;
i
<
(
nfib
);
i
++
){
for
(
int
j
=
0
;
j
<
(
nfib
-
i
);
j
++
){
if
(
params
[
2
+
j
*
3
]
<
params
[
2
+
i
*
3
]){
temp_f
=
params
[
2
+
j
*
3
];
temp_th
=
params
[
2
+
j
*
3
+
1
];
temp_ph
=
params
[
2
+
j
*
3
+
2
];
params
[
2
+
j
*
3
]
=
params
[
2
+
i
*
3
];
params
[
2
+
j
*
3
+
1
]
=
params
[
2
+
i
*
3
+
1
];
params
[
2
+
j
*
3
+
2
]
=
params
[
2
+
i
*
3
+
2
];
params
[
2
+
i
*
3
]
=
temp_f
;
params
[
2
+
i
*
3
+
1
]
=
temp_th
;
params
[
2
+
i
*
3
+
2
]
=
temp_ph
;
}
}
}
//if (m_return_fanning){
// fantmp=m_fanning_angles;
// Hess_vec_tmp=m_invprHes_e1;
// Hess=m_Hessian;
//}
//if (m_return_fanning){
//m_fanning_angles(i)=fantmp(fvals[ii].second);
//m_invprHes_e1[i-1]=Hess_vec_tmp[fvals[ii].second-1];
//m_Hessian[i-1]=Hess[fvals[ii].second-1];
//}
}
//in diffmodels.cc -- for calculate residuals
__device__
void
forwardModel_PVM_single_c
(
//INPUT
const
double
*
p
,
const
double
*
bvecs
,
const
double
*
bvals
,
const
int
nfib
,
const
int
nparams
,
const
bool
m_include_f0
,
//OUTPUT
double
*
predicted_signal
)
{
for
(
int
i
=
0
;
i
<
NDIRECTIONS
;
i
++
){
predicted_signal
[
i
]
=
0
;
//pred = 0;
}
double
val
;
double
_d
=
lambda2d_gpu
(
p
[
1
]);
////////////////////////////////////
double
fs
[
NFIBRES
];
double
x
[
NFIBRES
*
3
];
double
sumf
=
0
;
double3
x2
;
double
partial_fsum
;
for
(
int
k
=
0
;
k
<
nfib
;
k
++
){
int
kk
=
2
+
3
*
k
;
////// partial_fsum //////
partial_fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
k
;
j
++
)
partial_fsum
-=
fs
[
j
];
//////////////////////////
fs
[
k
]
=
beta2f_gpu
(
p
[
kk
])
*
partial_fsum
;
sumf
+=
fs
[
k
];
x
[
k
*
3
]
=
sin
(
p
[
kk
+
1
])
*
cos
(
p
[
kk
+
2
]);
x
[
k
*
3
+
1
]
=
sin
(
p
[
kk
+
1
])
*
sin
(
p
[
kk
+
2
]);
x
[
k
*
3
+
2
]
=
cos
(
p
[
kk
+
1
]);
}
////////////////////////////////////
for
(
int
i
=
0
;
i
<
NDIRECTIONS
;
i
++
){
val
=
0.0
;
for
(
int
k
=
0
;
k
<
nfib
;
k
++
){
x2
.
x
=
x
[
k
*
3
];
x2
.
y
=
x
[
k
*
3
+
1
];
x2
.
z
=
x
[
k
*
3
+
2
];
val
+=
fs
[
k
]
*
anisoterm_PVM_single_c
(
i
,
_d
,
x2
,
bvecs
,
bvals
);
}
if
(
m_include_f0
){
//partial_fsum ///////////
partial_fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
NFIBRES
;
j
++
)
partial_fsum
-=
fs
[
j
];
//////////////////////////
double
temp_f0
=
beta2f_gpu
(
p
[
nparams
-
1
])
*
partial_fsum
;
predicted_signal
[
i
]
=
p
[
0
]
*
(
temp_f0
+
(
1
-
sumf
-
temp_f0
)
*
isoterm_PVM_single_c
(
i
,
_d
,
bvals
)
+
val
);
}
else
predicted_signal
[
i
]
=
p
[
0
]
*
((
1
-
sumf
)
*
isoterm_PVM_single_c
(
i
,
_d
,
bvals
)
+
val
);
}
}
//in diffmodels.cc -- for calculate residuals
__device__
void
get_prediction_PVM_single_c
(
//INPUT
const
double
*
params
,
const
double
*
bvecs
,
const
double
*
bvals
,
const
int
nfib
,
const
int
nparams
,
const
bool
m_include_f0
,
//OUTPUT
double
*
predicted_signal
)
{
//m_s0-myparams[0] m_d-myparams[1] m_d_std-myparams[2] m_f-m_th-m_ph-myparams[3,4,5,6 etc..] m_f0-myparams[nparams-1]
double
p
[
NPARAMS
];
p
[
0
]
=
params
[
0
];
if
(
params
[
1
]
<
0
)
p
[
1
]
=
0
;
//This can be due to numerical errors..sqrt
else
p
[
1
]
=
d2lambda_gpu
(
params
[
1
]);
double
partial_fsum
;
double
fs
[
NFIBRES
];
for
(
int
k
=
0
;
k
<
nfib
;
k
++
){
int
kk
=
2
+
3
*
k
;
//partial_fsum ///////////
partial_fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
k
;
j
++
)
partial_fsum
-=
fs
[
j
];
//////////////////////////
fs
[
k
]
=
params
[
kk
];
double
tmpr
=
params
[
kk
]
/
partial_fsum
;
if
(
tmpr
>
1.0
)
tmpr
=
1
;
//This can be due to numerical errors
if
(
tmpr
<
0.0
)
tmpr
=
0
;
//This can be due to numerical errors..sqrt
p
[
kk
]
=
f2beta_gpu
(
tmpr
);
p
[
kk
+
1
]
=
params
[
kk
+
1
];
p
[
kk
+
2
]
=
params
[
kk
+
2
];
}
if
(
m_include_f0
){
//partial_fsum ///////////
partial_fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
NFIBRES
;
j
++
)
partial_fsum
-=
fs
[
j
];
//////////////////////////
double
tmpr
=
params
[
nparams
-
1
]
/
partial_fsum
;
if
(
tmpr
>
1.0
)
tmpr
=
1
;
//This can be due to numerical errors..asin
if
(
tmpr
<
0.0
)
tmpr
=
0
;
//This can be due to numerical errors..sqrt
p
[
nparams
-
1
]
=
f2beta_gpu
(
tmpr
);
}
forwardModel_PVM_single_c
(
p
,
bvecs
,
bvals
,
nfib
,
nparams
,
m_include_f0
,
predicted_signal
);
}
//cost function PVM_single_c
__device__
double
cf_PVM_single_c
(
//INPUT
const
double
*
params
,
const
double
*
mdata
,
const
double
*
bvecs
,
const
double
*
bvals
,
const
int
nparams
,
const
bool
m_include_f0
)
{
double
cfv
=
0.0
;
double
err
;
double
_d
=
lambda2d_gpu
(
params
[
1
]);
double
fs
[
NFIBRES
];
double
x
[
NFIBRES
*
3
];
double
sumf
=
0
;
double3
x2
;
double
partial_fsum
;
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
int
kk
=
2
+
3
*
(
k
);
//partial_fsum ///////////
partial_fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
k
;
j
++
)
partial_fsum
-=
fs
[
j
];
//////////////////////////
fs
[
k
]
=
beta2f_gpu
(
params
[
kk
])
*
partial_fsum
;
sumf
+=
fs
[
k
];
x
[
k
*
3
]
=
sin
(
params
[
kk
+
1
])
*
cos
(
params
[
kk
+
2
]);
x
[
k
*
3
+
1
]
=
sin
(
params
[
kk
+
1
])
*
sin
(
params
[
kk
+
2
]);
x
[
k
*
3
+
2
]
=
cos
(
params
[
kk
+
1
]);
}
for
(
int
i
=
0
;
i
<
NDIRECTIONS
;
i
++
){
err
=
0.0
;
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
x2
.
x
=
x
[
k
*
3
];
x2
.
y
=
x
[
k
*
3
+
1
];
x2
.
z
=
x
[
k
*
3
+
2
];
err
+=
fs
[
k
]
*
anisoterm_PVM_single_c
(
i
,
_d
,
x2
,
bvecs
,
bvals
);
}
if
(
m_include_f0
){
//partial_fsum ///////////
partial_fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
NFIBRES
;
j
++
)
partial_fsum
-=
fs
[
j
];
//////////////////////////
double
temp_f0
=
beta2f_gpu
(
params
[
nparams
-
1
])
*
partial_fsum
;
err
=
(
params
[
0
]
*
((
temp_f0
+
(
1
-
sumf
-
temp_f0
)
*
isoterm_PVM_single_c
(
i
,
_d
,
bvals
))
+
err
))
-
mdata
[
i
];
}
else
{
err
=
params
[
0
]
*
((
1
-
sumf
)
*
isoterm_PVM_single_c
(
i
,
_d
,
bvals
)
+
err
)
-
mdata
[
i
];
}
cfv
+=
err
*
err
;
}
return
(
cfv
);
}
//gradient function PVM_single_c
__device__
void
grad_PVM_single_c
(
//INPUT
const
double
*
params
,
const
double
*
mdata
,
const
double
*
bvecs
,
const
double
*
bvals
,
const
int
nparams
,
const
bool
m_include_f0
,
//OUTPUT
double
*
grad
)
{
double
_d
=
lambda2d_gpu
(
params
[
1
]);
double
fs
[
NFIBRES
];
double
bs
[
NFIBRES
];
double
x
[
NFIBRES
*
3
];
double3
xx
;
double
sumf
=
0
;
double
partial_fsum
;
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
int
kk
=
2
+
3
*
(
k
);
bs
[
k
]
=
params
[
kk
];
//partial_fsum ///////////
partial_fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
k
;
j
++
){
partial_fsum
-=
fs
[
j
];
}
//////////////////////////
fs
[
k
]
=
beta2f_gpu
(
params
[
kk
])
*
partial_fsum
;
sumf
+=
fs
[
k
];
x
[
k
*
3
]
=
sin
(
params
[
kk
+
1
])
*
cos
(
params
[
kk
+
2
]);
x
[
k
*
3
+
1
]
=
sin
(
params
[
kk
+
1
])
*
sin
(
params
[
kk
+
2
]);
x
[
k
*
3
+
2
]
=
cos
(
params
[
kk
+
1
]);
}
////////// fraction deriv //////////////
// f_deriv=fractions_deriv(nfib, fs, bs);
//////////////////////////////////////
double
f_deriv
[
NFIBRES
*
NFIBRES
];
double
fsum
;
for
(
int
j
=
0
;
j
<
NFIBRES
;
j
++
){
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
f_deriv
[
j
*
NFIBRES
+
k
]
=
0
;
}
}
for
(
int
j
=
0
;
j
<
NFIBRES
;
j
++
){
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
if
(
j
==
k
){
fsum
=
1
;
for
(
int
n
=
0
;
n
<=
(
j
-
1
);
n
++
)
fsum
-=
fs
[
n
];
f_deriv
[
j
*
NFIBRES
+
k
]
=
sin
(
double
(
2
*
bs
[
k
]))
*
fsum
;
}
else
if
(
j
>
k
){
fsum
=
0
;
for
(
int
n
=
0
;
n
<=
(
j
-
1
);
n
++
)
fsum
+=
f_deriv
[
n
*
NFIBRES
+
k
];
f_deriv
[
j
*
NFIBRES
+
k
]
+=
-
sin
(
bs
[
j
])
*
sin
(
bs
[
j
])
*
fsum
;
}
}
}
///////////////////////////////
double
J
[
NPARAMS
];
double
diff
;
double
sig
,
Iso_term
;
double
Aniso_terms
[
NFIBRES
];
for
(
int
p
=
0
;
p
<
nparams
;
p
++
)
grad
[
p
]
=
0
;
for
(
int
i
=
0
;
i
<
NDIRECTIONS
;
i
++
){
Iso_term
=
isoterm_PVM_single_c
(
i
,
_d
,
bvals
);
//Precompute some terms for this datapoint
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
xx
.
x
=
x
[
k
*
3
];
xx
.
y
=
x
[
k
*
3
+
1
];
xx
.
z
=
x
[
k
*
3
+
2
];
Aniso_terms
[
k
]
=
anisoterm_PVM_single_c
(
i
,
_d
,
xx
,
bvecs
,
bvals
);
}
sig
=
0
;
for
(
int
a
=
0
;
a
<
nparams
;
a
++
)
J
[
a
]
=
0
;
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
int
kk
=
2
+
3
*
(
k
);
xx
.
x
=
x
[
k
*
3
];
xx
.
y
=
x
[
k
*
3
+
1
];
xx
.
z
=
x
[
k
*
3
+
2
];
sig
+=
fs
[
k
]
*
Aniso_terms
[
k
];
J
[
1
]
+=
params
[
0
]
*
fs
[
k
]
*
anisoterm_lambda_PVM_single_c
(
i
,
params
[
1
],
xx
,
bvecs
,
bvals
);
J
[
kk
]
=
0
;
for
(
int
j
=
0
;
j
<
NFIBRES
;
j
++
){
if
(
f_deriv
[
j
*
NFIBRES
+
k
]
!=
0
){
J
[
kk
]
+=
params
[
0
]
*
(
Aniso_terms
[
j
]
-
Iso_term
)
*
f_deriv
[
j
*
NFIBRES
+
k
];
}
}
J
[
kk
+
1
]
=
params
[
0
]
*
fs
[
k
]
*
anisoterm_th_PVM_single_c
(
i
,
_d
,
xx
,
params
[
kk
+
1
],
params
[
kk
+
2
],
bvecs
,
bvals
);
J
[
kk
+
2
]
=
params
[
0
]
*
fs
[
k
]
*
anisoterm_ph_PVM_single_c
(
i
,
_d
,
xx
,
params
[
kk
+
1
],
params
[
kk
+
2
],
bvecs
,
bvals
);
}
if
(
m_include_f0
){
//partial_fsum ///////////
partial_fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
(
NFIBRES
);
j
++
)
partial_fsum
-=
fs
[
j
];
//////////////////////////
double
temp_f0
=
beta2f_gpu
(
params
[
nparams
-
1
])
*
partial_fsum
;
//derivative with respect to f0
J
[
nparams
-
1
]
=
params
[
0
]
*
(
1
-
Iso_term
)
*
sin
(
double
(
2
*
params
[
nparams
-
1
]))
*
partial_fsum
;
sig
=
params
[
0
]
*
((
temp_f0
+
(
1
-
sumf
-
temp_f0
)
*
Iso_term
)
+
sig
);
J
[
1
]
+=
params
[
0
]
*
(
1
-
sumf
-
temp_f0
)
*
isoterm_lambda_PVM_single_c
(
i
,
params
[
1
],
bvals
);
}
else
{
sig
=
params
[
0
]
*
((
1
-
sumf
)
*
Iso_term
+
sig
);
J
[
1
]
+=
params
[
0
]
*
(
1
-
sumf
)
*
isoterm_lambda_PVM_single_c
(
i
,
params
[
1
],
bvals
);
}
diff
=
sig
-
mdata
[
i
];
J
[
0
]
=
sig
/
params
[
0
];
for
(
int
p
=
0
;
p
<
nparams
;
p
++
)
grad
[
p
]
+=
2
*
J
[
p
]
*
diff
;
}
}
//hessian function PVM_single_c
__device__
void
hess_PVM_single_c
(
//INPUT
const
double
*
params
,
const
double
*
bvecs
,
const
double
*
bvals
,
const
int
nparams
,
const
bool
m_include_f0
,
//OUTPUT
double
*
hess
)
{
double
_d
=
lambda2d_gpu
(
params
[
1
]);
double
fs
[
NFIBRES
];
double
bs
[
NFIBRES
];
double
x
[
NFIBRES
*
3
];
double3
xx
;
double
sumf
=
0
;
double
partial_fsum
;
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
int
kk
=
2
+
3
*
(
k
);
bs
[
k
]
=
params
[
kk
];
//partial_fsum ///////////
partial_fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
k
;
j
++
)
partial_fsum
-=
fs
[
j
];
//////////////////////////
fs
[
k
]
=
beta2f_gpu
(
params
[
kk
])
*
partial_fsum
;
sumf
+=
fs
[
k
];
x
[
k
*
3
]
=
sin
(
params
[
kk
+
1
])
*
cos
(
params
[
kk
+
2
]);
x
[
k
*
3
+
1
]
=
sin
(
params
[
kk
+
1
])
*
sin
(
params
[
kk
+
2
]);
x
[
k
*
3
+
2
]
=
cos
(
params
[
kk
+
1
]);
}
////////// fraction deriv //////////////
// f_deriv=fractions_deriv(nfib, fs, bs);
//////////////////////////////////////
double
f_deriv
[
NFIBRES
*
NFIBRES
];
double
fsum
;
for
(
int
j
=
0
;
j
<
NFIBRES
;
j
++
){
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
f_deriv
[
j
*
NFIBRES
+
k
]
=
0
;
}
}
for
(
int
j
=
0
;
j
<
NFIBRES
;
j
++
){
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
if
(
j
==
k
){
fsum
=
1
;
for
(
int
n
=
0
;
n
<=
(
j
-
1
);
n
++
)
fsum
-=
fs
[
n
];
f_deriv
[
j
*
NFIBRES
+
k
]
=
sin
(
double
(
2
*
bs
[
k
]))
*
fsum
;
}
else
if
(
j
>
k
){
fsum
=
0
;
for
(
int
n
=
0
;
n
<=
(
j
-
1
);
n
++
)
fsum
+=
f_deriv
[
n
*
NFIBRES
+
k
];
f_deriv
[
j
*
NFIBRES
+
k
]
+=
-
sin
(
bs
[
j
])
*
sin
(
bs
[
j
])
*
fsum
;
}
}
}
///////////////////////////////
double
J
[
NPARAMS
];
double
sig
,
Iso_term
;
double
Aniso_terms
[
NFIBRES
];
for
(
int
p
=
0
;
p
<
nparams
;
p
++
){
for
(
int
p2
=
0
;
p2
<
nparams
;
p2
++
){
hess
[
p
*
nparams
+
p2
]
=
0
;
}
}
for
(
int
i
=
0
;
i
<
NDIRECTIONS
;
i
++
){
Iso_term
=
isoterm_PVM_single_c
(
i
,
_d
,
bvals
);
//Precompute some terms for this datapoint
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
xx
.
x
=
x
[
k
*
3
];
xx
.
y
=
x
[
k
*
3
+
1
];
xx
.
z
=
x
[
k
*
3
+
2
];
Aniso_terms
[
k
]
=
anisoterm_PVM_single_c
(
i
,
_d
,
xx
,
bvecs
,
bvals
);
}
sig
=
0
;
for
(
int
a
=
0
;
a
<
nparams
;
a
++
)
J
[
a
]
=
0
;
for
(
int
k
=
0
;
k
<
NFIBRES
;
k
++
){
int
kk
=
2
+
3
*
(
k
);
xx
.
x
=
x
[
k
*
3
];
xx
.
y
=
x
[
k
*
3
+
1
];
xx
.
z
=
x
[
k
*
3
+
2
];
sig
+=
fs
[
k
]
*
Aniso_terms
[
k
];
J
[
1
]
+=
params
[
0
]
*
fs
[
k
]
*
anisoterm_lambda_PVM_single_c
(
i
,
params
[
1
],
xx
,
bvecs
,
bvals
);
J
[
kk
]
=
0
;
for
(
int
j
=
0
;
j
<
NFIBRES
;
j
++
){
if
(
f_deriv
[
j
*
NFIBRES
+
k
]
!=
0
)
J
[
kk
]
+=
params
[
0
]
*
(
Aniso_terms
[
j
]
-
Iso_term
)
*
f_deriv
[
j
*
NFIBRES
+
k
];
}
J
[
kk
+
1
]
=
params
[
0
]
*
fs
[
k
]
*
anisoterm_th_PVM_single_c
(
i
,
_d
,
xx
,
params
[
kk
+
1
],
params
[
kk
+
2
],
bvecs
,
bvals
);
J
[
kk
+
2
]
=
params
[
0
]
*
fs
[
k
]
*
anisoterm_ph_PVM_single_c
(
i
,
_d
,
xx
,
params
[
kk
+
1
],
params
[
kk
+
2
],
bvecs
,
bvals
);
}
if
(
m_include_f0
){
//partial_fsum ///////////
partial_fsum
=
1.0
;
for
(
int
j
=
0
;
j
<
(
NFIBRES
);
j
++
)
partial_fsum
-=
fs
[
j
];
//////////////////////////
double
temp_f0
=
beta2f_gpu
(
params
[
nparams
-
1
])
*
partial_fsum
;
//derivative with respect to f0
J
[
nparams
-
1
]
=
params
[
0
]
*
(
1
-
Iso_term
)
*
sin
(
double
(
2
*
params
[
nparams
-
1
]))
*
partial_fsum
;
sig
=
params
[
0
]
*
((
temp_f0
+
(
1
-
sumf
-
temp_f0
)
*
Iso_term
)
+
sig
);
J
[
1
]
+=
params
[
0
]
*
(
1
-
sumf
-
temp_f0
)
*
isoterm_lambda_PVM_single_c
(
i
,
params
[
1
],
bvals
);
}
else
{
sig
=
params
[
0
]
*
((
1
-
sumf
)
*
Iso_term
+
sig
);
J
[
1
]
+=
params
[
0
]
*
(
1
-
sumf
)
*
isoterm_lambda_PVM_single_c
(
i
,
params
[
1
],
bvals
);
}
J
[
0
]
=
sig
/
params
[
0
];
for
(
int
p
=
0
;
p
<
nparams
;
p
++
){
for
(
int
p2
=
p
;
p2
<
nparams
;
p2
++
){
hess
[
p
*
nparams
+
p2
]
+=
2
*
(
J
[
p
]
*
J
[
p2
]);
}
}
}
for
(
int
j
=
0
;
j
<
nparams
;
j
++
)
{
for
(
int
i
=
j
+
1
;
i
<
nparams
;
i
++
)
{
hess
[
i
*
nparams
+
j
]
=
hess
[
j
*
nparams
+
i
];
}
}
}
//in diffmodel.cc
extern
"C"
__global__
void
fit_PVM_single_c_kernel
(
//INPUT
const
double
*
data
,
const
double
*
bvecs
,
const
double
*
bvals
,
const
int
nvox
,
const
int
nfib
,
const
bool
m_eval_BIC
,
const
bool
m_include_f0
,
const
bool
m_return_fanning
,
//INPUT - OUTPUT
double
*
params
)
{
int
id
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
id
>=
nvox
)
{
return
;
}
int
nparams
;
if
(
m_include_f0
)
nparams
=
nfib
*
3
+
3
;
else
nparams
=
nfib
*
3
+
2
;
double
myparams
[
NPARAMS
];
double
mydata
[
NDIRECTIONS
];
for
(
int
i
=
0
;
i
<
nparams
;
i
++
){
myparams
[
i
]
=
params
[(
id
*
nparams
)
+
i
];
}
for
(
int
i
=
0
;
i
<
NDIRECTIONS
;
i
++
){
mydata
[
i
]
=
data
[(
id
*
NDIRECTIONS
)
+
i
];
}
//if(id==1) for(int i=0;i<nparams;i++)printf("START[%i]: %.20f\n",i,myparams[i]);
//do the fit
levenberg_marquardt_PVM_single_c_gpu
(
mydata
,
&
bvecs
[
id
*
3
*
NDIRECTIONS
],
&
bvals
[
id
*
NDIRECTIONS
],
nparams
,
m_include_f0
,
myparams
);
//double m_BIC;
//if (m_eval_BIC){
// double RSS= cf_PVM_single_c(myparams,mydata,&bvecs[id*3*NDIRECTIONS], &bvals[id*NDIRECTIONS], nparams,m_include_f0); // get the sum of squared residuals
// m_BIC=NDIRECTIONS*log(double(RSS/NDIRECTIONS))+log(double(NDIRECTIONS))*nparams; // evaluate BIC
//} NOT USED at the moment
// finalise parameters
// m_s0-myparams[0] m_d-myparams[1] m_f-m_th-m_ph-myparams[2,3,4,5, etc..] m_f0-myparams[nparams-1]
double
m_f
[
NFIBRES
];
// for partial_fsum
myparams
[
1
]
=
lambda2d_gpu
(
myparams
[
1
]);
for
(
int
k
=
0
;
k
<
nfib
;
k
++
){
int
kk
=
2
+
3
*
(
k
);
myparams
[
kk
]
=
beta2f_gpu
(
myparams
[
kk
])
*
partial_fsum_PVM_single_c
(
m_f
,
k
);
m_f
[
k
]
=
myparams
[
kk
];
}
//if (m_return_fanning)
//Fanning_angles_from_Hessian(); NOT USED at the moment
if
(
m_include_f0
)
myparams
[
nparams
-
1
]
=
beta2f_gpu
(
myparams
[
nparams
-
1
])
*
partial_fsum_PVM_single_c
(
m_f
,
nfib
);
sort_PVM_single_c
(
nfib
,
nparams
,
myparams
);
for
(
int
i
=
0
;
i
<
nparams
;
i
++
){
params
[(
id
*
nparams
)
+
i
]
=
myparams
[
i
];
}
}
//in diffmodel.cc
extern
"C"
__global__
void
get_residuals_PVM_single_c_kernel
(
//INPUT
const
double
*
data
,
const
double
*
params
,
const
double
*
bvecs
,
const
double
*
bvals
,
const
int
nvox
,
const
int
nfib
,
const
bool
m_include_f0
,
const
bool
*
includes_f0
,
//OUTPUT
double
*
residuals
)
{
int
id
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
id
>=
nvox
)
{
return
;
}
int
nparams
;
if
(
m_include_f0
)
nparams
=
nfib
*
3
+
3
;
else
nparams
=
nfib
*
3
+
2
;
bool
my_include_f0
=
includes_f0
[
id
];
double
myparams
[
NPARAMS
];
double
mydata
[
NDIRECTIONS
];
for
(
int
i
=
0
;
i
<
nparams
;
i
++
){
myparams
[
i
]
=
params
[(
id
*
nparams
)
+
i
];
}
for
(
int
i
=
0
;
i
<
NDIRECTIONS
;
i
++
){
mydata
[
i
]
=
data
[(
id
*
NDIRECTIONS
)
+
i
];
}
double
predicted_signal
[
NDIRECTIONS
];
get_prediction_PVM_single_c
(
myparams
,
&
bvecs
[
id
*
3
*
NDIRECTIONS
],
&
bvals
[
id
*
NDIRECTIONS
],
nfib
,
nparams
,
my_include_f0
,
predicted_signal
);
for
(
int
i
=
0
;
i
<
NDIRECTIONS
;
i
++
){
//residuals=m_data-predicted_signal;
residuals
[
id
*
NDIRECTIONS
+
i
]
=
mydata
[
i
]
-
predicted_signal
[
i
];
}
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment