Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FSL
fdt
Commits
b7ac78f3
Commit
b7ac78f3
authored
14 years ago
by
Stamatios Sotiropoulos
Browse files
Options
Downloads
Patches
Plain Diff
Pseudo-constrained non-linear init for model 1
parent
32896471
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
xfibres.cc
+62
-45
62 additions, 45 deletions
xfibres.cc
with
62 additions
and
45 deletions
xfibres.cc
+
62
−
45
View file @
b7ac78f3
/* Xfibres Diffusion Partial Volume Model
/* Xfibres Diffusion Partial Volume Model
Tim Behrens, Saad Jbabdi - FMRIB Image Analysis Group
Tim Behrens, Saad Jbabdi
, Stam Sotiropoulos
- FMRIB Image Analysis Group
Copyright (C) 2005 University of Oxford */
Copyright (C) 2005 University of Oxford */
...
@@ -233,12 +233,6 @@ public:
...
@@ -233,12 +233,6 @@ public:
m_sum_f
[
f
]
+=
mfib
.
fibres
()[
f
].
get_f
();
m_sum_f
[
f
]
+=
mfib
.
fibres
()[
f
].
get_f
();
m_sum_lam
[
f
]
+=
mfib
.
fibres
()[
f
].
get_lam
();
m_sum_lam
[
f
]
+=
mfib
.
fibres
()[
f
].
get_lam
();
}
}
// for(int i=1;i<=m_sig2.Nrows();i++){
// float sig=mfib.get_signal()(i);
// m_mean_sig(i,vox)+=sig;
// m_sig2(i,vox)+=(sig*sig);
// }
}
}
void
finish_voxel
(
int
vox
){
void
finish_voxel
(
int
vox
){
...
@@ -288,8 +282,6 @@ public:
...
@@ -288,8 +282,6 @@ public:
m_sum_f
[
f
]
=
0
;
m_sum_f
[
f
]
=
0
;
m_sum_lam
[
f
]
=
0
;
m_sum_lam
[
f
]
=
0
;
}
}
cout
<<
m_mean_f0samples
(
vox
)
<<
" "
<<
m_mean_dsamples
(
vox
)
<<
endl
;
m_beenhere
(
int
(
m_matrix2volkey
(
vox
,
1
)),
int
(
m_matrix2volkey
(
vox
,
2
)),
int
(
m_matrix2volkey
(
vox
,
3
)))
=
nfibs
;
m_beenhere
(
int
(
m_matrix2volkey
(
vox
,
1
)),
int
(
m_matrix2volkey
(
vox
,
2
)),
int
(
m_matrix2volkey
(
vox
,
3
)))
=
nfibs
;
}
}
...
@@ -321,8 +313,6 @@ public:
...
@@ -321,8 +313,6 @@ public:
ret
=
true
;
ret
=
true
;
}
}
}
}
}
}
}
}
}
}
...
@@ -344,13 +334,9 @@ public:
...
@@ -344,13 +334,9 @@ public:
mfibre
.
addfibre
(
th
,
ph
,
m_mean_fsamples
[
f
](
voxbest
),
opts
.
all_ard
.
value
());
//is all_ard, then turn ard on here
mfibre
.
addfibre
(
th
,
ph
,
m_mean_fsamples
[
f
](
voxbest
),
opts
.
all_ard
.
value
());
//is all_ard, then turn ard on here
else
else
mfibre
.
addfibre
(
th
,
ph
,
m_mean_fsamples
[
f
](
voxbest
),
true
);
mfibre
.
addfibre
(
th
,
ph
,
m_mean_fsamples
[
f
](
voxbest
),
true
);
}
}
}
}
return
ret
;
return
ret
;
}
}
...
@@ -501,7 +487,7 @@ public:
...
@@ -501,7 +487,7 @@ public:
m_multifibre
.
set_tau
(
tau
);
m_multifibre
.
set_tau
(
tau
);
}
}
else
{
//For Gaussian noise model
else
{
//For Gaussian noise model
if
(
opts
.
nonlin
.
value
())
if
(
opts
.
nonlin
.
value
()
||
opts
.
cnonlin
.
value
()
)
initialise_nonlin
();
initialise_nonlin
();
else
{
else
{
if
(
!
opts
.
localinit
.
value
())
if
(
!
opts
.
localinit
.
value
())
...
@@ -552,45 +538,76 @@ public:
...
@@ -552,45 +538,76 @@ public:
// where using mono-exponential model
// where using mono-exponential model
if
(
opts
.
modelnum
.
value
()
==
1
){
if
(
opts
.
modelnum
.
value
()
==
1
){
PVM_single
pvm
(
m_data
,
m_bvecs
,
m_bvals
,
opts
.
nfibres
.
value
(),
opts
.
f0
.
value
());
pvm
.
fit
();
// this will give th,ph,f in the correct order
float
pvmS0
,
pvmd
,
pvmf0
=
0.001
;
float
pvmS0
,
pvmd
,
pvmf0
=
0.001
;
ColumnVector
pvmf
,
pvmth
,
pvmph
;
ColumnVector
pvmf
,
pvmth
,
pvmph
;
pvmf
=
pvm
.
get_f
();
pvmth
=
pvm
.
get_th
();
if
(
opts
.
nonlin
.
value
()){
pvmph
=
pvm
.
get_ph
();
PVM_single
pvm
(
m_data
,
m_bvecs
,
m_bvals
,
opts
.
nfibres
.
value
(),
opts
.
f0
.
value
());
pvmS0
=
pvm
.
get_s0
();
pvm
.
fit
();
// this will give th,ph,f in the correct order
pvmd
=
pvm
.
get_d
();
predicted_signal
=
pvm
.
get_prediction
();
pvmf
=
pvm
.
get_f
();
pvmth
=
pvm
.
get_th
();
if
(
opts
.
f0
.
value
()){
pvmph
=
pvm
.
get_ph
();
pvmf0
=
pvm
.
get_f0
();
pvmS0
=
pvm
.
get_s0
();
pvmd
=
pvm
.
get_d
();
//If the full model gives values that are considered implausible, or we are in a CSF voxel (f1<0.05)
predicted_signal
=
pvm
.
get_prediction
();
//then fit a model without the f0 and drive f0_init to almost zero
if
(((
opts
.
nfibres
.
value
()
>
0
)
&&
pvmf
(
1
)
<
0.05
)
||
pvmd
>
0.007
||
pvmf0
>
0.4
){
if
(
opts
.
f0
.
value
()){
PVM_single
pvm2
(
m_data
,
m_bvecs
,
m_bvals
,
opts
.
nfibres
.
value
(),
false
);
pvmf0
=
pvm
.
get_f0
();
pvm2
.
fit
();
// this will give th,ph,f in the correct order
pvmf0
=
0.001
;
//If the full model gives values that are considered implausible, or we are in a CSF voxel (f1<0.05)
pvmS0
=
pvm2
.
get_s0
();
//then fit a model without the f0 and drive f0_init to almost zero
pvmd
=
pvm2
.
get_d
();
if
((
opts
.
nfibres
.
value
()
>
0
&&
pvmf
(
1
)
<
0.05
)
||
pvmd
>
0.007
||
pvmf0
>
0.4
){
pvmf
=
pvm2
.
get_f
();
PVM_single
pvm2
(
m_data
,
m_bvecs
,
m_bvals
,
opts
.
nfibres
.
value
(),
false
);
pvmth
=
pvm2
.
get_th
();
pvm2
.
fit
();
// this will give th,ph,f in the correct order
pvmph
=
pvm2
.
get_ph
();
pvmf0
=
0.001
;
predicted_signal
=
pvm2
.
get_prediction
();
pvmS0
=
pvm2
.
get_s0
();
pvmd
=
pvm2
.
get_d
();
pvmf
=
pvm2
.
get_f
();
pvmth
=
pvm2
.
get_th
();
pvmph
=
pvm2
.
get_ph
();
predicted_signal
=
pvm2
.
get_prediction
();
}
m_multifibre
.
set_f0
(
pvmf0
);
}
}
m_multifibre
.
set_f0
(
pvmf0
);
//m_multifibre.set_f0(0.001);
}
}
else
{
//Do constrained optimization
PVM_single_c
pvm
(
m_data
,
m_bvecs
,
m_bvals
,
opts
.
nfibres
.
value
(),
opts
.
f0
.
value
());
pvm
.
fit
();
// this will give th,ph,f in the correct order
pvmf
=
pvm
.
get_f
();
pvmth
=
pvm
.
get_th
();
pvmph
=
pvm
.
get_ph
();
pvmS0
=
pvm
.
get_s0
();
pvmd
=
pvm
.
get_d
();
predicted_signal
=
pvm
.
get_prediction
();
if
(
opts
.
f0
.
value
()){
pvmf0
=
pvm
.
get_f0
();
//If the full model gives values that are considered implausible, or we are in a CSF voxel (f1<0.05)
//then fit a model without the f0 and drive f0_init to almost zero
if
((
opts
.
nfibres
.
value
()
>
0
&&
pvmf
(
1
)
<
0.05
)
||
pvmd
>
0.007
||
pvmf0
>
0.4
){
PVM_single_c
pvm2
(
m_data
,
m_bvecs
,
m_bvals
,
opts
.
nfibres
.
value
(),
false
);
pvm2
.
fit
();
// this will give th,ph,f in the correct order
pvmf0
=
0.001
;
pvmS0
=
pvm2
.
get_s0
();
pvmd
=
pvm2
.
get_d
();
pvmf
=
pvm2
.
get_f
();
pvmth
=
pvm2
.
get_th
();
pvmph
=
pvm2
.
get_ph
();
predicted_signal
=
pvm2
.
get_prediction
();
}
m_multifibre
.
set_f0
(
pvmf0
);
}
}
if
(
pvmd
<
0
)
if
(
pvmd
<
0
)
pvmd
=
2e-3
;
pvmd
=
2e-3
;
m_multifibre
.
set_S0
(
pvmS0
);
m_multifibre
.
set_S0
(
pvmS0
);
m_multifibre
.
set_d
(
pvmd
);
m_multifibre
.
set_d
(
pvmd
);
cout
<<
pvmf0
<<
" "
<<
pvmS0
<<
" "
<<
pvmd
<<
" "
<<
pvmf
(
1
)
<<
" "
<<
pvmf
(
2
)
<<
endl
;
if
(
opts
.
nfibres
.
value
()
>
0
){
if
(
opts
.
nfibres
.
value
()
>
0
){
m_multifibre
.
addfibre
(
pvmth
(
1
),
m_multifibre
.
addfibre
(
pvmth
(
1
),
pvmph
(
1
),
pvmph
(
1
),
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment