Skip to content
Snippets Groups Projects
Commit b7ac78f3 authored by Stamatios Sotiropoulos's avatar Stamatios Sotiropoulos
Browse files

Pseudo-constrained non-linear init for model 1

parent 32896471
No related branches found
No related tags found
No related merge requests found
/* Xfibres Diffusion Partial Volume Model /* Xfibres Diffusion Partial Volume Model
Tim Behrens, Saad Jbabdi - FMRIB Image Analysis Group Tim Behrens, Saad Jbabdi, Stam Sotiropoulos - FMRIB Image Analysis Group
Copyright (C) 2005 University of Oxford */ Copyright (C) 2005 University of Oxford */
...@@ -233,12 +233,6 @@ public: ...@@ -233,12 +233,6 @@ public:
m_sum_f[f]+=mfib.fibres()[f].get_f(); m_sum_f[f]+=mfib.fibres()[f].get_f();
m_sum_lam[f]+=mfib.fibres()[f].get_lam(); m_sum_lam[f]+=mfib.fibres()[f].get_lam();
} }
// for(int i=1;i<=m_sig2.Nrows();i++){
// float sig=mfib.get_signal()(i);
// m_mean_sig(i,vox)+=sig;
// m_sig2(i,vox)+=(sig*sig);
// }
} }
void finish_voxel(int vox){ void finish_voxel(int vox){
...@@ -288,8 +282,6 @@ public: ...@@ -288,8 +282,6 @@ public:
m_sum_f[f]=0; m_sum_f[f]=0;
m_sum_lam[f]=0; m_sum_lam[f]=0;
} }
cout<<m_mean_f0samples(vox)<<" "<<m_mean_dsamples(vox)<<endl;
m_beenhere(int(m_matrix2volkey(vox,1)),int(m_matrix2volkey(vox,2)),int(m_matrix2volkey(vox,3)))=nfibs; m_beenhere(int(m_matrix2volkey(vox,1)),int(m_matrix2volkey(vox,2)),int(m_matrix2volkey(vox,3)))=nfibs;
} }
...@@ -321,8 +313,6 @@ public: ...@@ -321,8 +313,6 @@ public:
ret=true; ret=true;
} }
} }
} }
} }
} }
...@@ -344,13 +334,9 @@ public: ...@@ -344,13 +334,9 @@ public:
mfibre.addfibre(th,ph,m_mean_fsamples[f](voxbest),opts.all_ard.value());//is all_ard, then turn ard on here mfibre.addfibre(th,ph,m_mean_fsamples[f](voxbest),opts.all_ard.value());//is all_ard, then turn ard on here
else else
mfibre.addfibre(th,ph,m_mean_fsamples[f](voxbest),true); mfibre.addfibre(th,ph,m_mean_fsamples[f](voxbest),true);
} }
} }
return ret; return ret;
} }
...@@ -501,7 +487,7 @@ public: ...@@ -501,7 +487,7 @@ public:
m_multifibre.set_tau(tau); m_multifibre.set_tau(tau);
} }
else{ //For Gaussian noise model else{ //For Gaussian noise model
if(opts.nonlin.value()) if(opts.nonlin.value() || opts.cnonlin.value())
initialise_nonlin(); initialise_nonlin();
else{ else{
if(!opts.localinit.value()) if(!opts.localinit.value())
...@@ -552,45 +538,76 @@ public: ...@@ -552,45 +538,76 @@ public:
// where using mono-exponential model // where using mono-exponential model
if(opts.modelnum.value()==1){ if(opts.modelnum.value()==1){
PVM_single pvm(m_data,m_bvecs,m_bvals,opts.nfibres.value(),opts.f0.value());
pvm.fit(); // this will give th,ph,f in the correct order
float pvmS0, pvmd, pvmf0=0.001; float pvmS0, pvmd, pvmf0=0.001;
ColumnVector pvmf,pvmth,pvmph; ColumnVector pvmf,pvmth,pvmph;
pvmf = pvm.get_f();
pvmth = pvm.get_th(); if (opts.nonlin.value()){
pvmph = pvm.get_ph(); PVM_single pvm(m_data,m_bvecs,m_bvals,opts.nfibres.value(),opts.f0.value());
pvmS0 = pvm.get_s0(); pvm.fit(); // this will give th,ph,f in the correct order
pvmd = pvm.get_d();
predicted_signal=pvm.get_prediction(); pvmf = pvm.get_f();
pvmth = pvm.get_th();
if (opts.f0.value()){ pvmph = pvm.get_ph();
pvmf0=pvm.get_f0(); pvmS0 = pvm.get_s0();
pvmd = pvm.get_d();
//If the full model gives values that are considered implausible, or we are in a CSF voxel (f1<0.05) predicted_signal=pvm.get_prediction();
//then fit a model without the f0 and drive f0_init to almost zero
if (((opts.nfibres.value()>0) && pvmf(1)<0.05) || pvmd>0.007 || pvmf0>0.4){ if (opts.f0.value()){
PVM_single pvm2(m_data,m_bvecs,m_bvals,opts.nfibres.value(),false); pvmf0=pvm.get_f0();
pvm2.fit(); // this will give th,ph,f in the correct order
pvmf0=0.001; //If the full model gives values that are considered implausible, or we are in a CSF voxel (f1<0.05)
pvmS0=pvm2.get_s0(); //then fit a model without the f0 and drive f0_init to almost zero
pvmd=pvm2.get_d(); if ((opts.nfibres.value()>0 && pvmf(1)<0.05) || pvmd>0.007 || pvmf0>0.4){
pvmf = pvm2.get_f(); PVM_single pvm2(m_data,m_bvecs,m_bvals,opts.nfibres.value(),false);
pvmth = pvm2.get_th(); pvm2.fit(); // this will give th,ph,f in the correct order
pvmph = pvm2.get_ph(); pvmf0=0.001;
predicted_signal=pvm2.get_prediction(); pvmS0=pvm2.get_s0();
pvmd=pvm2.get_d();
pvmf = pvm2.get_f();
pvmth = pvm2.get_th();
pvmph = pvm2.get_ph();
predicted_signal=pvm2.get_prediction();
}
m_multifibre.set_f0(pvmf0);
} }
m_multifibre.set_f0(pvmf0);
//m_multifibre.set_f0(0.001);
} }
else{ //Do constrained optimization
PVM_single_c pvm(m_data,m_bvecs,m_bvals,opts.nfibres.value(),opts.f0.value());
pvm.fit(); // this will give th,ph,f in the correct order
pvmf = pvm.get_f();
pvmth = pvm.get_th();
pvmph = pvm.get_ph();
pvmS0 = pvm.get_s0();
pvmd = pvm.get_d();
predicted_signal=pvm.get_prediction();
if (opts.f0.value()){
pvmf0=pvm.get_f0();
//If the full model gives values that are considered implausible, or we are in a CSF voxel (f1<0.05)
//then fit a model without the f0 and drive f0_init to almost zero
if ((opts.nfibres.value()>0 && pvmf(1)<0.05) || pvmd>0.007 || pvmf0>0.4){
PVM_single_c pvm2(m_data,m_bvecs,m_bvals,opts.nfibres.value(),false);
pvm2.fit(); // this will give th,ph,f in the correct order
pvmf0=0.001;
pvmS0=pvm2.get_s0();
pvmd=pvm2.get_d();
pvmf = pvm2.get_f();
pvmth = pvm2.get_th();
pvmph = pvm2.get_ph();
predicted_signal=pvm2.get_prediction();
}
m_multifibre.set_f0(pvmf0);
}
}
if(pvmd<0) if(pvmd<0)
pvmd=2e-3; pvmd=2e-3;
m_multifibre.set_S0(pvmS0); m_multifibre.set_S0(pvmS0);
m_multifibre.set_d(pvmd); m_multifibre.set_d(pvmd);
cout<<pvmf0<<" "<<pvmS0<<" "<<pvmd<<" "<<pvmf(1)<<" "<<pvmf(2)<<endl;
if(opts.nfibres.value()>0){ if(opts.nfibres.value()>0){
m_multifibre.addfibre(pvmth(1), m_multifibre.addfibre(pvmth(1),
pvmph(1), pvmph(1),
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment