Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
fdt
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FSL
fdt
Commits
da4bb582
Commit
da4bb582
authored
12 years ago
by
Moises Fernandez
Browse files
Options
Downloads
Patches
Plain Diff
This method call the FIT and the MCMC methods and write the results
parent
066e9f8a
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
CUDA/xfibres_gpu.cu
+612
-0
612 additions, 0 deletions
CUDA/xfibres_gpu.cu
with
612 additions
and
0 deletions
CUDA/xfibres_gpu.cu
0 → 100644
+
612
−
0
View file @
da4bb582
#include
"newmat.h"
#include
"newimage/newimageall.h"
#include
"xfibresoptions.h"
#include
"xfibres_gpu.cuh"
#include
"diffmodels.cuh"
#include
"runmcmc.h"
#include
"samples.h"
#include
"options.h"
#include
<host_vector.h>
#include
<device_vector.h>
#include
<time.h>
#include
<sys/time.h>
#include
"init_gpu.h"
#include
<fstream>
using
namespace
Xfibres
;
void
xfibres_gpu
(
//INPUT
const
Matrix
datam
,
const
Matrix
bvecs
,
const
Matrix
bvals
,
const
Matrix
gradm
,
const
Matrix
Qform
,
const
Matrix
Qform_inv
,
const
NEWIMAGE
::
volume
<
int
>
vol2matrixkey
,
const
NEWMAT
::
Matrix
matrix2volkey
,
const
NEWIMAGE
::
volume
<
float
>
mask
,
const
int
slice
,
const
char
*
subjdir
)
{
//write num of slice in a string for log file
char
slice_str
[
8
];
char
aux
[
8
];
sprintf
(
slice_str
,
"%d"
,
slice
);
while
(
strlen
(
slice_str
)
<
4
){
strcpy
(
aux
,
"0"
);
strcat
(
aux
,
slice_str
);
strcpy
(
slice_str
,
aux
);
}
string
gpu_log
(
subjdir
);
//logfile
gpu_log
+=
".bedpostX/logs/times_gpu_"
;
gpu_log
+=
slice_str
;
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
///// FIT /////
thrust
::
host_vector
<
double
>
datam_host
,
bvecs_host
,
bvals_host
,
alpha_host
,
beta_host
,
params_host
;
thrust
::
host_vector
<
float
>
tau_host
;
vector
<
ColumnVector
>
datam_vec
;
vector
<
Matrix
>
bvecs_vec
,
bvals_vec
;
prepare_data_gpu_FIT
(
datam
,
bvecs
,
bvals
,
gradm
,
Qform
,
Qform_inv
,
datam_vec
,
bvecs_vec
,
bvals_vec
,
datam_host
,
bvecs_host
,
bvals_host
,
alpha_host
,
beta_host
,
params_host
,
tau_host
);
int
nvox
=
datam
.
Ncols
();
int
nfib
=
opts
.
nfibres
.
value
();
thrust
::
device_vector
<
double
>
datam_gpu
=
datam_host
;
thrust
::
device_vector
<
double
>
bvecs_gpu
=
bvecs_host
;
thrust
::
device_vector
<
double
>
bvals_gpu
=
bvals_host
;
thrust
::
device_vector
<
double
>
params_gpu
=
params_host
;
thrust
::
host_vector
<
int
>
vox_repeat
;
//contains the id's of voxels repeated
vox_repeat
.
resize
(
nvox
);
int
nrepeat
=
0
;
fit
(
datam_vec
,
bvecs_vec
,
bvals_vec
,
datam_host
,
bvecs_host
,
bvals_host
,
datam_gpu
,
bvecs_gpu
,
bvals_gpu
,
gpu_log
,
params_gpu
,
vox_repeat
,
nrepeat
);
if
(
opts
.
rician
.
value
()){
calculate_tau
(
datam_gpu
,
params_gpu
,
bvecs_gpu
,
bvals_gpu
,
vox_repeat
,
nrepeat
,
gpu_log
,
tau_host
);
}
bvecs_gpu
.
clear
();
//free bvecs_gpu
bvecs_gpu
.
shrink_to_fit
();
////// RUN MCMC //////
thrust
::
host_vector
<
double
>
signals_host
,
isosignals_host
;
thrust
::
host_vector
<
FibreGPU
>
fibres_host
;
thrust
::
host_vector
<
MultifibreGPU
>
multifibres_host
;
prepare_data_gpu_MCMC
(
nvox
,
nfib
,
signals_host
,
isosignals_host
,
fibres_host
,
multifibres_host
);
thrust
::
device_vector
<
double
>
signals_gpu
=
signals_host
;
thrust
::
device_vector
<
double
>
isosignals_gpu
=
isosignals_host
;
thrust
::
device_vector
<
FibreGPU
>
fibres_gpu
=
fibres_host
;
thrust
::
device_vector
<
MultifibreGPU
>
multifibres_gpu
=
multifibres_host
;
thrust
::
device_vector
<
float
>
tau_gpu
=
tau_host
;
thrust
::
device_vector
<
double
>
alpha_gpu
=
alpha_host
;
thrust
::
device_vector
<
double
>
beta_gpu
=
beta_host
;
init_Fibres_Multifibres
(
datam_gpu
,
params_gpu
,
tau_gpu
,
bvals_gpu
,
alpha_gpu
,
beta_gpu
,
gpu_log
,
fibres_gpu
,
multifibres_gpu
,
signals_gpu
,
isosignals_gpu
);
srand
(
opts
.
seed
.
value
());
//double seed1 = rand();
//double seed2 = rand();
runmcmc_burnin
(
datam_gpu
,
bvals_gpu
,
alpha_gpu
,
beta_gpu
,
rand
(),
gpu_log
,
fibres_gpu
,
multifibres_gpu
,
signals_gpu
,
isosignals_gpu
);
thrust
::
device_vector
<
int
>
multirecords_gpu
;
thrust
::
device_vector
<
float
>
rf0_gpu
,
rtau_gpu
,
rs0_gpu
,
rd_gpu
,
rdstd_gpu
,
rth_gpu
,
rph_gpu
,
rf_gpu
,
rlikelihood_energy_gpu
;
prepare_data_gpu_MCMC_record
(
nvox
,
multirecords_gpu
,
rf0_gpu
,
rtau_gpu
,
rs0_gpu
,
rd_gpu
,
rdstd_gpu
,
rth_gpu
,
rph_gpu
,
rf_gpu
,
rlikelihood_energy_gpu
);
runmcmc_record
(
datam_gpu
,
bvals_gpu
,
alpha_gpu
,
beta_gpu
,
fibres_gpu
,
multifibres_gpu
,
signals_gpu
,
isosignals_gpu
,
rand
(),
gpu_log
,
multirecords_gpu
,
rf0_gpu
,
rtau_gpu
,
rs0_gpu
,
rd_gpu
,
rdstd_gpu
,
rth_gpu
,
rph_gpu
,
rf_gpu
,
rlikelihood_energy_gpu
);
/////// FINISH ALL VOXELS ///////
record_finish_voxels
(
vol2matrixkey
,
matrix2volkey
,
mask
,
multirecords_gpu
,
rf0_gpu
,
rtau_gpu
,
rs0_gpu
,
rd_gpu
,
rdstd_gpu
,
rth_gpu
,
rph_gpu
,
rf_gpu
,
rlikelihood_energy_gpu
,
nvox
);
}
// Correct bvals/bvecs accounting for Gradient Nonlinearities
// ColumnVector grad_nonlin has 9 entries, corresponding to the 3 components of each of the x,y and z gradient deviation
void
correct_bvals_bvecs
(
const
Matrix
&
bvals
,
const
Matrix
&
bvecs
,
const
ColumnVector
&
grad_nonlin
,
const
Matrix
&
Qform
,
const
Matrix
&
Qform_inv
,
Matrix
&
bvals_c
,
Matrix
&
bvecs_c
){
bvals_c
=
bvals
;
bvecs_c
=
bvecs
;
Matrix
L
(
3
,
3
);
//gradient coil tensor
float
mag
;
L
(
1
,
1
)
=
grad_nonlin
(
1
);
L
(
1
,
2
)
=
grad_nonlin
(
4
);
L
(
1
,
3
)
=
grad_nonlin
(
7
);
L
(
2
,
1
)
=
grad_nonlin
(
2
);
L
(
2
,
2
)
=
grad_nonlin
(
5
);
L
(
2
,
3
)
=
grad_nonlin
(
8
);
L
(
3
,
1
)
=
grad_nonlin
(
3
);
L
(
3
,
2
)
=
grad_nonlin
(
6
);
L
(
3
,
3
)
=
grad_nonlin
(
9
);
IdentityMatrix
Id
(
3
);
for
(
int
l
=
1
;
l
<=
bvals
.
Ncols
();
l
++
){
if
(
bvals
(
1
,
l
)
>
0
){
//do not correct b0s
//Rotate bvecs to scanner's coordinate system
ColumnVector
bvec_tmp
(
3
);
bvec_tmp
=
Qform
*
bvecs
.
Column
(
l
);
bvec_tmp
(
1
)
=-
bvec_tmp
(
1
);
//Sign-flip X coordinate
//Correct for grad-nonlin in scanner's coordinate system
bvecs_c
.
Column
(
l
)
=
(
Id
+
L
)
*
bvec_tmp
;
//bvecs.Column(l);
mag
=
sqrt
(
bvecs_c
(
1
,
l
)
*
bvecs_c
(
1
,
l
)
+
bvecs_c
(
2
,
l
)
*
bvecs_c
(
2
,
l
)
+
bvecs_c
(
3
,
l
)
*
bvecs_c
(
3
,
l
));
if
(
mag
!=
0
)
bvecs_c
.
Column
(
l
)
=
bvecs_c
.
Column
(
l
)
/
mag
;
bvals_c
(
1
,
l
)
=
mag
*
mag
*
bvals
(
1
,
l
);
bvec_tmp
=
bvecs_c
.
Column
(
l
);
//Rotate corrected bvecs back to voxel coordinate system
bvec_tmp
(
1
)
=-
bvec_tmp
(
1
);
//Sign-flip X coordinate
bvecs_c
.
Column
(
l
)
=
Qform_inv
*
bvec_tmp
;
}
}
}
////// FIT //////
void
fit
(
//INPUT
const
vector
<
ColumnVector
>
datam_vec
,
const
vector
<
Matrix
>
bvecs_vec
,
const
vector
<
Matrix
>
bvals_vec
,
thrust
::
host_vector
<
double
>
datam_host
,
thrust
::
host_vector
<
double
>
bvecs_host
,
thrust
::
host_vector
<
double
>
bvals_host
,
thrust
::
device_vector
<
double
>
datam_gpu
,
thrust
::
device_vector
<
double
>
bvecs_gpu
,
thrust
::
device_vector
<
double
>
bvals_gpu
,
string
output_file
,
//OUTPUT
thrust
::
device_vector
<
double
>&
params_gpu
,
thrust
::
host_vector
<
int
>&
vox_repeat
,
//for get residuals with or withot f0
int
&
nrepeat
)
{
std
::
ofstream
myfile
;
myfile
.
open
(
output_file
.
data
(),
ios
::
out
|
ios
::
app
);
myfile
<<
"----------------------------------------------------- "
<<
"
\n
"
;
myfile
<<
"------------------- FIT IN GPU ---------------------- "
<<
"
\n
"
;
myfile
<<
"----------------------------------------------------- "
<<
"
\n
"
;
struct
timeval
t1
,
t2
;
double
time
;
gettimeofday
(
&
t1
,
NULL
);
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
int
nvox
=
datam_vec
.
size
();
int
nfib
=
opts
.
nfibres
.
value
();
int
nparams_fit
=
2
+
3
*
opts
.
nfibres
.
value
();
if
(
opts
.
modelnum
.
value
()
==
2
)
nparams_fit
++
;
if
(
opts
.
f0
.
value
())
nparams_fit
++
;
if
(
opts
.
modelnum
.
value
()
==
1
){
if
(
opts
.
nonlin
.
value
()){
fit_PVM_single
(
datam_vec
,
bvecs_vec
,
bvals_vec
,
datam_gpu
,
bvecs_gpu
,
bvals_gpu
,
opts
.
f0
.
value
(),
params_gpu
);
if
(
opts
.
f0
.
value
()){
float
md
,
mf
,
f0
;
for
(
int
vox
=
0
;
vox
<
nvox
;
vox
++
){
md
=
params_gpu
[
vox
*
nparams_fit
+
(
1
)];
mf
=
params_gpu
[
vox
*
nparams_fit
+
(
2
)];
f0
=
params_gpu
[
vox
*
nparams_fit
+
(
nparams_fit
-
1
)];
if
((
opts
.
nfibres
.
value
()
>
0
&&
mf
<
0.05
)
||
md
>
0.007
||
f0
>
0.4
){
//if true we need to repeat this voxel
vox_repeat
[
nrepeat
]
=
vox
;
nrepeat
++
;
}
}
if
(
nrepeat
>
0
){
//prepare structures for the voxels that need to be reprocessed
vector
<
ColumnVector
>
datam_repeat_vec
;
vector
<
Matrix
>
bvecs_repeat_vec
;
vector
<
Matrix
>
bvals_repeat_vec
;
thrust
::
host_vector
<
double
>
datam_repeat_host
;
thrust
::
host_vector
<
double
>
bvecs_repeat_host
;
thrust
::
host_vector
<
double
>
bvals_repeat_host
;
thrust
::
host_vector
<
double
>
params_repeat_host
;
prepare_data_gpu_FIT_repeat
(
datam_host
,
bvecs_host
,
bvals_host
,
vox_repeat
,
nrepeat
,
datam_repeat_vec
,
bvecs_repeat_vec
,
bvals_repeat_vec
,
datam_repeat_host
,
bvecs_repeat_host
,
bvals_repeat_host
,
params_repeat_host
);
thrust
::
device_vector
<
double
>
datam_repeat_gpu
=
datam_repeat_host
;
thrust
::
device_vector
<
double
>
bvecs_repeat_gpu
=
bvecs_repeat_host
;
thrust
::
device_vector
<
double
>
bvals_repeat_gpu
=
bvals_repeat_host
;
thrust
::
device_vector
<
double
>
params_repeat_gpu
=
params_repeat_host
;
fit_PVM_single
(
datam_repeat_vec
,
bvecs_repeat_vec
,
bvals_repeat_vec
,
datam_repeat_gpu
,
bvecs_repeat_gpu
,
bvals_repeat_gpu
,
false
,
params_repeat_gpu
);
//mix all the parameteres: repeated and not repeated
mix_params
(
params_repeat_gpu
,
vox_repeat
,
nrepeat
,
params_gpu
);
}
}
}
else
{
fit_PVM_single_c
(
datam_vec
,
bvecs_vec
,
bvals_vec
,
datam_gpu
,
bvecs_gpu
,
bvals_gpu
,
opts
.
f0
.
value
(),
params_gpu
);
if
(
opts
.
f0
.
value
()){
float
md
,
mf
,
f0
;
for
(
int
vox
=
0
;
vox
<
nvox
;
vox
++
){
md
=
params_gpu
[
vox
*
nparams_fit
+
(
1
)];
mf
=
params_gpu
[
vox
*
nparams_fit
+
(
2
)];
f0
=
params_gpu
[
vox
*
nparams_fit
+
(
nparams_fit
-
1
)];
if
((
opts
.
nfibres
.
value
()
>
0
&&
mf
<
0.05
)
||
md
>
0.007
||
f0
>
0.4
){
//if true we need to repeat this voxel
vox_repeat
[
nrepeat
]
=
vox
;
nrepeat
++
;
}
}
if
(
nrepeat
>
0
){
//prepare structures for the voxels that need to be reprocessed
vector
<
ColumnVector
>
datam_repeat_vec
;
vector
<
Matrix
>
bvecs_repeat_vec
;
vector
<
Matrix
>
bvals_repeat_vec
;
thrust
::
host_vector
<
double
>
datam_repeat_host
;
thrust
::
host_vector
<
double
>
bvecs_repeat_host
;
thrust
::
host_vector
<
double
>
bvals_repeat_host
;
thrust
::
host_vector
<
double
>
params_repeat_host
;
prepare_data_gpu_FIT_repeat
(
datam_host
,
bvecs_host
,
bvals_host
,
vox_repeat
,
nrepeat
,
datam_repeat_vec
,
bvecs_repeat_vec
,
bvals_repeat_vec
,
datam_repeat_host
,
bvecs_repeat_host
,
bvals_repeat_host
,
params_repeat_host
);
thrust
::
device_vector
<
double
>
datam_repeat_gpu
=
datam_repeat_host
;
thrust
::
device_vector
<
double
>
bvecs_repeat_gpu
=
bvecs_repeat_host
;
thrust
::
device_vector
<
double
>
bvals_repeat_gpu
=
bvals_repeat_host
;
thrust
::
device_vector
<
double
>
params_repeat_gpu
=
params_repeat_host
;
fit_PVM_single_c
(
datam_repeat_vec
,
bvecs_repeat_vec
,
bvals_repeat_vec
,
datam_repeat_gpu
,
bvecs_repeat_gpu
,
bvals_repeat_gpu
,
false
,
params_repeat_gpu
);
//mix all the parameteres: repeated and not repeated
mix_params
(
params_repeat_gpu
,
vox_repeat
,
nrepeat
,
params_gpu
);
}
}
}
}
else
{
//model 2 : non-mono-exponential
fit_PVM_single_c
(
datam_vec
,
bvecs_vec
,
bvals_vec
,
datam_gpu
,
bvecs_gpu
,
bvals_gpu
,
opts
.
f0
.
value
(),
params_gpu
);
fit_PVM_multi
(
datam_gpu
,
bvecs_gpu
,
bvals_gpu
,
nvox
,
opts
.
f0
.
value
(),
params_gpu
);
if
(
opts
.
f0
.
value
()){
float
md
,
mf
,
f0
;
for
(
int
vox
=
0
;
vox
<
nvox
;
vox
++
){
md
=
params_gpu
[
vox
*
nparams_fit
+
(
1
)];
mf
=
params_gpu
[
vox
*
nparams_fit
+
(
3
)];
f0
=
params_gpu
[
vox
*
nparams_fit
+
(
nparams_fit
-
1
)];
if
((
opts
.
nfibres
.
value
()
>
0
&&
mf
<
0.05
)
||
md
>
0.007
||
f0
>
0.4
){
//if true we need to repeat this voxel
vox_repeat
[
nrepeat
]
=
vox
;
nrepeat
++
;
}
}
if
(
nrepeat
>
0
){
//prepare structures for the voxels that need to be reprocessed
vector
<
ColumnVector
>
datam_repeat_vec
;
vector
<
Matrix
>
bvecs_repeat_vec
;
vector
<
Matrix
>
bvals_repeat_vec
;
thrust
::
host_vector
<
double
>
datam_repeat_host
;
thrust
::
host_vector
<
double
>
bvecs_repeat_host
;
thrust
::
host_vector
<
double
>
bvals_repeat_host
;
thrust
::
host_vector
<
double
>
params_repeat_host
;
prepare_data_gpu_FIT_repeat
(
datam_host
,
bvecs_host
,
bvals_host
,
vox_repeat
,
nrepeat
,
datam_repeat_vec
,
bvecs_repeat_vec
,
bvals_repeat_vec
,
datam_repeat_host
,
bvecs_repeat_host
,
bvals_repeat_host
,
params_repeat_host
);
thrust
::
device_vector
<
double
>
datam_repeat_gpu
=
datam_repeat_host
;
thrust
::
device_vector
<
double
>
bvecs_repeat_gpu
=
bvecs_repeat_host
;
thrust
::
device_vector
<
double
>
bvals_repeat_gpu
=
bvals_repeat_host
;
thrust
::
device_vector
<
double
>
params_repeat_gpu
=
params_repeat_host
;
fit_PVM_single_c
(
datam_repeat_vec
,
bvecs_repeat_vec
,
bvals_repeat_vec
,
datam_repeat_gpu
,
bvecs_repeat_gpu
,
bvals_repeat_gpu
,
false
,
params_repeat_gpu
);
fit_PVM_multi
(
datam_repeat_gpu
,
bvecs_repeat_gpu
,
bvals_repeat_gpu
,
nrepeat
,
false
,
params_repeat_gpu
);
//mix all the parameteres: repeated and not repeated
mix_params
(
params_repeat_gpu
,
vox_repeat
,
nrepeat
,
params_gpu
);
}
}
}
gettimeofday
(
&
t2
,
NULL
);
time
=
timeval_diff
(
&
t2
,
&
t1
);
myfile
<<
"TIME TOTAL: "
<<
time
<<
" seconds
\n
"
;
myfile
<<
"--------------------------------------------"
<<
"
\n\n
"
;
myfile
.
close
();
}
//prepare the structures for copy all neccesary data to FIT in GPU
void
prepare_data_gpu_FIT
(
//INPUT
const
Matrix
datam
,
const
Matrix
bvecs
,
const
Matrix
bvals
,
const
Matrix
gradm
,
const
Matrix
Qform
,
const
Matrix
Qform_inv
,
//OUTPUT
vector
<
ColumnVector
>&
datam_vec
,
vector
<
Matrix
>&
bvecs_vec
,
vector
<
Matrix
>&
bvals_vec
,
thrust
::
host_vector
<
double
>&
datam_host
,
//data prepared for copy to GPU
thrust
::
host_vector
<
double
>&
bvecs_host
,
thrust
::
host_vector
<
double
>&
bvals_host
,
thrust
::
host_vector
<
double
>&
alpha_host
,
thrust
::
host_vector
<
double
>&
beta_host
,
thrust
::
host_vector
<
double
>&
params_host
,
thrust
::
host_vector
<
float
>&
tau_host
)
{
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
int
nvox
=
datam
.
Ncols
();
datam_vec
.
resize
(
nvox
);
datam_host
.
resize
(
nvox
*
NDIRECTIONS
);
for
(
int
vox
=
0
;
vox
<
nvox
;
vox
++
){
datam_vec
[
vox
]
=
datam
.
Column
(
vox
+
1
);
for
(
int
j
=
0
;
j
<
NDIRECTIONS
;
j
++
){
datam_host
[
vox
*
NDIRECTIONS
+
j
]
=
datam
(
j
+
1
,
vox
+
1
);
}
}
bvecs_vec
.
resize
(
nvox
);
bvals_vec
.
resize
(
nvox
);
bvecs_host
.
resize
(
nvox
*
bvecs
.
Nrows
()
*
bvecs
.
Ncols
());
bvals_host
.
resize
(
nvox
*
bvals
.
Ncols
());
alpha_host
.
resize
(
nvox
*
bvecs
.
Ncols
());
beta_host
.
resize
(
nvox
*
bvecs
.
Ncols
());
ColumnVector
alpha
,
beta
;
if
(
opts
.
grad_file
.
set
()){
for
(
int
vox
=
0
;
vox
<
nvox
;
vox
++
){
correct_bvals_bvecs
(
bvals
,
bvecs
,
gradm
.
Column
(
vox
+
1
),
Qform
,
Qform_inv
,
bvals_vec
[
vox
],
bvecs_vec
[
vox
]);
//correct for gradient nonlinearities
MISCMATHS
::
cart2sph
(
bvecs_vec
[
vox
],
alpha
,
beta
);
for
(
int
dir
=
0
;
dir
<
NDIRECTIONS
;
dir
++
){
bvecs_host
[
vox
*
NDIRECTIONS
*
3
+
dir
]
=
bvecs_vec
[
vox
](
1
,
dir
+
1
);
bvecs_host
[
vox
*
NDIRECTIONS
*
3
+
NDIRECTIONS
+
dir
]
=
bvecs_vec
[
vox
](
2
,
dir
+
1
);
bvecs_host
[
vox
*
NDIRECTIONS
*
3
+
NDIRECTIONS
*
2
+
dir
]
=
bvecs_vec
[
vox
](
3
,
dir
+
1
);
bvals_host
[
vox
*
NDIRECTIONS
+
dir
]
=
bvals_vec
[
vox
](
1
,
dir
+
1
);
alpha_host
[
vox
*
NDIRECTIONS
+
dir
]
=
alpha
(
dir
+
1
);
beta_host
[
vox
*
NDIRECTIONS
+
dir
]
=
beta
(
dir
+
1
);
}
}
}
else
{
MISCMATHS
::
cart2sph
(
bvecs
,
alpha
,
beta
);
for
(
int
vox
=
0
;
vox
<
nvox
;
vox
++
){
bvecs_vec
[
vox
]
=
bvecs
;
bvals_vec
[
vox
]
=
bvals
;
for
(
int
dir
=
0
;
dir
<
NDIRECTIONS
;
dir
++
){
bvecs_host
[
vox
*
NDIRECTIONS
*
3
+
dir
]
=
bvecs
(
1
,
dir
+
1
);
bvecs_host
[
vox
*
NDIRECTIONS
*
3
+
NDIRECTIONS
+
dir
]
=
bvecs
(
2
,
dir
+
1
);
bvecs_host
[
vox
*
NDIRECTIONS
*
3
+
NDIRECTIONS
*
2
+
dir
]
=
bvecs
(
3
,
dir
+
1
);
bvals_host
[
vox
*
NDIRECTIONS
+
dir
]
=
bvals
(
1
,
dir
+
1
);
alpha_host
[
vox
*
NDIRECTIONS
+
dir
]
=
alpha
(
dir
+
1
);
beta_host
[
vox
*
NDIRECTIONS
+
dir
]
=
beta
(
dir
+
1
);
}
}
}
int
nfib
=
opts
.
nfibres
.
value
();
int
nparams
;
if
(
opts
.
f0
.
value
())
nparams
=
3
+
nfib
*
3
;
else
nparams
=
2
+
nfib
*
3
;
if
(
opts
.
modelnum
.
value
()
==
2
)
nparams
++
;
params_host
.
resize
(
nvox
*
nparams
);
tau_host
.
resize
(
nvox
);
}
//prepare the structures for copy all neccesary data to FIT in GPU when is repeated because f0. Only some voxels
void
prepare_data_gpu_FIT_repeat
(
//INPUT
thrust
::
host_vector
<
double
>
datam_host
,
thrust
::
host_vector
<
double
>
bvecs_host
,
thrust
::
host_vector
<
double
>
bvals_host
,
thrust
::
host_vector
<
int
>
vox_repeat
,
int
nrepeat
,
//OUTPUT
vector
<
ColumnVector
>&
datam_repeat_vec
,
vector
<
Matrix
>&
bvecs_repeat_vec
,
vector
<
Matrix
>&
bvals_repeat_vec
,
thrust
::
host_vector
<
double
>&
datam_repeat_host
,
//data prepared for copy to GPU
thrust
::
host_vector
<
double
>&
bvecs_repeat_host
,
thrust
::
host_vector
<
double
>&
bvals_repeat_host
,
thrust
::
host_vector
<
double
>&
params_repeat_host
)
{
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
ColumnVector
datam
(
NDIRECTIONS
);
Matrix
bvecs
(
3
,
NDIRECTIONS
);
Matrix
bvals
(
1
,
NDIRECTIONS
);
datam_repeat_vec
.
resize
(
nrepeat
);
datam_repeat_host
.
resize
(
nrepeat
*
NDIRECTIONS
);
bvecs_repeat_vec
.
resize
(
nrepeat
);
bvals_repeat_vec
.
resize
(
nrepeat
);
bvecs_repeat_host
.
resize
(
nrepeat
*
3
*
NDIRECTIONS
);
bvals_repeat_host
.
resize
(
nrepeat
*
NDIRECTIONS
);
for
(
int
vox
=
0
;
vox
<
nrepeat
;
vox
++
){
for
(
int
dir
=
0
;
dir
<
NDIRECTIONS
;
dir
++
){
datam
(
dir
+
1
)
=
datam_host
[
vox_repeat
[
vox
]
*
NDIRECTIONS
+
dir
];
datam_repeat_host
[
vox
*
NDIRECTIONS
+
dir
]
=
datam_host
[
vox_repeat
[
vox
]
*
NDIRECTIONS
+
dir
];
bvecs_repeat_host
[
vox
*
NDIRECTIONS
*
3
+
dir
]
=
bvecs_host
[
vox_repeat
[
vox
]
*
NDIRECTIONS
*
3
+
dir
];
bvecs_repeat_host
[
vox
*
NDIRECTIONS
*
3
+
NDIRECTIONS
+
dir
]
=
bvecs_host
[
vox_repeat
[
vox
]
*
NDIRECTIONS
*
3
+
NDIRECTIONS
+
dir
];
bvecs_repeat_host
[
vox
*
NDIRECTIONS
*
3
+
NDIRECTIONS
*
2
+
dir
]
=
bvecs_host
[
vox_repeat
[
vox
]
*
NDIRECTIONS
*
3
+
NDIRECTIONS
*
2
+
dir
];
bvals_repeat_host
[
vox
*
NDIRECTIONS
+
dir
]
=
bvals_host
[
vox_repeat
[
vox
]
*
NDIRECTIONS
+
dir
];
bvecs
(
1
,
dir
+
1
)
=
bvecs_host
[
vox_repeat
[
vox
]
*
NDIRECTIONS
*
3
+
dir
];
bvecs
(
2
,
dir
+
1
)
=
bvecs_host
[
vox_repeat
[
vox
]
*
NDIRECTIONS
*
3
+
NDIRECTIONS
+
dir
];
bvecs
(
3
,
dir
+
1
)
=
bvecs_host
[
vox_repeat
[
vox
]
*
NDIRECTIONS
*
3
+
NDIRECTIONS
*
2
+
dir
];
bvals
(
1
,
dir
+
1
)
=
bvals_host
[
vox_repeat
[
vox
]
*
NDIRECTIONS
+
dir
];
}
datam_repeat_vec
[
vox
]
=
datam
;
bvecs_repeat_vec
[
vox
]
=
bvecs
;
bvals_repeat_vec
[
vox
]
=
bvals
;
}
int
nfib
=
opts
.
nfibres
.
value
();
int
nparams
;
nparams
=
2
+
nfib
*
3
;
if
(
opts
.
modelnum
.
value
()
==
2
)
nparams
++
;
params_repeat_host
.
resize
(
nrepeat
*
nparams
);
}
void
mix_params
(
//INPUT
thrust
::
device_vector
<
double
>
params_repeat_gpu
,
thrust
::
host_vector
<
int
>
vox_repeat
,
int
nrepeat
,
//INPUT-OUTPUT
thrust
::
device_vector
<
double
>&
params_gpu
)
{
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
int
nfib
=
opts
.
nfibres
.
value
();
int
nparams
;
nparams
=
2
+
nfib
*
3
;
if
(
opts
.
modelnum
.
value
()
==
2
)
nparams
++
;
for
(
int
vox
=
0
;
vox
<
nrepeat
;
vox
++
){
for
(
int
par
=
0
;
par
<
nparams
;
par
++
){
params_gpu
[
vox_repeat
[
vox
]
*
(
nparams
+
1
)
+
par
]
=
params_repeat_gpu
[
vox
*
nparams
+
par
];
//(nparams+1) to count f0
}
params_gpu
[
vox_repeat
[
vox
]
*
(
nparams
+
1
)
+
nparams
]
=
0.001
;
//pvmf0=0.001
}
}
void
prepare_data_gpu_MCMC
(
//INPUT
int
nvox
,
int
nfib
,
//OUTPUT
thrust
::
host_vector
<
double
>&
signals_host
,
thrust
::
host_vector
<
double
>&
isosignals_host
,
thrust
::
host_vector
<
FibreGPU
>&
fibres_host
,
thrust
::
host_vector
<
MultifibreGPU
>&
multifibres_host
)
{
signals_host
.
resize
(
nvox
*
nfib
*
NDIRECTIONS
);
isosignals_host
.
resize
(
nvox
*
NDIRECTIONS
);
fibres_host
.
resize
(
nvox
*
nfib
);
multifibres_host
.
resize
(
nvox
);
}
void
prepare_data_gpu_MCMC_record
(
//INPUT
int
nvox
,
//OUTPUT
thrust
::
device_vector
<
int
>&
multirecords_gpu
,
thrust
::
device_vector
<
float
>&
rf0_gpu
,
thrust
::
device_vector
<
float
>&
rtau_gpu
,
thrust
::
device_vector
<
float
>&
rs0_gpu
,
thrust
::
device_vector
<
float
>&
rd_gpu
,
thrust
::
device_vector
<
float
>&
rdstd_gpu
,
thrust
::
device_vector
<
float
>&
rth_gpu
,
thrust
::
device_vector
<
float
>&
rph_gpu
,
thrust
::
device_vector
<
float
>&
rf_gpu
,
thrust
::
device_vector
<
float
>&
rlikelihood_energy_gpu
)
{
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
int
nfib
=
opts
.
nfibres
.
value
();
int
nrecords
=
(
opts
.
njumps
.
value
()
/
opts
.
sampleevery
.
value
());
multirecords_gpu
.
resize
(
nvox
*
nrecords
);
if
(
opts
.
f0
.
value
())
rf0_gpu
.
resize
(
nvox
*
nrecords
);
if
(
opts
.
rician
.
value
())
rtau_gpu
.
resize
(
nvox
*
nrecords
);
rs0_gpu
.
resize
(
nvox
*
nrecords
);
rd_gpu
.
resize
(
nvox
*
nrecords
);
if
(
opts
.
modelnum
.
value
()
==
2
)
rdstd_gpu
.
resize
(
nvox
*
nrecords
);
rth_gpu
.
resize
(
nvox
*
nrecords
*
nfib
);
rph_gpu
.
resize
(
nvox
*
nrecords
*
nfib
);
rf_gpu
.
resize
(
nvox
*
nrecords
*
nfib
);
rlikelihood_energy_gpu
.
resize
(
nvox
*
nrecords
);
}
void
record_finish_voxels
(
//INPUT
const
NEWIMAGE
::
volume
<
int
>
vol2matrixkey
,
const
NEWMAT
::
Matrix
matrix2volkey
,
const
NEWIMAGE
::
volume
<
float
>
mask
,
thrust
::
device_vector
<
int
>&
multirecords_gpu
,
thrust
::
device_vector
<
float
>&
rf0_gpu
,
thrust
::
device_vector
<
float
>&
rtau_gpu
,
thrust
::
device_vector
<
float
>&
rs0_gpu
,
thrust
::
device_vector
<
float
>&
rd_gpu
,
thrust
::
device_vector
<
float
>&
rdstd_gpu
,
thrust
::
device_vector
<
float
>&
rth_gpu
,
thrust
::
device_vector
<
float
>&
rph_gpu
,
thrust
::
device_vector
<
float
>&
rf_gpu
,
thrust
::
device_vector
<
float
>&
rlikelihood_energy_gpu
,
int
nvox
)
{
xfibresOptions
&
opts
=
xfibresOptions
::
getInstance
();
int
nfib
=
opts
.
nfibres
.
value
();
int
nrecords
=
(
opts
.
njumps
.
value
()
/
opts
.
sampleevery
.
value
());
thrust
::
host_vector
<
int
>
multirecords_host
;
thrust
::
host_vector
<
float
>
rf0_host
,
rtau_host
,
rs0_host
,
rd_host
,
rdstd_host
,
rth_host
,
rph_host
,
rf_host
,
rlikelihood_energy_host
;
multirecords_host
.
resize
(
nvox
*
nrecords
);
rf0_host
.
resize
(
nvox
*
nrecords
);
rtau_host
.
resize
(
nvox
*
nrecords
);
rs0_host
.
resize
(
nvox
*
nrecords
);
rd_host
.
resize
(
nvox
*
nrecords
);
rdstd_host
.
resize
(
nvox
*
nrecords
);
rth_host
.
resize
(
nvox
*
nfib
*
nrecords
);
rph_host
.
resize
(
nvox
*
nfib
*
nrecords
);
rf_host
.
resize
(
nvox
*
nfib
*
nrecords
);
rlikelihood_energy_host
.
resize
(
nvox
*
nrecords
);
thrust
::
copy
(
multirecords_gpu
.
begin
(),
multirecords_gpu
.
end
(),
multirecords_host
.
begin
());
if
(
opts
.
f0
.
value
())
thrust
::
copy
(
rf0_gpu
.
begin
(),
rf0_gpu
.
end
(),
rf0_host
.
begin
());
if
(
opts
.
rician
.
value
())
thrust
::
copy
(
rtau_gpu
.
begin
(),
rtau_gpu
.
end
(),
rtau_host
.
begin
());
thrust
::
copy
(
rs0_gpu
.
begin
(),
rs0_gpu
.
end
(),
rs0_host
.
begin
());
thrust
::
copy
(
rd_gpu
.
begin
(),
rd_gpu
.
end
(),
rd_host
.
begin
());
if
(
opts
.
modelnum
.
value
()
==
2
)
thrust
::
copy
(
rdstd_gpu
.
begin
(),
rdstd_gpu
.
end
(),
rdstd_host
.
begin
());
thrust
::
copy
(
rth_gpu
.
begin
(),
rth_gpu
.
end
(),
rth_host
.
begin
());
thrust
::
copy
(
rph_gpu
.
begin
(),
rph_gpu
.
end
(),
rph_host
.
begin
());
thrust
::
copy
(
rf_gpu
.
begin
(),
rf_gpu
.
end
(),
rf_host
.
begin
());
thrust
::
copy
(
rlikelihood_energy_gpu
.
begin
(),
rlikelihood_energy_gpu
.
end
(),
rlikelihood_energy_host
.
begin
());
Samples
samples
(
vol2matrixkey
,
matrix2volkey
,
nvox
,
NDIRECTIONS
);
float
ard
,
arf0
,
artau
,
ardstd
,
ars0
,
arlikelihood_energy
;
float
*
arth
=
new
float
[
nfib
];
float
*
arph
=
new
float
[
nfib
];
float
*
arf
=
new
float
[
nfib
];
int
samp
;
for
(
int
vox
=
0
;
vox
<
nvox
;
vox
++
){
for
(
int
rec
=
0
;
rec
<
nrecords
;
rec
++
){
ard
=
rd_host
[(
vox
*
nrecords
)
+
rec
];
if
(
opts
.
f0
.
value
()){
arf0
=
rf0_host
[(
vox
*
nrecords
)
+
rec
];
}
if
(
opts
.
rician
.
value
()){
artau
=
rtau_host
[(
vox
*
nrecords
)
+
rec
];
}
if
(
opts
.
modelnum
.
value
()
==
2
){
ardstd
=
rdstd_host
[(
vox
*
nrecords
)
+
rec
];
}
ars0
=
rs0_host
[(
vox
*
nrecords
)
+
rec
];
arlikelihood_energy
=
rlikelihood_energy_host
[(
vox
*
nrecords
)
+
rec
];
for
(
int
j
=
0
;
j
<
nfib
;
j
++
){
arth
[
j
]
=
rth_host
[(
vox
*
nfib
*
nrecords
)
+
(
j
*
nrecords
)
+
rec
];
arph
[
j
]
=
rph_host
[(
vox
*
nfib
*
nrecords
)
+
(
j
*
nrecords
)
+
rec
];
arf
[
j
]
=
rf_host
[(
vox
*
nfib
*
nrecords
)
+
(
j
*
nrecords
)
+
rec
];
}
samp
=
multirecords_host
[(
vox
*
nrecords
)
+
rec
];
samples
.
record
(
ard
,
arf0
,
artau
,
ardstd
,
ars0
,
arlikelihood_energy
,
arth
,
arph
,
arf
,
vox
+
1
,
samp
);
}
samples
.
finish_voxel
(
vox
+
1
);
}
samples
.
save
(
mask
);
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment