Newer
Older
/* AutoCorrEstimator.cc
Mark Woolrich, FMRIB Image Analysis Group
Copyright (C) 1999-2000 University of Oxford */
/* CCOPYRIGHT */
#include <iostream>
#include <strstream>
#include "AutoCorrEstimator.h"
#include "miscmaths.h"
#include "Log.h"
#include "Volume.h"
#include "histogram.h"
using namespace NEWMAT;
using namespace UTILS;
namespace TACO {
void AutoCorrEstimator::setDesignMatrix(const Matrix& dm) {
Tracer tr("AutoCorrEstimator::setDesignMatrix");
int sizeTS = xdata.getNumVolumes();
int numPars = dm.Ncols();
dminFFTReal.ReSize(zeropad, numPars);
dminFFTImag.ReSize(zeropad, numPars);
ColumnVector dmrow;
dmrow.ReSize(zeropad);
ColumnVector dm_fft_real, dm_fft_imag;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
// FFT design matrix
for(int k = 1; k <= numPars; k++)
{
dummy = 0;
dmrow = 0;
mn(k) = MISCMATHS::mean(ColumnVector(dm.Column(k)));
dmrow.Rows(1,sizeTS) = dm.Column(k) - mn(k);
FFT(dmrow, dummy, dm_fft_real, dm_fft_imag);
dminFFTImag.Column(k) = dm_fft_imag;
dminFFTReal.Column(k) = dm_fft_real;
}
}
void AutoCorrEstimator::preWhiten(ColumnVector& in, ColumnVector& ret, int i, Matrix& dmret, bool highfreqremovalonly) {
Tracer tr("AutoCorrEstimator::preWhiten");
int sizeTS = xdata.getNumVolumes();
int numPars = dminFFTReal.getNumSeries();
ret.ReSize(sizeTS);
dmret.ReSize(sizeTS, numPars);
// FFT auto corr estimate
dummy = 0;
vrow = 0;
vrow.Rows(1,sizeTS/2) = acEst.getSeries(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.getSeries(i).Rows(2, sizeTS/2).Reverse();
FFT(vrow, dummy, ac_fft_real, ac_fft_im);
float norm = ac_fft_real.SumSquare();
// Compare with raw FFT to detect high frequency artefacts:
bool violate = false;
ColumnVector violators(zeropad);
violators = 1;
for(int j = 1; j <= zeropad; j++)
{
E(j,i) = sqrt(E(j,i)/((ac_fft_real(j)*ac_fft_real(j))/norm));
// look for high frequency artefacts
if(E(j,i) > 4 && j > zeropad/4 && j < 3*zeropad/4)
{
violate = true;
violators(j) = 0;
countLargeE(j) = countLargeE(j) + 1;
}
}
// FFT x data
dummy = 0;
xrow = 0;
xrow.Rows(1,sizeTS) = in;
FFT(xrow, dummy, x_fft_real, x_fft_im);
ac_fft_real = violators;
}
else
{
// inverse auto corr to give prewhitening filter
// no DC component so set first value to 0
ac_fft_real(1) = 0.0;
for(int j = 2; j <= zeropad; j++)
{
ac_fft_real(j) = 1.0/sqrt(fabs(ac_fft_real(j)));
// normalise ac_fft such that sum(j)(ac_fft_real)^2 = 1
ac_fft_real /= sqrt(ac_fft_real.SumSquare()/zeropad);
// filter design matrix
for(int k = 1; k <= numPars; k++)
{
dm_fft_real = dminFFTReal.getSeries(k);
dm_fft_imag = dminFFTImag.getSeries(k);
FFTI(SP(ac_fft_real, dm_fft_real), SP(ac_fft_real, dm_fft_imag), realifft, dummy);
// place result into ret:
dmret.Column(k) = realifft.Rows(1,sizeTS) + mn(k);
//float std = pow(MISCMATHS::var(ColumnVector(dmret.Column(k))),0.5);
//dmret.Column(k) = (dmret.Column(k)/std) + mn(k);
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
FFTI(SP(ac_fft_real, x_fft_real), SP(ac_fft_real, x_fft_im), realifft, dummy);
// place result into ret:
ret = realifft.Rows(1,sizeTS);
}
void AutoCorrEstimator::preWhiten(VolumeSeries& in, VolumeSeries& ret)
{
Tracer tr("AutoCorrEstimator::preWhiten");
cerr << "Prewhitening... ";
int sizeTS = xdata.getNumVolumes();
int numTS = xdata.getNumSeries();
ret.ReSize(sizeTS, numTS);
// make sure p_vrow is cyclic (even function)
ColumnVector vrow, xrow;
vrow.ReSize(zeropad);
xrow.ReSize(zeropad);
ColumnVector x_fft_real, ac_fft_real;
ColumnVector x_fft_im, ac_fft_im;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
int co = 1;
for(int i = 1; i <= numTS; i++)
{
// FFT auto corr estimate
dummy = 0;
vrow = 0;
vrow.Rows(1,sizeTS/2) = acEst.getSeries(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.getSeries(i).Rows(2, sizeTS/2).Reverse();
FFT(vrow, dummy, ac_fft_real, ac_fft_im);
// FFT x data
dummy = 0;
xrow = 0;
xrow.Rows(1,sizeTS/2) = in.getSeries(i).Rows(1,sizeTS/2);
xrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = in.getSeries(i).Rows(2, sizeTS/2).Reverse();
FFT(xrow, dummy, x_fft_real, x_fft_im);
// inverse auto corr to give prewhitening filter:
// no DC component so set first value to 0;
ac_fft_real(1) = 0.0;
for(int j = 2; j <= zeropad; j++)
{
ac_fft_real(j) = 1.0/ac_fft_real(j);
}
// normalise ac_fft such that sum(j)(ac_fft_real)^2 = 1
ac_fft_real /= sqrt(ac_fft_real.SumSquare()/zeropad);
// Do filtering and inverse FFT:
FFTI(SP(ac_fft_real, x_fft_real), SP(ac_fft_real, x_fft_im), realifft, dummy);
// place result into ret:
ret.Column(i) = realifft.Rows(1,sizeTS);
if(co > 100)
{
co = 1;
cerr << (float)i/(float)numTS << ",";
}
else
co++;
}
cerr << " Completed" << endl;
}
void AutoCorrEstimator::fitAutoRegressiveModel()
{
Tracer trace("AutoCorrEstimator::fitAutoRegressiveModel");
cerr << "Fitting autoregressive model..." << endl;
const int maxorder = 15;
const int minorder = 1;
int sizeTS = xdata.getNumVolumes();
int numTS = xdata.getNumSeries();
// setup temp variables
ColumnVector x(sizeTS);
ColumnVector order(numTS);
VolumeSeries betas(maxorder, numTS);
betas = 0;
acEst.ReSize(sizeTS, numTS);
acEst = 0;
int co = 1;
for(int i = 1; i <= numTS; i++)
{
x = xdata.getSeries(i).AsColumn();
ColumnVector betastmp;
order(i) = SIGPROC::Pacf(x, minorder, maxorder, betastmp);
if(order(i) != -1)
{
// Calculate auto corr:
ColumnVector Krow(sizeTS);
Krow = 0;
Krow(sizeTS) = 1;
{
Krow.Rows(sizeTS-order(i), sizeTS-1) = -betastmp.Rows(1,order(i)).Reverse();
betas.SubMatrix(1,order(i),i,i) = betastmp.Rows(1,order(i));
}
if(order(i)==1)
{
float arone = betastmp(1);
for(int k = 1; k <= sizeTS; k++)
{
Kinv(j,k) = pow(arone,abs(k-j));
}
}
else
Kinv.SubMatrix(j,j,1,j) = Krow.Rows(sizeTS-j+1,sizeTS).t();
//MISCMATHS::write_ascii_matrix(Kinv,"Kinv");
if(order(i)!=1)
Kinv = (Kinv.t()*Kinv).i();
acEst.SubMatrix(1,sizeTS/2+1,i,i) = (Kinv.SubMatrix(sizeTS/2, sizeTS/2, sizeTS/2, sizeTS)/Kinv.MaximumAbsoluteValue()).AsColumn();
co = 1;
cerr << (float)i/(float)numTS << ",";
}
else
co++;
}
}
Log::getInstance().out("order", order);
// output betas:
Log::getInstance().out("betas", betas, false);
betas.unthresholdSeries(xdata.getDims(),xdata.getPreThresholdPositions());
betas.writeAsFloat(Log::getInstance().getDir() + "/betas");
cerr << " Completed" << endl;
}
int AutoCorrEstimator::establishUsanThresh(const Volume& epivol)
{
int usanthresh = 100;
int num = epivol.getVolumeSize();
Histogram hist(epivol, num/200);
hist.generate();
float mode = hist.mode();
cerr << "mode = " << mode << endl;
float sum = 0.0;
int count = 0;
// Work out standard deviation from mode for values greater than mode:
for(int i = 1; i <= num; i++) {
if(epivol(i) > mode) {
sum = sum + (epivol(i) - mode)*(epivol(i) - mode);
count++;
}
}
int sig = (int)pow(sum/num, 0.5);
cerr << "sig = " << sig << endl;
usanthresh = sig/3;
return usanthresh;
}
void AutoCorrEstimator::spatiallySmooth(const string& usanfname, const Volume& epivol, int masksize, const string& epifname, const string& susanpath, int usanthresh) {
Tracer trace("AutoCorrEstimator::spatiallySmooth");
Log& logger = Log::getInstance();
if(usanthresh == 0)
{
// Establish epi thresh to use:
usanthresh = establishUsanThresh(epivol);
}
// Setup external call to susan program:
char callsusanstr[1000];
ostrstream osc3(callsusanstr,1000);
string preSmoothVol = "preSmoothVol";
string postSmoothVol = "postSmoothVol";
osc3 << susanpath << " "
<< logger.getDir() << "/" << preSmoothVol << " 1 "
<< logger.getDir() << "/" << postSmoothVol << " "
<< masksize << " 3D 0 1 " << usanfname << " " << usanthresh << " "
<< logger.getDir() << "/" << "usanSize" << '\0';
// Loop through first third of volumes
// assume the rest are zero
int factor = 10000;
// Setup volume for reading and writing volumes:
Volume vol(acEst.getNumSeries(), xdata.getDims(), xdata.getPreThresholdPositions());
int i = 2;
cerr << "Spatially smoothing auto corr estimates" << endl;
cerr << callsusanstr << endl;
for(; i < MISCMATHS::Min(40,int(xdata.getNumVolumes()/4)); i++)
{
// output unsmoothed estimates:
vol = acEst.getVolume(i).AsColumn()*factor;
vol.unthreshold();
vol.writeAsInt(logger.getDir() + "/" + preSmoothVol);
// call susan:
system(callsusanstr);
// read in smoothed volume:
vol.read(logger.getDir() + "/" + postSmoothVol);
vol.threshold();
acEst.getVolume(i) = vol.AsRow()/factor;
cerr << ".";
}
cerr << endl;
// Clear unwanted written files
char rmfilesstr[1000];
ostrstream osc(rmfilesstr,1000);
osc << "rm -rf "
<< logger.getDir() + "/" + postSmoothVol + "* "
<< logger.getDir() + "/" + preSmoothVol + "* "
<< logger.getDir() + "/usanSize*" << '\0';
cerr << rmfilesstr << endl;
system(rmfilesstr);
cerr << "Completed" << endl;
}
void AutoCorrEstimator::calcRaw() {
cerr << "Calculating raw AutoCorrs...";
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
cerr << " Completed" << endl;
}
void AutoCorrEstimator::filter(const ColumnVector& filterFFT) {
Tracer tr("AutoCorrEstimator::filter");
cerr << "Combining temporal filtering effects with AutoCorr estimates... ";
// This function adjusts the autocorrelations as if the
// xdata has been filtered by the passed in filterFFT
// DOES NOT filter the xdata itself
ColumnVector vrow;
// make sure p_vrow is cyclic (even function)
vrow.ReSize(zeropad);
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(zeropad);
ColumnVector realifft(zeropad);
int sizeTS = xdata.getNumVolumes();
for(int i = 1; i <= xdata.getNumSeries(); i++)
{
dummy = 0;
vrow = 0;
vrow.Rows(1,sizeTS/2) = acEst.getSeries(i).Rows(1,sizeTS/2);
vrow.Rows(zeropad - sizeTS/2 + 2, zeropad) = acEst.getSeries(i).Rows(2, sizeTS/2).Reverse();
FFT(vrow, dummy, fft_real, fft_im);
FFTI(SP(fft_real, filterFFT), dummy, realifft, dummy);
// place result into acEst:
acEst.Column(i) = realifft.Rows(1,sizeTS)/realifft(1);
}
cerr << " Completed" << endl;
}
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
void AutoCorrEstimator::multitaper(int M) {
Tracer tr("AutoCorrEstimator::multitaper");
cerr << "Multitapering... ";
int sizeTS = xdata.getNumVolumes();
int numTS = xdata.getNumSeries();
Matrix slepians;
getSlepians(M, sizeTS, slepians);
//Log::getInstance().out("slepians", slepians, false);
ColumnVector x(zeropad);
x = 0;
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(zeropad);
ColumnVector dummy2;
ColumnVector realifft(zeropad);
dummy = 0;
Matrix Sk(zeropad, slepians.Ncols());
acEst.ReSize(sizeTS, numTS);
acEst = 0;
for(int i = 1; i <= numTS; i++)
{
// Compute FFT for each slepian taper
for(int k = 1; k <= slepians.Ncols(); k++)
{
x.Rows(1,sizeTS) = SP(slepians.Column(k), xdata.getSeries(i));
//Log::getInstance().out("x", xdata.getSeries(i), false);
FFT(x, dummy, fft_real, fft_im);
for(int j = 1; j <= zeropad; j++)
{
// (x+iy)(x-iy) = x^2 + y^2
fft_real(j) = fft_real(j)*fft_real(j) + fft_im(j)*fft_im(j);
Sk(j,k) = fft_real(j);
}
}
// Pool multitaper FFTs
fft_im = 0;
for(int j = 1; j <= zeropad; j++)
{
fft_real(j) = MISCMATHS::mean(ColumnVector(Sk.Row(j).t()));
}
// IFFT to get autocorr
FFTI(fft_real, fft_im, realifft, dummy2);
//Log::getInstance().out("Sk", Sk, false);
//Log::getInstance().out("realifft", realifft);
//Log::getInstance().out("fftreal", fft_real);
float varx = MISCMATHS::var(ColumnVector(x.Rows(1,sizeTS)));
acEst.getSeries(i) = realifft.Rows(1,sizeTS)/varx;
}
countLargeE = 0;
cerr << "Completed" << endl;
}
void AutoCorrEstimator::getSlepians(int M, int sizeTS, Matrix& slepians) {
Tracer tr("AutoCorrEstimator::getSlepians");
slepians.ReSize(sizeTS, 2*M);
ifstream in;
char strc[10];
ostrstream osc(strc,10);
osc << sizeTS << "_" << M << '\0';
string fname("/usr/people/woolrich/parads/mt_" + string(strc));
in.open(fname.c_str(), ios::in);
if(!in)
throw Exception("Multitapering: Slepians file not found");
for(int j = 1; j <= sizeTS; j++)
{
for(int i = 1; i <= 2*M; i++)
{
in >> slepians(j,i);
}
}
in.close();
}
void AutoCorrEstimator::tukey(int M) {
Tracer tr("AutoCorrEstimator::tukey");
cerr << "Tukey M = " << M << endl;
cerr << "Tukey estimates... ";
int sizeTS = xdata.getNumVolumes();
ColumnVector window(M);
for(int j = 1; j <= M; j++)
{
window(j) = 0.5*(1+cos(M_PI*j/(float(M))));
}
for(int i = 1; i <= xdata.getNumSeries(); i++) {
acEst.SubMatrix(1,M,i,i) = SP(acEst.SubMatrix(1,M,i,i),window);
acEst.SubMatrix(M+1,sizeTS,i,i) = 0;
}
countLargeE = 0;
cerr << "Completed" << endl;
}
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
void AutoCorrEstimator::pava() {
Tracer tr("AutoCorrEstimator::pava");
cerr << "Using New PAVA on AutoCorr estimates... ";
for(int i = 1; i <= xdata.getNumSeries(); i++) {
int sizeTS = xdata.getNumVolumes();
int stopat = (int)sizeTS/2;
// 5% point of distribution of autocorr about zero
const float th = (-1/sizeTS)+(2/sqrt(sizeTS));
ColumnVector values = acEst.Column(i);
ColumnVector zero(1);
zero = 0;
values = values.Rows(1,stopat) & zero;
ColumnVector gm(stopat + 1);
for(int j = 1; j <= stopat + 1; gm(j) = j++);
ColumnVector weights(stopat+1);
weights = 1;
bool anyviolators = true;
while(anyviolators) {
anyviolators = false;
for(int k = 2; k <= values.Nrows(); k++) {
if(values(k) > values(k-1)) {
anyviolators = true;
values(k-1) = (values(k-1)*weights(k-1) + values(k)*weights(k))/(weights(k-1) + weights(k));
values = values.Rows(1,k-1) & values.Rows(k+1,values.Nrows());
weights(k-1) = weights(k) + weights(k-1);
weights = weights.Rows(1,k-1) & weights.Rows(k+1,weights.Nrows());
for(int j = 1; j <= stopat + 1; j++) {
if(gm(j) >= k)
gm(j) = gm(j)-1;
}
break;
}
}
}
acEst.Column(i) = 0.0;
int j=1;
for(; j <= stopat; j++) {
acEst(j,i) = values(gm(j));
if(acEst(j,i) <= 0.0)
{
acEst(j,i) = 0.0;
break;
}
}
if(acEst(2,i) < th/2)
{
acEst.SubMatrix(2,stopat,i,i) = 0;
}
else if(j > 2)
//if(j > 2)
int endst = j;
int stst = j-(int)(1+(j/8.0));
const int expwidth = MISCMATHS::Max((endst - stst)/2,1);
const int exppow = 2;
for(j = stst; j <= endst; j++)
{
acEst(j,i) = acEst(j,i)*exp(-pow((j-stst)/float(expwidth),exppow));
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
cerr << " Completed" << endl;
}
void AutoCorrEstimator::applyConstraints() {
Tracer tr("AutoCorrEstimator::applyConstraints");
cerr << "Applying constraints to AutoCorr estimates... ";
for(int i = 1; i <= xdata.getNumSeries(); i++)
{
int sizeTS = xdata.getNumVolumes();
int j = 3;
int stopat = (int)sizeTS/4;
// found1 is last valid value above threshold
int found1 = stopat;
// 5% point of distribution of autocorr about zero
const float thresh = (-1/sizeTS)+(2/sqrt(sizeTS));
acEst(2,i) = (acEst(2,i)+ acEst(3,i))/2;
if(acEst(2,i) < 0)
{
acEst(2,i) = 0;
}
else
{
float grad = 0.0;
while(j <= stopat && j < found1 + 2)
{
grad = ((acEst(j,i) + acEst(j+1,i))/2 - acEst(j-1,i))/1.5;
if(grad < 0)
acEst(j,i) = grad + acEst(j-1,i);
else
acEst(j,i) = acEst(j-1,i);
// look for threshold
if(acEst(j,i) < thresh/3.0 && found1 == stopat)
{
found1 = j;
}
if(acEst(j,i) < 0)
{
acEst(j,i) = 0;
}
j++;
}
}
// set rest to zero:
for(; j <= sizeTS; j++)
{
acEst(j,i) = 0;
}
}
cerr << "Completed" << endl;
}
void AutoCorrEstimator::getMeanEstimate(ColumnVector& ret)
{
Tracer tr("AutoCorrEstimator::getMeanEstimate");
ret.ReSize(acEst.getNumVolumes());
// Calc global Vrow:
for(int i = 1; i <= acEst.getNumVolumes(); i++)
{
ret(i) = MISCMATHS::mean(ColumnVector(acEst.getVolume(i).AsColumn()));