Skip to content
Snippets Groups Projects
Commit 6910c699 authored by Michiel Cottaar's avatar Michiel Cottaar
Browse files

TEST: added tests for reading NIFTI and GIFTI

also added more support for loading basenames without extensions
parent db21c20b
No related branches found
No related tags found
No related merge requests found
......@@ -7,9 +7,9 @@ The data can be read from NIFTI, GIFTI, or CIFTI files.
Non-sparse volumetric or surface representations can be extracte.
"""
from nibabel.cifti2 import cifti2_axes
from typing import Sequence, Optional
from typing import Sequence, Optional, Union
import numpy as np
from fsl.data.image import Image
from fsl.data import image
import nibabel as nib
from fsl.utils.path import addExt
......@@ -40,7 +40,7 @@ class Cifti:
- :py:class:`BrainModelAxis <cifti2_axes.BrainModelAxis>`
- :py:class:`ParcelsAxis <cifti2_axes.ParcelsAxis>`
"""
def __init__(self, arr: np.ndarray, axes: Sequence[Optional[cifti2_axes.Axis], ...]):
def __init__(self, arr: np.ndarray, axes: Sequence[Optional[cifti2_axes.Axis]]):
"""
Defines a new dataset in greyordinate space
......@@ -138,41 +138,6 @@ class Cifti:
"""
self.to_cifti(default_axis).to_filename(addExt(cifti_filename, defaultExt=self.extension))
@classmethod
def load(cls, filename, mask_values=(0, np.nan), writable=False):
"""
Reads greyordinate data from the given file
File can be:
- NIFTI mask
- GIFTI mask
- CIFTI file
:param filename: input filename
:param mask_values: which values are outside of the mask for NIFTI or GIFTI input
:param writable: allow to write to disk
:return: greyordinates object
"""
if isinstance(filename, str):
img = nib.load(filename)
else:
img = filename
if isinstance(img, nib.Cifti2Image):
return cls.from_cifti(img, writable=writable)
if isinstance(img, nib.GiftiImage):
if writable:
raise ValueError("Can not open GIFTI file in writable mode")
return cls.from_gifti(img, mask_values)
try:
vol_img = Image(img)
except ValueError:
raise ValueError(f"I do not know how to convert {type(img)} into greyordinates (from {filename})")
if writable:
raise ValueError("Can not open NIFTI file in writable mode")
return cls.from_image(vol_img, mask_values)
@classmethod
def from_gifti(cls, filename, mask_values=(0, np.nan)):
"""
......@@ -208,15 +173,15 @@ class Cifti:
return DenseCifti(data[..., mask], [bm_axes])
@classmethod
def from_image(cls, image, mask_values=(np.nan, 0)):
def from_image(cls, input, mask_values=(np.nan, 0)):
"""
Creates a new greyordinate object from a NIFTI file
:param image: FSL :class:`image.Image` object
:param input: FSL :class:`image.Image` object
:param mask_values: which values to mask out
:return: greyordinate object representing the unmasked voxels
"""
img = Image(image)
img = image.Image(input)
mask = np.ones(img.data.shape, dtype='bool')
for value in mask_values:
......@@ -226,10 +191,12 @@ class Cifti:
mask &= ~(img.data == value)
while mask.ndim > 3:
mask = mask.any(-1)
if np.sum(mask) == 0:
raise ValueError("No unmasked voxels found in NIFTI image")
inverted_data = np.transpose(img.data[mask], tuple(range(1, img.data.ndim - 2)) + (0, ))
bm_axes = cifti2_axes.BrainModelAxis.from_mask(mask, affine=img.affine)
return cifti2_axes.GreyOrdinates(inverted_data, [bm_axes])
bm_axes = cifti2_axes.BrainModelAxis.from_mask(mask, affine=img.nibImage.affine)
return DenseCifti(inverted_data, [bm_axes])
class DenseCifti(Cifti):
......@@ -237,7 +204,7 @@ class DenseCifti(Cifti):
Represents sparse data defined for a subset of voxels and vertices (i.e., greyordinates)
"""
def __init__(self, *args, **kwargs):
super().__init__(self, *args, **kwargs)
super().__init__(*args, **kwargs)
if not isinstance(self.brain_model_axis, cifti2_axes.BrainModelAxis):
raise ValueError(f"DenseCifti expects a BrainModelAxis as last axes object, not {type(self.brain_model_axis)}")
......@@ -249,9 +216,9 @@ class DenseCifti(Cifti):
def extension(self, ):
return dense_extensions[type(self.axes[-2])]
def to_image(self, fill=0) -> Image:
def to_image(self, fill=0) -> image.Image:
"""
Get the volumetric data as an :class:`Image`
Get the volumetric data as an :class:`image.Image`
"""
if self.brain_model_axis.volume_mask.sum() == 0:
raise ValueError(f"Can not create volume without voxels in {self}")
......@@ -260,7 +227,7 @@ class DenseCifti(Cifti):
voxels = self.brain_model_axis.voxel[self.brain_model_axis.volume_mask]
data[tuple(voxels.T)] = np.transpose(self.data, (-1,) + tuple(range(self.data.ndim - 1)))[
self.brain_model_axis.volume_mask]
return Image(data, xform=self.brain_model_axis.affine)
return image.Image(data, xform=self.brain_model_axis.affine)
def surface(self, anatomy, fill=np.nan, partial=False):
"""
......@@ -326,7 +293,7 @@ class ParcelCifti(Cifti):
written[write_to] = True
if not written.any():
raise ValueError("Parcellation does not contain any volumetric data")
return Image(data, xform=self.brain_model_axis.affine)
return image.Image(data, xform=self.brain_model_axis.affine)
def surface(self, anatomy, fill=np.nan, partial=False):
"""
......@@ -467,7 +434,7 @@ class BrainStructure(object):
"""
primary_str = 'AnatomicalStructurePrimary'
secondary_str = 'AnatomicalStructureSecondary'
primary = "unknown"
primary = "other"
secondary = None
for meta in [gifti_obj] + gifti_obj.darrays:
if primary_str in meta.meta.metadata:
......@@ -477,3 +444,46 @@ class BrainStructure(object):
anatomy = cls.from_string(primary, issurface=True)
anatomy.secondary = None if secondary is None else secondary.lower()
return anatomy
def load(filename, mask_values=(0, np.nan), writable=False) -> Union[DenseCifti, ParcelCifti]:
"""
Reads CIFTI data from the given file
File can be:
- NIFTI file
- GIFTI file
- CIFTI file
:param filename: input filename
:param mask_values: which values are outside of the mask for NIFTI or GIFTI input
:param writable: allow to write to disk
:return: appropriate CIFTI sub-class (parcellated or dense)
"""
possible_extensions = (
tuple(dense_extensions.values()) +
tuple(parcel_extensions.values()) +
tuple(image.ALLOWED_EXTENSIONS) +
('.shape.gii', '.gii')
)
if isinstance(filename, str):
filename = addExt(filename, possible_extensions, fileGroups=image.FILE_GROUPS)
img = nib.load(filename)
else:
img = filename
if isinstance(img, nib.Cifti2Image):
return Cifti.from_cifti(img, writable=writable)
if isinstance(img, nib.GiftiImage):
if writable:
raise ValueError("Can not open GIFTI file in writable mode")
return Cifti.from_gifti(img, mask_values)
try:
vol_img = image.Image(img)
except ValueError:
raise ValueError(f"I do not know how to convert {type(img)} into greyordinates (from {filename})")
if writable:
raise ValueError("Can not open NIFTI file in writable mode")
return Cifti.from_image(vol_img, mask_values)
import pytest
from fsl.data import cifti
import os.path as op
import numpy as np
import nibabel as nib
from numpy import testing
import tests
def test_read_gifti():
testdir = op.join(op.dirname(__file__), 'testdata')
shapefile = op.join(testdir, 'example.shape.gii')
ref_data = nib.load(shapefile).darrays[0].data
data = cifti.load(shapefile)
assert isinstance(data, cifti.DenseCifti)
assert data.arr.shape == (642, )
testing.assert_equal(data.arr, ref_data)
testing.assert_equal(data.brain_model_axis.vertex, np.arange(642))
assert len(data.brain_model_axis.nvertices) == 1
assert data.brain_model_axis.nvertices['CIFTI_STRUCTURE_OTHER'] == 642
data = cifti.load(shapefile, mask_values=(ref_data[0], ))
assert isinstance(data, cifti.DenseCifti)
assert data.arr.shape == (np.sum(ref_data != ref_data[0]), )
testing.assert_equal(data.arr, ref_data[ref_data != ref_data[0]])
testing.assert_equal(data.brain_model_axis.vertex, np.where(ref_data != ref_data[0])[0])
assert len(data.brain_model_axis.nvertices) == 1
assert data.brain_model_axis.nvertices['CIFTI_STRUCTURE_OTHER'] == 642
cifti.load(op.join(testdir, 'example'))
def test_read_nifti():
mask = np.random.randint(2, size=(10, 10, 10)) > 0
values = np.random.randn(10, 10, 10)
for mask_val in (0, np.nan):
values[~mask] = mask_val
affine = np.concatenate((np.random.randn(3, 4), np.array([0, 0, 0, 1])[None, :]), axis=0)
with tests.testdir():
nib.Nifti1Image(values, affine).to_filename("masked_image.nii.gz")
data = cifti.load("masked_image")
assert isinstance(data, cifti.DenseCifti)
testing.assert_equal(data.arr, values[mask])
testing.assert_allclose(data.brain_model_axis.affine, affine)
assert len(data.brain_model_axis.nvertices) == 0
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment