Skip to content
Snippets Groups Projects
Commit c95dacf1 authored by Michiel Cottaar's avatar Michiel Cottaar
Browse files

ENH: Initial proposal for CIFTI support

parent eba0a573
No related branches found
No related tags found
No related merge requests found
"""
Provides a sparse representation of volumetric and/or surface data
The data can be either defined per voxel/vertex (:class:`DenseCifti`) or per parcel (`class:`ParcelCifti`).
The data can be read from NIFTI, GIFTI, or CIFTI files.
Non-sparse volumetric or surface representations can be extracte.
"""
from nibabel.cifti2 import cifti2_axes
from typing import Sequence
import numpy as np
from fsl.data.image import Image
import nibabel as nib
from fsl.utils.path import addExt
dense_extensions = {
cifti2_axes.BrainModelAxis: '.dconn.nii',
cifti2_axes.ParcelsAxis: '.dpconn.nii',
cifti2_axes.SeriesAxis: '.dtseries.nii',
cifti2_axes.ScalarAxis: '.dscalar.nii',
cifti2_axes.LabelAxis: '.dlabel.nii',
}
parcel_extensions = {
cifti2_axes.BrainModelAxis: '.pdconn.nii',
cifti2_axes.ParcelsAxis: '.pconn.nii',
cifti2_axes.SeriesAxis: '.ptseries.nii',
cifti2_axes.ScalarAxis: '.pscalar.nii',
cifti2_axes.LabelAxis: '.plabel.nii',
}
class Cifti:
"""
Parent class for the two types of CIFTI files.
The type of the CIFTI file is determined by the last axis, which can be one of:
- :py:class:`BrainModelAxis <cifti2_axes.BrainModelAxis>`
- :py:class:`ParcelsAxis <cifti2_axes.ParcelsAxis>`
"""
def __init__(self, arr: np.ndarray, axes: Sequence[cifti2_axes.Axis]):
"""
Defines a new dataset in greyordinate space
:param data: (..., N) array for N greyordinates or parcels
:param axes: sequence of CIFTI axes describing the data along each dimension
"""
self.arr = arr
self.axes = axes
if arr.shape[-len(axes):] != tuple(len(ax) for ax in axes):
raise ValueError(f"Shape of axes {tuple(len(ax) for ax in axes)} does not match shape of array {self.arr.shape}")
def to_cifti(self, other_axes=None):
"""
Create a CIFTI image from the data
:param other_axes: overwrites the :mod:`cifti2_axes` to be used to write to create the CIFTI image
:return: nibabel CIFTI image
"""
if other_axes is None:
if len(self.axes) != self.data.ndim:
raise ValueError("Can not store to CIFTI without defining what is stored along the other dimensions")
other_axes = self.axes[:-1]
else:
if len(other_axes) != self.data.ndim - 1:
raise ValueError("Number of axis does not match dimensionality of the data")
if tuple(len(ax) for ax in other_axes) != self.data.shape[:-1]:
raise ValueError("Size of other axes does not match data size")
data = self.data
if data.ndim == 1:
# CIFTI axes are always at least 2D
data = data[None, :]
other_axes = [cifti2_axes.ScalarAxis(['default'])]
return cifti2_axes.Cifti2Image(
data,
header=list(other_axes) + [self.axes[-1]]
)
@classmethod
def from_cifti(cls, filename, writable=False):
"""
Creates new greyordinate object from dense CIFTI file
:param filename: CIFTI filename or :class:`nib.Cifti2Image` object
:param writable: if True, opens data array in writable mode
"""
if isinstance(filename, str):
img = nib.load(filename)
else:
img = filename
if not isinstance(img, nib.Cifti2Image):
raise ValueError(f"Input {filename} should be CIFTI filename or nibabel Cifti2Image")
if writable:
data = np.memmap(filename, img.dataobj.dtype, mode='r+',
offset=img.dataobj.offset, shape=img.shape, order='F')
else:
data = np.asanyarray(img.dataobj)
axes = [img.header.get_axis(idx) for idx in range(data.ndim)]
if isinstance(axes[-1], cifti2_axes.BrainModelAxis):
return DenseCifti(data, axes)
elif isinstance(axes[-1], cifti2_axes.ParcelsAxis):
return ParcelCifti(data, axes)
raise ValueError("Last axis of CIFTI object should be a BrainModelAxis or ParcelsAxis")
def write(self, cifti_filename, other_axes=None):
"""
Writes this sparse representation to/from a filename
:param cifti_filename: output filename
:param other_axes: overwrites the :mod:`cifti2_axes` to be used to write to the file
:return:
"""
self.to_cifti(other_axes).to_filename(addExt(cifti_filename, defaultExt=self.extension))
def read(cls, filename, mask_values=(0, np.nan), writable=False):
"""
Reads greyordinate data from the given file
File can be:
- NIFTI mask
- GIFTI mask
- CIFTI file
:param filename: input filename
:param mask_values: which values are outside of the mask for NIFTI or GIFTI input
:param writable: allow to write to disk
:return: greyordinates object
"""
if isinstance(filename, str):
img = nib.load(filename)
else:
img = filename
if isinstance(img, nib.Nifti1Image):
if writable:
raise ValueError("Can not open NIFTI file in writable mode")
return cls.from_image(Image(img), mask_values)
if isinstance(img, nib.Cifti2Image):
return cls.from_cifti(img, writable=writable)
if isinstance(img, nib.GiftiImage):
if writable:
raise ValueError("Can not open GIFTI file in writable mode")
return cls.from_gifti(img, mask_values)
raise ValueError(f"I do not know how to convert {type(img)} into greyordinates (from {filename})")
@classmethod
def from_gifti(cls, filename, mask_values=(0, np.nan)):
"""
Creates a new greyordinate object from a GIFTI file
:param filename: GIFTI filename
:param mask_values: values to mask out
:return: greyordinate object representing the unmasked vertices
"""
if isinstance(filename, str):
img = nib.load(filename)
else:
img = filename
datasets = [darr.data for darr in img.darrays]
if len(datasets) == 1:
data = datasets[0]
else:
data = np.concatenate(
[np.atleast_2d(d) for d in datasets], axis=0
)
mask = np.ones(data.shape, dtype='bool')
for value in mask_values:
if value is np.nan:
mask &= ~np.isnan(data)
else:
mask &= ~(data == value)
while mask.ndim > 1:
mask = mask.any(0)
anatomy = BrainStructure.from_gifti(img)
bm_axes = cifti2_axes.BrainModelAxis.from_mask(mask, name=anatomy.cifti)
return DenseCifti(data[..., mask], [bm_axes])
@classmethod
def from_image(cls, image, mask_values=(np.nan, 0)):
"""
Creates a new greyordinate object from a NIFTI file
:param filename: NIFTI filename or Image object
:param mask_values: which values to mask out
:return: greyordinate object representing the unmasked voxels
"""
img = Image(image)
mask = np.ones(img.data.shape, dtype='bool')
for value in mask_values:
if value is np.nan:
mask &= ~np.isnan(img.data)
else:
mask &= ~(img.data == value)
while mask.ndim > 3:
mask = mask.any(-1)
inverted_data = np.transpose(img.data[mask], tuple(range(1, img.data.ndim - 2)) + (0, ))
bm_axes = cifti2_axes.BrainModelAxis.from_mask(mask, affine=img.affine)
return cifti2_axes.GreyOrdinates(inverted_data, [bm_axes])
class DenseCifti(Cifti):
"""
Represents sparse data defined for a subset of voxels and vertices (i.e., greyordinates)
"""
def __init__(self, *args, **kwargs):
super().__init__(self, *args, **kwargs)
if not isinstance(self.brain_model_axis, cifti2_axes.BrainModelAxis):
raise ValueError(f"DenseCifti expects a BrainModelAxis as last axes object, not {type(self.brain_model_axis)}")
@property
def brain_model_axis(self, ) -> cifti2_axes.BrainModelAxis:
return self.axes[-1]
@property
def extension(self, ):
return dense_extensions[type(self.axes[-2])]
def to_image(self, fill=0) -> Image:
"""
Get the volumetric data as an :class:`Image`
"""
if self.brain_model_axis.volume_mask.sum() == 0:
raise ValueError(f"Can not create volume without voxels in {self}")
data = np.full(self.brain_model_axis.volume_shape + self.data.shape[:-1], fill,
dtype=self.data.dtype)
voxels = self.brain_model_axis.voxel[self.brain_model_axis.volume_mask]
data[tuple(voxels.T)] = np.transpose(self.data, (-1,) + tuple(range(self.data.ndim - 1)))[
self.brain_model_axis.volume_mask]
return Image(data, xform=self.brain_model_axis.affine)
def surface(self, anatomy, fill=np.nan, partial=False):
"""
Gets a specific surface
If `partial` is True a view of the data rather than a copy is returned.
:param anatomy: BrainStructure or string like 'CortexLeft' or 'CortexRight'
:param fill: which value to fill the array with if not all vertices are defined
:param partial: only return the part of the surface defined in the greyordinate file (ignores `fill` if set)
:return:
- if not partial: (..., n_vertices) array
- if partial: tuple with (N, ) int array with indices on the surface included in (..., N) array
"""
if isinstance(anatomy, str):
anatomy = BrainStructure.from_string(anatomy, issurface=True)
if anatomy.cifti not in self.brain_model_axis.name:
raise ValueError(f"No surface data for {anatomy.cifti} found")
slc, bm = None, None
arr = np.full(self.data.shape[:-1] + (self.brain_model_axis.nvertices[anatomy.cifti],), fill,
dtype=self.data.dtype)
for name, slc_try, bm_try in self.brain_model_axis.iter_structures():
if name == anatomy.cifti:
if partial:
if bm is not None:
raise ValueError(f"Surface {anatomy} does not form a contiguous block")
slc, bm = slc_try, bm_try
else:
arr[..., bm_try.vertex] = self.data[..., slc_try]
if not partial:
return arr
else:
return bm.vertex, self.data[..., slc]
class ParcelCifti(Cifti):
"""
Represents sparse data defined at specific parcels
"""
def __init__(self, *args, **kwargs):
super().__init__(self, *args, **kwargs)
if not isinstance(self.parcel_axis, cifti2_axes.BrainModelAxis):
raise ValueError(f"ParcelCifti expects a ParcelsAxis as last axes object, not {type(self.parcel_axis)}")
@property
def extension(self, ):
return parcel_extensions[type(self.axes[-2])]
@property
def parcel_axis(self, ) -> cifti2_axes.ParcelsAxis:
return self.axes[-1]
def to_image(self, fill=0):
"""
Get the volumetric data as an :class:`Image`
"""
data = np.full(self.parcel_axis.volume_shape + self.arr.shape[:-1], fill, dtype=self.arr.dtype)
written = np.zeros(self.parcel_axis.volume_shape, dtype='bool')
for idx, write_to in enumerate(self.parcel_axis).voxels:
if written[write_to].any():
raise ValueError("Duplicate voxels in different parcels")
data[write_to] = self.arr[np.newaxis, ..., idx]
written[write_to] = True
if not written.any():
raise ValueError("Parcellation does not contain any volumetric data")
return Image(data, xform=self.brain_model_axis.affine)
def surface(self, anatomy, fill=np.nan, partial=False):
"""
Gets a specific surface
:param anatomy: BrainStructure or string like 'CortexLeft' or 'CortexRight'
:param fill: which value to fill the array with if not all vertices are defined
:param partial: only return the part of the surface defined in the greyordinate file (ignores `fill` if set)
:return:
- if not partial: (..., n_vertices) array
- if partial: tuple with (N, ) int array with indices on the surface included in (..., N) array
"""
if isinstance(anatomy, str):
anatomy = BrainStructure.from_string(anatomy, issurface=True)
if anatomy.cifti not in self.parcel_axis.nvertices:
raise ValueError(f"No surface data for {anatomy.cifti} found")
arr = np.full(self.data.shape[:-1] + (self.parcel_axis.nvertices[anatomy.cifti],), fill,
dtype=self.data.dtype)
written = np.zeros(self.parcel_axis.nvertices[anatomy.cifti])
for idx, vertices in enumerate(self.parcel_axis.vertices):
if anatomy.cifti not in vertices:
continue
write_to = vertices[anatomy.cifti]
if written[write_to].any():
raise ValueError("Duplicate vertices in different parcels")
arr[..., write_to] = self.arr[..., idx, np.newaxis]
written[write_to] = True
if not partial:
return arr
else:
return np.where(written)[0], arr[..., written]
class BrainStructure(object):
"""Which brain structure does the parent object describe?
Supports how brain structures are stored in both GIFTI and CIFTI files
"""
def __init__(self, primary, secondary=None, hemisphere='both', geometry=None):
"""Creates a new brain structure
:param primary: Name of the brain structure (e.g. cortex, thalamus)
:param secondary: Further specification of which part of the brain structure is described (e.g. 'white' or
'pial' for the cortex)
:param hemisphere: which hemisphere is the brain structure in ('left', 'right', or 'both')
:param geometry: does the parent object describe the 'volume' or the 'surface'
"""
self.primary = primary.lower()
self.secondary = None if secondary is None else secondary.lower()
self.hemisphere = hemisphere.lower()
if geometry not in (None, 'surface', 'volume'):
raise ValueError(f"Invalid value for geometry: {geometry}")
self.geometry = geometry
def __eq__(self, other):
"""Two brain structures are equal if they could describe the same structure
"""
if isinstance(other, str):
other = self.from_string(other)
match_primary = (self.primary == other.primary or self.primary == 'all' or other.primary == 'all' or
self.primary == other.geometry or self.geometry == other.primary)
match_hemisphere = self.hemisphere == other.hemisphere
match_secondary = (self.secondary is None or other.secondary is None or self.secondary == other.secondary)
match_geometry = (self.geometry is None or other.geometry is None or self.geometry == other.geometry)
return match_primary and match_hemisphere and match_secondary and match_geometry
@property
def gifti(self, ):
"""Returns the keywords needed to define the surface in the meta information of a GIFTI file
"""
main = self.primary.capitalize() + ('' if self.hemisphere == 'both' else self.hemisphere.capitalize())
res = {'AnatomicalStructurePrimary': main}
if self.secondary is not None:
res['AnatomicalStructureSecondary'] = self.secondary.capitalize()
return res
def __str__(self, ):
"""Returns a short description of the brain structure
"""
if self.secondary is None:
return self.primary.capitalize() + self.hemisphere.capitalize()
else:
return "%s%s(%s)" % (self.primary.capitalize(), self.hemisphere.capitalize(), self.secondary)
@property
def cifti(self, ):
"""Returns a description of the brain structure needed to define the surface in a CIFTI file
"""
return 'CIFTI_STRUCTURE_' + self.primary.upper() + ('' if self.hemisphere == 'both' else ('_' + self.hemisphere.upper()))
@classmethod
def from_string(cls, value, issurface=None):
"""Parses a string to find out which brain structure is being described
:param value: string to be parsed
:param issurface: defines whether the object describes the volume or surface of the brain structure (default: surface if the brain structure is the cortex volume otherwise)
"""
if '_' in value:
items = [val.lower() for val in value.split('_')]
if items[-1] in ['left', 'right', 'both']:
hemisphere = items[-1]
others = items[:-1]
elif items[0] in ['left', 'right', 'both']:
hemisphere = items[0]
others = items[1:]
else:
hemisphere = 'both'
others = items
if others[0] in ['nifti', 'cifti', 'gifti']:
others = others[2:]
primary = '_'.join(others)
else:
low = value.lower()
if 'left' == low[-4:]:
hemisphere = 'left'
primary = low[:-4]
elif 'right' == low[-5:]:
hemisphere = 'right'
primary = low[:-5]
elif 'both' == low[-4:]:
hemisphere = 'both'
primary = low[:-4]
else:
hemisphere = 'both'
primary = low
if issurface is None:
issurface = primary == 'cortex'
if primary == '':
primary = 'all'
return cls(primary, None, hemisphere, 'surface' if issurface else 'volume')
@classmethod
def from_gifti(cls, gifti_obj):
"""
Extracts the brain structure from a GIFTI object
"""
primary_str = 'AnatomicalStructurePrimary'
secondary_str = 'AnatomicalStructureSecondary'
primary = "unknown"
secondary = None
for meta in [gifti_obj] + gifti_obj.darrays:
if primary_str in meta.meta.metadata:
primary = meta.meta.metadata[primary_str]
if secondary_str in meta.meta.metadata:
secondary = meta.meta.metadata[secondary_str]
anatomy = cls.from_string(primary, issurface=True)
anatomy.secondary = None if secondary is None else secondary.lower()
return anatomy
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment