Newer
Older
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 2006-2011 University of Oxford / Christian F. Beckmann */
#include "libvis/miscplot.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include "utils/options.h"
#include <vector>
#include "newimage/newimageall.h"
#include "melhlprfns.h"
using namespace MISCPLOT;
using namespace MISCMATHS;
using namespace Utilities;
using namespace std;
// The two strings below specify the title and example usage that is
// printed out as the help or usage message
string("\n\n Copyright(c) 2011, University of Oxford (Christian F. Beckmann)\n")+
string(" Data de-noising by regressing out part of a design matrix\n")+
string(" using simple OLS regression on 4D images");
string examples="fsl_regfilt -i <input> -d <design> -f <component numbers or filter threshold> -o <out> [options]";
//Command line Options {
Option<string> fnin(string("-i,--in"), string(""),
string(" input file name (4D image)"),
true, requires_argument);
Option<string> fnout(string("-o,--out"), string(""),
string("output file name for the filtered data"),
true, requires_argument);
Option<string> fndesign(string("-d,--design"), string(""),
string("file name of the matrix with time courses (e.g. GLM design or MELODIC mixing matrix)"),
true, requires_argument);
Option<string> fnmask(string("-m,--mask"), string(""),
string("mask image file name"),
false, requires_argument);
Option<string> filter(string("-f,--filter"),string(""),
string("filter out part of the regression model, e.g. -f \"1,2,3\" "),
Option<bool> freqfilt(string("-F,--freqfilt"),false,
string("filter out components based on high vs. low frequency content "),
false, no_argument);
Option<bool> freq_ic(string("--freq_ic"),true,
string("switch off IC Z-stats filtering as part of frequency filtering"),
false, no_argument);
Option<float> freq_ic_smooth(string("--freq_ic_smooth"),5.0,
string("smoothing width for IC Z-stats filtering as part of frequency filtering"),
false, no_argument);
Option<float> freqthresh(string("--fthresh"),0.15,
string("frequency threshold ratio - default: 0.15"),
false,requires_argument);
Option<float> freqthresh2(string("--fthresh2"),0.02,
string("frequency filter score threshold - default: 0.02"),
false,requires_argument);
Option<bool> verbose(string("-v"),FALSE,
string(" switch on diagnostic messages"),
false, no_argument);
Option<bool> aggressive(string("-a"),FALSE,
string(" switch on aggressive filtering (full instead of partial regression)"),
false, no_argument);
Option<bool> perfvn(string("--vn"),FALSE,
string(" perform variance-normalisation on data"),
Option<int> help(string("-h,--help"), 0,
string("display this help text"),
false,no_argument);
Option<bool> debug(string("--debug"), false,
string("switch on debug messages"),
false,no_argument,false);
// Output options
Option<string> outdata(string("--out_data"),string(""),
string("output file name for pre-processed data (prior to denoising)"),
false, requires_argument);
Option<string> outmix(string("--out_mix"),string(""),
string("output file name for new mixing matrix"),
false, requires_argument);
Option<string> outvnscales(string("--out_vnscales"),string(""),
string("output file name for scaling factors from variance normalisation"),
false, requires_argument);
/*
}
*/
//Globals {
int voxels = 0;
Matrix fdesign;
Matrix meanR, meanC;
Matrix newData, newMix;
RowVector vnscales;
volume<float> mask;
volume<float> Mean;
vector<int> comps, ind;
vector<int>::iterator it;
/*
}
*/
////////////////////////////////////////////////////////////////////////////
// Local functions
void save4D(Matrix what, string fname){
if(what.Ncols()==data.Ncols()||what.Nrows()==data.Nrows()){
volume4D<float> tempVol;
if(what.Nrows()>what.Ncols())
tempVol.setmatrix(what.t(),mask);
else
tempVol.setmatrix(what,mask);
}
}
bool isimage(Matrix what){
if((voxels > 0)&&(what.Ncols()==voxels || what.Nrows()==voxels))
return TRUE;
else
return FALSE;
}
void saveit(Matrix what, string fname){
if(isimage(what))
save4D(what,fname);
else
write_ascii_matrix(what,fname);
}
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
Matrix smooth_map(Matrix what, float howmuch){
volume4D<float> tempVol;
tempVol.setmatrix(what,mask);
tempVol= smooth(tempVol,howmuch);
Matrix out;
out = tempVol.matrix(mask);
return out;
}
int parse_filterstring(){
int ctr=0;
char *p;
char t[1024];
const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?";
strcpy(t, filter.value().c_str());
p=strtok(t,discard);
ctr = atoi(p);
if(ctr>0 && ctr<=design.Ncols())
comps.push_back(ctr);
do{
p=strtok(NULL,discard);
if(p){
ctr = atoi(p);
if(ctr>0 && ctr<=design.Ncols())
comps.push_back(ctr);
}
}while(p);
return 0;
}
int calc_freqindex(){
if(debug.value()) cerr << " In calc_freqindex " << endl;
fdesign = Melodic::calc_FFT(design);
if(debug.value()) cerr << " fdesign: " << fdesign.Nrows() << " x " << fdesign.Ncols() << endl;
int Nps = fdesign.Nrows();
float MAXf = 1/(2*TR);
float Nthresh = ceil(Nps * freqthresh.value()/MAXf);
if(debug.value()) cerr << " Nps: " << Nps << " MAXf: " << MAXf << " Nthresh: " << Nthresh << endl;
Matrix sum_ratio;
sum_ratio = SP(sum(fdesign.Rows(1,Nthresh),1),pow(sum(sum(fdesign.Rows(Nthresh+1,Nps))),-1));
sum_ratio /= (float)sum_ratio.MaximumAbsoluteValue();
if(debug.value()) cerr << " sum_ratio: " << sum_ratio << endl;
if(freq_ic.value()){
Matrix scores = zeros(1,design.Ncols());
{
Matrix ICs, noisestddev, stdNoisei,unmixMatrix;
unmixMatrix = pinv(design);
ICs = unmixMatrix * data;
noisestddev = stdev(data-design*ICs);
stdNoisei = pow(noisestddev*
std::sqrt((float)(data.Nrows()-1))/
std::sqrt((float)(data.Nrows()-ICs.Nrows())),-1);
ColumnVector diagvals;
diagvals = pow(diag( unmixMatrix*unmixMatrix.t()),-0.5);
ICs=smooth_map(SP(ICs,diagvals*stdNoisei),freq_ic_smooth.value());
ICs= SP(ICs,ones(ICs.Nrows(),1)*meanR);
volume4D<float> tempVol;
tempVol.setmatrix(ICs,mask);
tempVol.threshold(0.0);
for(int ctr = 0; ctr < design.Ncols(); ctr++ )
scores(1,ctr+1) = tempVol[ctr].percentile(0.99,mask);
scores/=scores.MaximumAbsoluteValue();
scores-=scores.MinimumAbsoluteValue();
if(debug.value()) cerr << " initial scores: " << scores << endl;
}
scores = SP(scores,sum_ratio);
scores /= scores.Maximum();
if(debug.value()) cerr << " scores: " << scores << endl;
for(int ctr = 1; ctr <= design.Ncols(); ctr++ )
if(scores(1,ctr) < freqthresh2.value())
comps.push_back(ctr);
}
return 0;
}
int get_comp(){
if(filter.value().length()>0 && parse_filterstring())
return 1;
if(freqfilt.value() && calc_freqindex())
//sort and remove duplicates
sort (comps.begin(), comps.end());
it = unique (comps.begin(), comps.end());
comps.resize( it - comps.begin() );
if(debug.value()){
for (it=comps.begin(); it!=comps.end(); ++it)
cout << " " << *it;
cout << endl;
return 0;
}
int dofilter(){
if(verbose.value())
cout << " Calculating maps " << endl;
Matrix unmixMatrix = pinv(design);
Matrix maps = unmixMatrix * data;
Matrix noisedes;
Matrix noisemaps;
noisedes = design.Column(comps.at(0));
noisemaps = maps.Row(comps.at(0)).t();
for(int ctr = 1; ctr < (int)comps.size();++ctr){
noisedes |= design.Column(comps.at(ctr));
noisemaps |= maps.Row(comps.at(ctr)).t();
}
if(debug.value()) cerr << " noisedes " << noisedes.Nrows() << " x " << noisedes.Ncols() << endl;
if(verbose.value())
cout << " Calculating filtered data " << endl;
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
if(aggressive.value())
newData = data - noisedes * (pinv(noisedes)*data);
else
newData = data - noisedes * noisemaps.t();
if(perfvn.value())
newData = SP(newData,ones(newData.Nrows(),1)*vnscales);
newData = newData + ones(newData.Nrows(),1)*meanR;
for(int ctr = 1; ctr <= design.Ncols();++ctr)
ind.push_back(ctr);
for(int ctr = 0; ctr < (int)comps.size();++ctr)
it=remove(ind.begin(),ind.end(),comps.at(ctr));
ind.resize(design.Ncols()-comps.size());
if(debug.value()){
for (it=ind.begin(); it!=ind.end(); ++it)
cout << " " << *it;
cout << endl;
}
if(ind.size()>0){
newMix=design.Column(ind.at(0));
for(int ctr = 1; ctr < (int)ind.size();++ctr)
newMix |= design.Column(ind.at(ctr));
newMix = newMix - noisedes * (pinv(noisedes)*newMix);
if(debug.value())
cerr << " newMix " << newMix.Nrows() << " x " << newMix.Ncols() << endl;
}
return 0;
}
int setup(){
if(fsl_imageexists(fnin.value())){//read data
//input is 3D/4D vol
volume4D<float> tmpdata;
// create mask
if(fnmask.value()>""){
read_volume(mask,fnmask.value());
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: Mask image does not match input image" << endl;
return 1;
};
}else{
if(verbose.value())
cout << " Creating mask image " << endl;
Mean = meanvol(tmpdata);
float Mmin, Mmax;
Mmin = Mean.min(); Mmax = Mean.max();
mask = binarise(Mean,float(Mmin + 0.01* (Mmax-Mmin)),Mmax);
}
data = tmpdata.matrix(mask);
voxels = data.Ncols();
if(verbose.value())
cout << " Data matrix size : " << data.Nrows() << " x " << voxels << endl;
}else{
cerr << "ERROR: cannot read input image " << fnin.value()<<endl;
return 1;
}
design = read_ascii_matrix(fndesign.value());
if(!isimage(data)){
cerr << "ERROR: need to specify 4D input to use filtering" << endl;
return 1;
}
meanR=mean(data,1);
data = remmean(data,1);
meanC=mean(design,1);
design = remmean(design,1);
if(perfvn.value())
vnscales = Melodic::varnorm(data);
if(debug.value()) cerr << " data: " << data.Nrows() << " x " << data.Ncols() << endl;
if(debug.value()) cerr << " design: " << design.Nrows() << " x " << design.Ncols() << endl;
return 0;
}
void write_res(){
saveit(newData,fnout.value());
if(outdata.value()>"")
saveit(data,outdata.value());
if(outvnscales.value()>"")
saveit(vnscales,outvnscales.value());
if(outmix.value()>"" && newMix.Storage()>0)
saveit(newMix,outmix.value());
}
int do_work(int argc, char* argv[]) {
if(setup())
exit(1);
if(get_comp())
exit(1);
if(dofilter())
exit(1);
write_res();
return 0;
}
////////////////////////////////////////////////////////////////////////////
int main(int argc,char *argv[]){
Tracer tr("main");
OptionParser options(title, examples);
try{
// must include all wanted options here (the order determines how
// the help message is printed)
options.add(fnin);
options.add(fnout);
options.add(fndesign);
options.add(fnmask);
options.add(filter);
options.add(freqfilt);
options.add(freq_ic);
options.add(freq_ic_smooth);
options.add(freqthresh);
options.add(freqthresh2);
options.add(aggressive);
options.add(outmix);
options.add(outvnscales);
options.parse_command_line(argc, argv);
// line below stops the program if the help was requested or
// a compulsory option was not set
if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){
options.usage();
exit(EXIT_FAILURE);
}else{
// Call the local functions
return do_work(argc,argv);
}
}catch(X_OptionError& e) {
options.usage();
cerr << endl << e.what() << endl;
exit(EXIT_FAILURE);
}catch(std::exception &e) {
cerr << e.what() << endl;
}