Newer
Older
/* MELODIC - Multivariate exploratory linear optimized decomposition into
independent components
melica.cc - ICA estimation
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 1999-2008 University of Oxford */
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/* Part of FSL - FMRIB's Software Library
http://www.fmrib.ox.ac.uk/fsl
fsl@fmrib.ox.ac.uk
Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance
Imaging of the Brain), Department of Clinical Neurology, Oxford
University, Oxford, UK
LICENCE
FMRIB Software Library, Release 4.0 (c) 2007, The University of
Oxford (the "Software")
The Software remains the property of the University of Oxford ("the
University").
The Software is distributed "AS IS" under this Licence solely for
non-commercial use in the hope that it will be useful, but in order
that the University as a charitable foundation protects its assets for
the benefit of its educational and research purposes, the University
makes clear that no condition is made or to be implied, nor is any
warranty given or to be implied, as to the accuracy of the Software,
or that it will be suitable for any particular purpose or for use
under any specific conditions. Furthermore, the University disclaims
all responsibility for the use which is made of the Software. It
further disclaims any liability for the outcomes arising from using
the Software.
The Licensee agrees to indemnify the University and hold the
University harmless from and against any and all claims, damages and
liabilities asserted by third parties (including claims for
negligence) which arise directly or indirectly from the use of the
Software or the sale of any products based on the Software.
No part of the Software may be reproduced, modified, transmitted or
transferred in any form or by any means, electronic or mechanical,
without the express permission of the University. The permission of
the University is not required if the said reproduction, modification,
transmission or transference is done without financial return, the
conditions of this Licence are imposed upon the receiver of the
product, and all original and amended source code is included in any
transmitted product. You may be held legally responsible for any
copyright infringement that is caused or encouraged by your failure to
abide by these terms and conditions.
You are not permitted under this Licence to use this Software
commercially. Use for which any financial return is received shall be
defined as commercial use, and includes (1) integration of all or part
of the source code or the Software into a product for sale or license
by or on behalf of Licensee to third parties or (2) use of the
Software or any derivative of it for research with the final aim of
developing software products for sale or license to a third party or
(3) use of the Software or any derivative of it for research with the
final aim of developing non-software products for sale or license to a
third party, or (4) use of the Software to provide any service to an
external organisation for which payment is received. If you are
interested in using the Software commercially, please contact Isis
Innovation Limited ("Isis"), the technology transfer company of the
University, to negotiate a licence. Contact details are:
innovation@isis.ox.ac.uk quoting reference DE/1112. */
#include "newimage/newimageall.h"
#include "utils/log.h"
#include "meloptions.h"
#include "meldata.h"
#include "melodic.h"
#include "newmatap.h"
#include "newmatio.h"
using namespace Utilities;
using namespace NEWIMAGE;
namespace Melodic{
void MelodicICA::ica_fastica_symm(const Matrix &Data){
// based on Aapo Hyvrinen's fastica method
// see www.cis.hut.fi/projects/ica/fastica/
//initialize matrices
redUMM = melodat.get_white()*
unifrnd(melodat.get_white().Ncols(),dim); // got to start somewhere
if(opts.debug.value())
cerr << "redUMM init submatrix : " << endl << redUMM.SubMatrix(1,2,1,2) << endl;
if(opts.guessfname.value().size()>1){
message(" Use columns in " << opts.guessfname.value()
<< " as initial values for the mixing matrix " <<endl);
Matrix guess ;
guess = melodat.get_white()*read_ascii_matrix(opts.guessfname.value());
redUMM.Columns(1,guess.Ncols()) = guess;
}
symm_orth(redUMM);
int itt_ctr,itt_ctr2=1,cum_itt=0,newmaxitts = opts.maxNumItt.value();
if(opts.approach.value() == string("tica"))
opts.maxNumItt.set_T(opts.rank1interval.value());
rank1_old = melodat.get_dewhite()*redUMM;
rank1_old = melodat.expand_dimred(rank1_old);
rank1_old = krapprox(rank1_old,int(rank1_old.Nrows()/melodat.get_numfiles()));
do{// TICA loop
itt_ctr = 1;
do{ // da loop!!!
redUMM_old = redUMM;
//calculate IC estimates
tmpU = Data.t() * redUMM;
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
//update redUMM depending on nonlinearity
if(opts.nonlinearity.value()=="pow4"){
redUMM = (Data * pow(tmpU,3.0)) / samples - 3 * redUMM;
}
if(opts.nonlinearity.value()=="pow3"){
tmpU /= opts.nlconst1.value();
redUMM = 3 * (Data * pow(tmpU,2.0)) / samples -
(SP(ones(dim,1)*sum(tmpU,1),redUMM))/ samples;
}
if(opts.nonlinearity.value()=="tanh"){
Matrix hyptanh;
hyptanh = tanh(opts.nlconst1.value()*tmpU);
redUMM = (Data * hyptanh - opts.nlconst1.value()*SP(ones(dim,1)*
sum(1-pow(hyptanh,2),1),redUMM))/samples;
}
if(opts.nonlinearity.value()=="gauss"){
Matrix tmpUsq;
Matrix tmpU2;
Matrix gauss;
Matrix dgauss;
tmpUsq = pow(tmpU,2);
tmpU2 = exp(-(opts.nlconst2.value()/2) * tmpUsq);
gauss = SP(tmpU,tmpU2);
dgauss = SP(1-opts.nlconst2.value()*tmpUsq,tmpU2);
redUMM = (Data * gauss - SP(ones(dim,1)*
sum(dgauss,1),redUMM))/samples;
}
// orthogonalize the unmixing-matrix
symm_orth(redUMM);
//termination condition : angle between old and new < epsilon
minAbsSin = 1 - diag(abs(redUMM.t()*redUMM_old)).Minimum();
message(" Step no. " << cum_itt + itt_ctr << " change : " << minAbsSin << endl);
// if((abs(minAbsSin) < opts.epsilon.value())&&
// (opts.approach.value()!=string("tica"))){ break;}
if((abs(minAbsSin) < opts.epsilon.value())){ break;}
} while(itt_ctr < opts.maxNumItt.value());
cum_itt += itt_ctr;
itt_ctr2++;
message(" Rank-1 approximation of the time courses; ");
Matrix temp(melodat.get_dewhite() * redUMM);
temp = melodat.expand_dimred(temp);
temp = krapprox(temp,int(temp.Nrows()/melodat.get_numfiles()));
minAbsSin2 = 1 - diag(abs(corrcoef(temp,rank1_old))).Minimum();
rank1_old = temp;
temp = melodat.reduce_dimred(temp);
redUMM = melodat.get_white() * temp;
message(" change : " << minAbsSin2 << endl);
if(abs(minAbsSin2) < opts.epsilonS.value() && abs(minAbsSin) < opts.epsilon.value()){ break;}
} while(
(itt_ctr2 < newmaxitts/opts.maxNumItt.value()) &&
(opts.approach.value() == string("tica")) &&
cum_itt < newmaxitts);
if((itt_ctr>=opts.maxNumItt.value() && (opts.approach.value()!=string("tica")))
|| (cum_itt >= newmaxitts && opts.approach.value()==string("tica"))){
cerr << " No convergence after " << cum_itt <<" steps "<<endl;
message(" Convergence after " << cum_itt <<" steps " << endl << endl);
{Matrix temp(melodat.get_dewhite() * redUMM);
melodat.set_mix(temp);}
{Matrix temp(redUMM.t()*melodat.get_white());
melodat.set_unmix(temp);}
}
}
void MelodicICA::ica_fastica_defl(const Matrix &Data){
if(!opts.explicitnums || opts.numICs.value()>dim){
opts.numICs.set_T(dim);
message(" Using numICs:" << opts.numICs.value() << endl);
//redUMM = zeros(dim); // got to start somewhere
redUMM = melodat.get_white()*
unifrnd(melodat.get_white().Ncols(),opts.numICs.value());
redUMM = zeros(melodat.get_white().Nrows(),opts.numICs.value());
Matrix guess;
int guesses=0;
if(opts.guessfname.value().size()>1){
message(" Use columns in " << opts.guessfname.value() << " as initial values for the mixing matrix " <<endl);
guess = melodat.get_white()*read_ascii_matrix(opts.guessfname.value());
guesses = guess.Ncols();
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
int ctrIC = 1;
int numRestart = 0;
while(ctrIC<=opts.numICs.value()){
message(" Extracting IC " << ctrIC << " ... ");
ColumnVector w;
ColumnVector w_old;
ColumnVector tmpU;
if(ctrIC <= guesses){
w = w - redUMM * redUMM.t() * w;
w = w / norm2(w);
w_old = zeros(w.Nrows(),1);
int itt_ctr = 1;
do{
w_old = w;
tmpU = Data.t() * w;
if(opts.nonlinearity.value()=="pow4"){
w = (Data * pow(tmpU,3.0)) / samples - 3 * w;
}
if(opts.nonlinearity.value()=="tanh"){
ColumnVector hyptanh;
hyptanh = tanh(opts.nlconst1.value()*tmpU);
w = (Data * hyptanh - opts.nlconst1.value()*SP(ones(dim,1)*
sum(1-pow(hyptanh,2),1),w))/samples;
}
if(opts.nonlinearity.value()=="pow3"){
tmpU /= opts.nlconst1.value();
w = 3*(Data * pow(tmpU,2.0)) / samples - 2*(SP(ones(dim,1)*
sum(tmpU,1),w))/samples;
}
if(opts.nonlinearity.value()=="gauss"){
ColumnVector tmpUsq;
ColumnVector tmpU2;
ColumnVector gauss;
ColumnVector dgauss;
tmpUsq = pow(tmpU,2);
tmpU2 = exp(-(opts.nlconst2.value()/2) * tmpUsq);
gauss = SP(tmpU,tmpU2);
dgauss = SP(1-opts.nlconst2.value()*tmpUsq,tmpU2);
w = (Data * gauss - SP(ones(dim,1)*
sum(dgauss,1),w))/samples;
}
// orthogonalize w
w = w - redUMM * redUMM.t() * w;
w = w / norm2(w);
//termination condition : angle between old and new < epsilon
if((norm2(w-w_old) < 0.001*opts.epsilon.value())&&(itt_ctr>10) ||
(norm2(w+w_old) < 0.001*opts.epsilon.value())&&(itt_ctr>10)){
break;
//cout << norm2(w-w_old) << " " << norm2(w+w_old) << endl;
itt_ctr++;
message(" estimated using " << itt_ctr << " iterations " << endl);
ctrIC++;
numRestart = 0;
message(endl << " Estimation failed after "
<< numRestart << " attempts "
<< " giving up " << endl);
break;
message(endl <<" Estimation failed - restart "
<< numRestart << endl);
}
}
if(numRestart < opts.maxRestart.value()){
no_convergence = false;
{Matrix temp(melodat.get_dewhite() * redUMM);
melodat.set_mix(temp);}
{Matrix temp(redUMM.t()*melodat.get_white());
melodat.set_unmix(temp);}
}
}
}
message(" MAXENT " << endl);
//initialize matrices
Matrix redUMM_old;
Matrix tmpU;
Matrix gtmpU;
double lambda = 0.015/std::log((double)melodat.get_white().Ncols());
unifrnd(melodat.get_white().Ncols(),dim); // got to start somewhere
if(opts.guessfname.value().size()>1){
message(" Use columns in " << opts.guessfname.value()
<< " as initial values for the mixing matrix " <<endl);
Matrix guess ;
guess = melodat.get_white()*read_ascii_matrix(opts.guessfname.value());
redUMM.Columns(1,guess.Ncols()) = guess;
}
// symm_orth(redUMM);
int itt_ctr=1;
double minAbsSin = 1.0;
Matrix Id;
//cerr << " nonlinearity : " << opts.nonlinearity.value() << endl;
//calculate IC estimates
tmpU = Data.t() * redUMM;
if(opts.nonlinearity.value()=="tanh"){
//Matrix hyptanh;
//hyptanh = tanh(opts.nlconst1.value()*tmpU);
//redUMM = (Data * hyptanh - opts.nlconst1.value()*SP(ones(dim,1)*
//sum(1-pow(hyptanh,2),1),redUMM))/samples;
gtmpU = tanh(opts.nlconst1.value()*tmpU);
redUMM = redUMM + lambda*(Id+(1-2*gtmpU.t()*tmpU))*redUMM;
}
if(opts.nonlinearity.value()=="gauss"){
gtmpU = pow(1+exp(-(opts.nlconst2.value()/2) * tmpU),-1);
redUMM = redUMM + lambda*(Id - (gtmpU.t()-tmpU.t())*tmpU)*redUMM;
//termination condition : angle between old and new < epsilon
minAbsSin = abs(1 - diag(abs(redUMM.t()*redUMM_old)).Minimum());
message(" Step no. " << itt_ctr << " change : " << minAbsSin << endl);
if(abs(minAbsSin) < opts.epsilon.value()){ break;}
itt_ctr++;
} while(itt_ctr < opts.maxNumItt.value());
if(itt_ctr>=opts.maxNumItt.value()){
cerr << " No convergence after " << itt_ctr <<" steps "<<endl;
} else {
message(" Convergence after " << itt_ctr <<" steps " << endl << endl);
no_convergence = false;
{Matrix temp(melodat.get_dewhite() * redUMM);
melodat.set_mix(temp);}
{Matrix temp(redUMM.t()*melodat.get_white());
melodat.set_unmix(temp);}
}
int dim_sym = (int) (dim*(dim+1))/2;
int num_CM = dim_sym;
Matrix CM;
Matrix Qij; Qij = zeros(dim);
Matrix Xim;
Matrix Xjm;
Matrix scale; scale = ones(dim,1)/samples;
for (int im =1; im <= dim; im++){
Xim = Data.Row(im);
//Qij = SP((scale * pow(Xim,2)),Data) * Data.t();//- R - 2*R.Column(im)*R.Column(im).t();
Qij = (pow(Xim,2)) * Data.t();//- R - 2*R.Column(im)*R.Column(im).t();
if(im==1){CM = Qij; write_ascii_matrix("CM",CM);exit(2);}else{CM |= Qij;}
for (int jm = 1; jm < im; jm++){
Xjm = Data.Row(jm);
Qij = (SP((scale * SP(Xim,Xjm)),Data) * Data.t() -
R.Column(im)*R.Column(jm).t() - R.Column(jm)*R.Column(im).t());
Qij *= sqrt(2);
CM |= Qij;
Matrix redUMM; redUMM = IdentityMatrix(dim);
bool exitloop = false;
int ctr_itt = 0;
int ctr_updates = 0;
Matrix Givens; Givens = zeros(2,num_CM);
Matrix Givens_ip; Givens_ip = zeros(2);
Matrix Givens_ro; Givens_ro = zeros(2);
double det_on, det_off;
double cos_theta, sin_theta, theta;
while(!exitloop && ctr_itt <= opts.maxNumItt.value()){
ctr_itt++;
cout << "loop" <<endl;
for(int ctr_p = 1; ctr_p < dim; ctr_p++){
for(int ctr_q = ctr_p+1; ctr_q <= dim; ctr_q++){
for(int ctr_i = 0; ctr_i < num_CM; ctr_i++){
int Ip = ctr_p + ctr_i * dim;
int Iq = ctr_q + ctr_i * dim;
Givens(1,ctr_i + 1) = CM(ctr_p,Ip) - CM(ctr_q,Iq);
Givens(2,ctr_i + 1) = CM(ctr_p,Iq) - CM(ctr_q,Ip);
}
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
Givens_ip = Givens * Givens.t();
det_on = Givens_ip(1,1) - Givens_ip(2,2);
det_off = Givens_ip(1,2) + Givens_ip(2,1);
theta = 0.5 * atan2(det_off, det_on + sqrt(det_on*det_on + det_off*det_off));
cout << theta << endl;
if(abs(theta) > opts.epsilon.value()){
ctr_updates++;
message(" Step No. "<< ctr_itt << " change : " << theta << endl);
//create Givens rotation matrix
cos_theta = cos(theta);
sin_theta = sin(theta);
Givens_ro(1,1) = cos_theta;
Givens_ro(1,2) = -sin_theta;
Givens_ro(2,1) = sin_theta;
Givens_ro(2,2) = cos_theta;
//update 2 entries of redUMM
{Matrix tmp_redUMM;
tmp_redUMM = redUMM.Column(ctr_p);
tmp_redUMM |= redUMM.Column(ctr_q);
tmp_redUMM *= Givens_ro;
redUMM.Column(ctr_p) = tmp_redUMM.Column(1);
redUMM.Column(ctr_q) = tmp_redUMM.Column(2);}
//update Cumulant matrix
{Matrix tmp_CM;
tmp_CM = CM.Row(ctr_p);
tmp_CM &= CM.Row(ctr_q);
tmp_CM = Givens_ro.t() * tmp_CM;
CM.Row(ctr_p) = tmp_CM.Row(1);
CM.Row(ctr_q) = tmp_CM.Row(2);}
//update Cumulant matrices
for(int ctr_i = 0; ctr_i < num_CM; ctr_i++){
int Ip = ctr_p + ctr_i * dim;
int Iq = ctr_q + ctr_i * dim;
CM.Column(Ip) = cos_theta*CM.Column(Ip)+sin_theta*CM.Column(Iq);
CM.Column(Iq) = cos_theta*CM.Column(Iq)-sin_theta*CM.Column(Ip);
}
}else{
exitloop = true;
}
}
}
}//while loop
if(ctr_itt > opts.maxNumItt.value()){
cerr << " No convergence after " << ctr_itt <<" steps "<<endl;
} else {
message(" Convergence after " << ctr_itt <<" steps " << endl << endl);
no_convergence = false;
{Matrix temp(melodat.get_dewhite() * redUMM);
melodat.set_mix(temp);}
{Matrix temp(redUMM.t()*melodat.get_white());
melodat.set_unmix(temp);}
}
Matrix Res = Inp;
Res = 1;
for(int ctr_i = 1; ctr_i <= Inp.Ncols(); ctr_i++){
for(int ctr_j = 1; ctr_j <= Inp.Nrows(); ctr_j++){
message("Starting ICA estimation using " << opts.approach.value()
<< endl << endl);
dim = Data.Nrows();
samples = Data.Ncols();
no_convergence = true;
if(opts.approach.value()==string("symm") ||
opts.approach.value()==string("tica") ||
opts.approach.value()==string("parafac") ||
opts.approach.value()==string("concat"))
ica_fastica_symm(Data);
if(opts.approach.value()==string("defl"))
ica_fastica_defl(Data);
if(opts.approach.value()==string("jade"))
ica_jade(Data);
if(opts.approach.value()==string("maxent"))
ica_maxent(Data);
if(!no_convergence){//calculate the IC
Matrix temp(melodat.get_unmix()*melodat.get_Data());
// Add the mean time course again
// temp += melodat.get_unmix()*melodat.get_meanC()*ones(1,temp.Ncols());
//re-normalise the decomposition to std(mix)=1
Matrix scales;
scales = stdev(melodat.get_mix());
tmp = SP(melodat.get_mix(),ones(melodat.get_mix().Nrows(),1)*pow(scales,-1));
temp = SP(temp,scales.t()*ones(1,temp.Ncols()));
scales = scales.t();
melodat.set_mix(tmp);
melodat.set_ICstats(scales);
melodat.sort();
message("Calculating T- and S-modes " << endl);