Newer
Older
Christian F. Beckmann, FMRIB Analysis Group
Copyright (C) 2006-2013 University of Oxford */
/* CCOPYRIGHT */

Paul McCarthy
committed
#include <vector>
#include "libvis/miscplot.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"

Paul McCarthy
committed
#include "armawrap/newmat.h"

Paul McCarthy
committed
#include "utils/options.h"
#define message(msg) { \
if(verbose.value()) \
{ \
cout << msg; \
} \
}
#define dbgmsg(msg) { \
if(debug.value()) { \
cerr << msg << endl; } \
}
#define outMsize(msg,Mat) { \
if(debug.value()) \
cerr << " " << msg << " " <<Mat.Nrows() << " x " << Mat.Ncols() << endl; \
}
#define outM(msg,Mat) { \
if(verbose.value()) \
cout << " " << msg << " " <<Mat.Nrows() << " x " << Mat.Ncols() << endl; \
}

Paul McCarthy
committed
using namespace NEWMAT;
using namespace NEWIMAGE;
using namespace MISCPLOT;
using namespace MISCMATHS;
using namespace Utilities;
using namespace std;
namespace FSL_MVLM {
//Command-line output
// The two strings below specify the title and example usage that is
// printed out as the help or usage message
string title=string("fsl_mvlm (Version 1.0)")+
string("\nAuthor: Christian F. Beckmann \nCopyright(C) 2006-2013 University of Oxford\n")+
string(" \n Multivariate Linear Model regression on\n")+
string(" time courses and/or 3D/4D imges using SVD (PCA), PLS, normalised PLS, \n")+
string(" CVA, SVD-CVA or MLM\n\n");
string examples="fsl_mvlm -i <input> -o <output> [options]";
//Command line Options
Option<string> fnin(string("-i,--in"), string(""),
string(" input file name (text matrix or 3D/4D image file)"),
true, requires_argument);
Option<string> fnout(string("-o,--out"), string(""),
string("basename for output files "),
true, requires_argument);
Option<string> approach(string("-a,--alg"), string("PCA"),
string("algorithm for decomposition: PCA (or SVD; default), PLS, orthoPLS, CVA, SVD-CVA, MLM, NMF"),
false, requires_argument);
Option<string> fndesign(string("-d,--design"), string(""),
string("file name of the GLM design matrix (time courses or spatial maps)"),
false, requires_argument);
Option<string> fnmask(string("-m,--mask"), string(""),
string("mask image file name if input is image"),
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Option<bool> normdes(string("--des_norm"),FALSE,
string("switch on normalisation of the design matrix columns to unit std. deviation"),
false, no_argument);
Option<bool> perfvn(string("--vn"),FALSE,
string(" perform MELODIC variance-normalisation on data"),
false, no_argument);
Option<bool> perf_demean(string("--demean"),FALSE,
string("switch on de-meaning of design and data"),
false, no_argument);
Option<int> nmfdim(string("--nmf_dim"), 0,
string(" Number of underlying factors for NMF"),
false,requires_argument);
Option<int> nmfitt(string("--nmfitt"), 100,
string("number of NMF itterations (default 100)"),
false,requires_argument);
Option<int> help(string("-h,--help"), 0,
string("display this help text"),
false,no_argument);
Option<bool> verbose(string("-v,--verbose"),FALSE,
string("switch on verbose output"),
false, no_argument);
Option<bool> debug(string("--debug"),FALSE,
string("switch on debug output"),
false, no_argument, false);
// Output options
Option<string> outres(string("--out_res"),string(""),
string("output file name for residuals"),
false, requires_argument, false);
Option<string> outdata(string("--out_data"),string(""),
string("output file name for pre-processed data"),
false, requires_argument);
Option<string> outvnscales(string("--out_vnscales"),string(""),
string("output file name for scaling factors for variance normalisation"),
false, requires_argument);
//Globals
Melodic::basicGLM glm;
int voxels = 0;
Matrix data, tmpdata;
Matrix design;
Matrix meanR;
Matrix svd_X_U, svd_X_V, svd_Y_U, svd_Y_V;
DiagonalMatrix svd_X_D, svd_Y_D;
RowVector vnscales;
volume<float> mask;
////////////////////////////////////////////////////////////////////////////
// Local functions
void save4D(Matrix what, string fname){
if(what.Ncols()==data.Ncols()||what.Nrows()==data.Nrows()){
volume4D<float> tempVol;
if(what.Nrows()>what.Ncols())
tempVol.setmatrix(what.t(),mask);
else
tempVol.setmatrix(what,mask);
save_volume4D(tempVol,fname);
}
bool isimage(Matrix what){
if((voxels > 0)&&(what.Ncols()==voxels || what.Nrows()==voxels))
return TRUE;
else
return FALSE;
}
void saveit(Matrix what, string fname){
if(isimage(what))
save4D(what,fname);
else if(FslImageExists(fndesign.value()))
write_ascii_matrix(what.t(),fname);
else
write_ascii_matrix(what,fname);
int setup(){
dbgmsg(" In <setup>");
message(" Reading data " << fnin.value() << " ... ");
if(FslImageExists(fnin.value())){//read data
//input is 3D/4D vol
read_volume4D(tmpdata,fnin.value());
// create mask
if(fnmask.value()>""){
read_volume(mask,fnmask.value());
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: Mask image does not match input image" << endl;
return 1;
};
}else{
mask = tmpdata[0]*0.0+1.0;
data = tmpdata.matrix(mask);
voxels = data.Ncols();
if(perf_demean.value())
data = remmean(data,1);
if(perfvn.value())
vnscales = Melodic::varnorm(data);
else
data = read_ascii_matrix(fnin.value());
if(fndesign.value().length()>0){
message(" Reading design " << fndesign.value() << " ... ");
if(FslImageExists(fndesign.value())){//read design
volume4D<float> tmpdata;
read_volume4D(tmpdata,fndesign.value());
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: GLM design does not match input image in size" << endl;
return 1;
}
design = tmpdata.matrix(mask).t();
data = data.t();
}else{
design = read_ascii_matrix(fndesign.value());
}
message("done" << endl;);
}else
design = ones(data.Nrows(),1);
meanR=mean(data,1);
if(perf_demean.value()){
data = remmean(data,1);
design = remmean(design,1);
}
if(normdes.value())
design = SP(design,ones(design.Nrows(),1)*pow(stdev(design,1),-1));
SVD( design, svd_X_D, svd_X_U, svd_X_V );
if(approach.value()!=string("NMF")){
if(data.Nrows()>=data.Ncols())
SVD ( data, svd_Y_D, svd_Y_U, svd_Y_V );
else{
SVD ( data.t(), svd_Y_D, svd_Y_V, svd_Y_U );
}
if(fnout.value().length() == 0){
string basename = fnin.value();
basename = make_basename(basename);
fnout.set_T(basename+string("_mvlm_"));
}
outM("Data matrix : ", data);
outM("Design matrix : ", design);
dbgmsg(" initial SVD : ");
outMsize("svd_Y_U",svd_Y_U);
outMsize("svd_Y_V",svd_Y_V);
outMsize("svd_Y_D",svd_Y_D);
outMsize("svd_X_U",svd_X_U);
outMsize("svd_X_V",svd_X_V);
outMsize("svd_X_D",svd_X_D);
dbgmsg(" Leaving <setup>");
return 0;
}
void write_res(){
dbgmsg(" In <write_res>");
message(" Writing results ... ")
if(isimage(svd_Y_V)){
saveit(svd_Y_V,fnout.value()+string("maps"));
saveit(svd_Y_U,fnout.value()+string("tcs"));
}
else{
saveit(svd_Y_V.t(),fnout.value()+string("tcs"));
saveit(svd_Y_U,fnout.value()+string("maps"));
}
saveit(svd_Y_D.AsColumn(),fnout.value()+string("scales"));
if(outres.value()>"")
if(outdata.value()>"")
saveit(data,outdata.value());
if(outvnscales.value()>"")
saveit(vnscales,outvnscales.value());
message("done" << endl;);
dbgmsg(" Leaving <write_res>");
}
int do_work(int argc, char* argv[]) {
dbgmsg(" In <do_work>");
if(setup())
exit(1);
//modify data
//X = svd_X_U * svd_X_D * svd_X_V.t();
//Y = svd_Y_U * svd_Y_D * svd_Y_V.t();
//X'X = svd_X_V *pow(svd_X_D,2) * svd_X_V.t();
//(X'X)^(-1) = svd_X_V *pow(svd_X_D,-2) * svd_X_V.t()
//(X'X)^(-1/2) = svd_X_V *pow(svd_X_D,-1) * svd_X_V.t()
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
if(approach.value()==string("PLS")) {
message(" Using method : " << approach.value() << endl;);
data = design.t() * data;
}
if(approach.value()==string("orthoPLS")) {
message(" Using method : " << approach.value() << endl;);
data = (svd_X_V * svd_X_D.i() * svd_X_V.t()) * design.t() * data;
}
if(approach.value()==string("CVA")) {
message(" Using method : " << approach.value() << endl;);
data = design.t() * svd_Y_U * svd_Y_V.t();
data = (svd_X_V * svd_X_D.i() * svd_X_V.t() ) * data;
}
if(approach.value()==string("SVD-CVA")) {
message(" Using method : " << approach.value() << endl;);
tmpdata = data;
data = design.t() * svd_Y_U;
data = (svd_X_V * svd_X_D.i() * svd_X_V.t() ) * data;
}
if(approach.value()==string("MLM")) {
message(" Using method : " << approach.value() << endl;);
Matrix RE;
DiagonalMatrix RD;
SymmetricMatrix tmp;
tmp << cov(data.t());
EigenValues(tmp,RD,RE);
// S = RE * RD * RE.t()
tmp << sqrtm(svd_X_V * svd_X_D * svd_X_U.t() * RE * RD * RE.t() *svd_X_U * svd_X_D * svd_X_V.t());
data = tmp.i()*design.t() * data;
if( approach.value()!=string("MLM") && approach.value()!=string("CVA") && approach.value()!=string("PLS") &&
approach.value()!=string("SVD-CVA") && approach.value()!=string("orthoPLS") && approach.value()!=string("NMF"))
message(" Using method : PCA" << endl;);
//perform an SVD on data
outMsize(" New Data ", data);
if(approach.value()!=string("NMF")){
if(data.Nrows()>=data.Ncols())
SVD ( data, svd_Y_D, svd_Y_U, svd_Y_V );
else{
SVD ( data.t(), svd_Y_D, svd_Y_V, svd_Y_U );
svd_Y_U = svd_Y_U.t();
svd_Y_V = svd_Y_V.t();
dbgmsg(" Finished SVD : ");
outMsize("svd_Y_U",svd_Y_U);
outMsize("svd_Y_V",svd_Y_V);
outMsize("svd_Y_D",svd_Y_D);
svd_Y_V = sqrtm(svd_Y_D) * svd_Y_V;
svd_Y_U = svd_Y_U * sqrtm(svd_Y_D);
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
if(approach.value()==string("SVD-CVA"))
svd_Y_V = svd_Y_V *tmpdata;
}
else{ //NMF
float err, err_old;
Matrix Ratio, Diff;
if(nmfdim.value()==0)
nmfdim.set_T(data.Nrows());
message("Using "<< nmfdim.value() << " dimensions" << endl;);
svd_Y_U = unifrnd(data.Nrows(), nmfdim.value());
svd_Y_V = unifrnd(nmfdim.value(), data.Ncols());
// re-scale columns of svd_Y_U to unit amplitude
Ratio = pow(stdev(svd_Y_U),-1);
svd_Y_U = SP(svd_Y_U,ones(svd_Y_U.Nrows(),1)*Ratio);
Diff = data - svd_Y_U * svd_Y_V;
err = Diff.SumAbsoluteValue()/(data.Ncols()*data.Nrows());
for(int k=1; k< nmfitt.value(); k++)
{
// Ratio = SP(data,pow(svd_Y_U * svd_Y_V,-1));
// svd_Y_U = SP(svd_Y_U, Ratio * svd_Y_V.t());
// svd_Y_U = SP(svd_Y_U, pow( ones(svd_Y_U.Nrows(),1) * sum(svd_Y_U,1),-1));
// svd_Y_V = SP(svd_Y_V, svd_Y_U.t()* Ratio);
//
// Lee & Seung multiplicatice updates
Ratio = SP(svd_Y_U.t() * data, pow(svd_Y_U.t() * svd_Y_U * svd_Y_V ,-1));
svd_Y_V = SP(svd_Y_V,Ratio);
Ratio = SP(data * svd_Y_V.t(),pow(svd_Y_U * (svd_Y_V * svd_Y_V.t()),-1));
svd_Y_U = SP(svd_Y_U,Ratio);
// re-scale columns of svd_Y_U to unit amplitude
Ratio = pow(stdev(svd_Y_U),-1);
svd_Y_U = SP(svd_Y_U,ones(svd_Y_U.Nrows(),1)*Ratio);
Diff = data - svd_Y_U * svd_Y_V;
err_old = err;
err = Diff.SumSquare()/(data.Ncols()*data.Nrows());
message(" Error " << err << endl;);
}
}
write_res();
dbgmsg(" Leaving <do_work>");
return 0;
}
using namespace FSL_MVLM;
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
Tracer tr("main");
OptionParser options(title, examples);
try{
// must include all wanted options here (the order determines how
// the help message is printed)
options.add(fnin);
options.add(fnout);
options.add(approach);
options.add(fndesign);
options.add(fnmask);
options.add(normdes);
options.add(perfvn);
options.add(perf_demean);
options.add(nmfdim);
options.add(nmfitt);
options.add(help);
options.add(verbose);
options.add(debug);
options.add(outres);
options.add(outdata);
options.add(outvnscales);
options.parse_command_line(argc, argv);
// line below stops the program if the help was requested or
// a compulsory option was not set
if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){
options.usage();
exit(EXIT_FAILURE);
}else{
// Call the local functions
return do_work(argc,argv);
}
}
catch(X_OptionError& e){
options.usage();
cerr << endl << e.what() << endl;
exit(EXIT_FAILURE);
}
catch(std::exception &e){
cerr << e.what() << endl;
}