Newer
Older
Christian F. Beckmann, FMRIB Analysis Group
Copyright (C) 2006-2013 University of Oxford */

Paul McCarthy
committed
#include <vector>
#include "libvis/miscplot.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"

Paul McCarthy
committed
#include "armawrap/newmat.h"

Paul McCarthy
committed
#include "utils/options.h"

Paul McCarthy
committed
using namespace NEWMAT;
using namespace NEWIMAGE;
using namespace MISCPLOT;
using namespace MISCMATHS;
using namespace Utilities;
using namespace std;
namespace FSL_REGFILT {
// The two strings below specify the title and example usage that is
// printed out as the help or usage message
string title=string("fsl_regfilt")+
string("\nAuthor: Christian F. Beckmann \n Copyright(C) 2016-2013 University of Oxford\n")+
string(" Data de-noising by regressing out part of a design matrix\n")+
string(" using simple OLS regression on 4D images");
string examples="fsl_regfilt -i <input> -d <design> -f <component numbers or filter threshold> -o <out> [options]";
//Command line Options {
Option<string> fnin(string("-i,--in"), string(""),
string(" input file name (4D image)"),
true, requires_argument);
Option<string> fnout(string("-o,--out"), string(""),
string("output file name for the filtered data"),
true, requires_argument);
Option<string> fndesign(string("-d,--design"), string(""),
string("file name of the matrix with time courses (e.g. GLM design or MELODIC mixing matrix)"),
true, requires_argument);
Option<string> fnmask(string("-m,--mask"), string(""),
string("mask image file name"),
false, requires_argument);
Option<string> filter(string("-f,--filter"),string(""),
string("filter out part of the regression model, e.g. -f \"1,2,3\" "),
false, requires_argument);
Option<bool> freqfilt(string("-F,--freqfilt"),false,
string("filter out components based on high vs. low frequency content "),
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
Option<bool> freq_ic(string("--freq_ic"),true,
string("switch off IC Z-stats filtering as part of frequency filtering"),
false, no_argument);
Option<float> freq_ic_smooth(string("--freq_ic_smooth"),5.0,
string("smoothing width for IC Z-stats filtering as part of frequency filtering"),
false, no_argument);
Option<float> freqthresh(string("--fthresh"),0.15,
string("frequency threshold ratio - default: 0.15"),
false,requires_argument);
Option<float> freqthresh2(string("--fthresh2"),0.02,
string("frequency filter score threshold - default: 0.02"),
false,requires_argument);
Option<bool> verbose(string("-v"),FALSE,
string(" switch on diagnostic messages"),
false, no_argument);
Option<bool> aggressive(string("-a"),FALSE,
string(" switch on aggressive filtering (full instead of partial regression)"),
false, no_argument);
Option<bool> perfvn(string("--vn"),FALSE,
string(" perform variance-normalisation on data"),
false, no_argument);
Option<int> help(string("-h,--help"), 0,
string("display this help text"),
false,no_argument);
Option<bool> debug(string("--debug"), false,
string("switch on debug messages"),
false,no_argument,false);
// Output options
Option<string> outdata(string("--out_data"),string(""),
string("output file name for pre-processed data (prior to denoising)"),
false, requires_argument);
Option<string> outmix(string("--out_mix"),string(""),
string("output file name for new mixing matrix"),
false, requires_argument);
Option<string> outvnscales(string("--out_vnscales"),string(""),
string("output file name for scaling factors from variance normalisation"),
false, requires_argument);
/*
}
*/
//Globals {
int voxels = 0;
float TR;
Matrix data;
Matrix design;
Matrix fdesign;
Matrix meanR, meanC;
Matrix newData, newMix;
RowVector vnscales;
volume<float> mask;
volume<float> Mean;
vector<int> comps, ind;
vector<int>::iterator it;
/*
}
*/
////////////////////////////////////////////////////////////////////////////
// Local functions
void save4D(Matrix what, string fname){
if(what.Ncols()==data.Ncols()||what.Nrows()==data.Nrows()){
volume4D<float> tempVol;
if(what.Nrows()>what.Ncols())
tempVol.setmatrix(what.t(),mask);
else
tempVol.setmatrix(what,mask);
tempVol.setTR(TR);
save_volume4D(tempVol,fname);
}
bool isimage(Matrix what){
if((voxels > 0)&&(what.Ncols()==voxels || what.Nrows()==voxels))
return TRUE;
return FALSE;
void saveit(Matrix what, string fname){
if(isimage(what))
save4D(what,fname);
else
write_ascii_matrix(what,fname);
}
Matrix smooth_map(Matrix what, float howmuch){
volume4D<float> tempVol;
tempVol.setmatrix(what,mask);
tempVol= smooth(tempVol,howmuch);
Matrix out;
out = tempVol.matrix(mask);
return out;
}
int parse_filterstring() {
int ctr(0);
char *p;
char *tmpBuffer = new char [ strlen( filter.value().c_str() ) + 1 ];
const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?";
strcpy(tmpBuffer, filter.value().c_str());
p=strtok(tmpBuffer, discard);
ctr = atoi(p);
if(ctr>0 && ctr<=design.Ncols())
comps.push_back(ctr);
do {
p=strtok(NULL,discard);
if(p){
ctr = atoi(p);
if(ctr>0 && ctr<=design.Ncols())
comps.push_back(ctr);
}
} while(p);
delete[] tmpBuffer;
return 0;
}
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
int calc_freqindex(){
if(debug.value()) cerr << " In calc_freqindex " << endl;
fdesign = Melodic::calc_FFT(design);
if(debug.value()) cerr << " fdesign: " << fdesign.Nrows() << " x " << fdesign.Ncols() << endl;
int Nps = fdesign.Nrows();
float MAXf = 1/(2*TR);
float Nthresh = ceil(Nps * freqthresh.value()/MAXf);
if(debug.value()) cerr << " Nps: " << Nps << " MAXf: " << MAXf << " Nthresh: " << Nthresh << endl;
Matrix sum_ratio;
sum_ratio = SP(sum(fdesign.Rows(1,Nthresh),1),pow(sum(sum(fdesign.Rows(Nthresh+1,Nps))),-1));
sum_ratio /= (float)sum_ratio.MaximumAbsoluteValue();
if(debug.value()) cerr << " sum_ratio: " << sum_ratio << endl;
if(freq_ic.value()){
Matrix scores = zeros(1,design.Ncols());
{
Matrix ICs, noisestddev, stdNoisei,unmixMatrix;
unmixMatrix = pinv(design);
ICs = unmixMatrix * data;
noisestddev = stdev(data-design*ICs);
stdNoisei = pow(noisestddev*
std::sqrt((float)(data.Nrows()-1))/
std::sqrt((float)(data.Nrows()-ICs.Nrows())),-1);
ColumnVector diagvals;
diagvals = pow(diag( unmixMatrix*unmixMatrix.t()),-0.5);
ICs=smooth_map(SP(ICs,diagvals*stdNoisei),freq_ic_smooth.value());
ICs= SP(ICs,ones(ICs.Nrows(),1)*meanR);
volume4D<float> tempVol;
tempVol.setmatrix(ICs,mask);
tempVol.threshold(0.0);
for(int ctr = 0; ctr < design.Ncols(); ctr++ )
scores(1,ctr+1) = tempVol[ctr].percentile(0.99,mask);
scores/=scores.MaximumAbsoluteValue();
scores-=scores.MinimumAbsoluteValue();
if(debug.value()) cerr << " initial scores: " << scores << endl;
}
scores = SP(scores,sum_ratio);
scores /= scores.Maximum();
if(debug.value()) cerr << " scores: " << scores << endl;
for(int ctr = 1; ctr <= design.Ncols(); ctr++ )
if(scores(1,ctr) < freqthresh2.value())
comps.push_back(ctr);
return 0;
}
int get_comp(){
if(filter.value().length()>0 && parse_filterstring())
return 1;
if(freqfilt.value() && calc_freqindex())
return 1;
//sort and remove duplicates
sort (comps.begin(), comps.end());
it = unique (comps.begin(), comps.end());
comps.resize( it - comps.begin() );
if(debug.value()){
for (it=comps.begin(); it!=comps.end(); ++it)
cout << " " << *it;
cout << endl;
return 0;
}
int dofilter(){
if(verbose.value())
cout << " Calculating maps " << endl;
Matrix unmixMatrix = pinv(design);
Matrix maps = unmixMatrix * data;
Matrix noisedes;
Matrix noisemaps;
noisedes = design.Column(comps.at(0));
noisemaps = maps.Row(comps.at(0)).t();
for(int ctr = 1; ctr < (int)comps.size();++ctr){
noisedes |= design.Column(comps.at(ctr));
noisemaps |= maps.Row(comps.at(ctr)).t();
}
if(debug.value()) cerr << " noisedes " << noisedes.Nrows() << " x " << noisedes.Ncols() << endl;
if(verbose.value())
cout << " Calculating filtered data " << endl;
if(aggressive.value())
newData = data - noisedes * (pinv(noisedes)*data);
else
newData = data - noisedes * noisemaps.t();
if(perfvn.value())
newData = SP(newData,ones(newData.Nrows(),1)*vnscales);
newData = newData + ones(newData.Nrows(),1)*meanR;
for(int ctr = 1; ctr <= design.Ncols();++ctr)
ind.push_back(ctr);
for(int ctr = 0; ctr < (int)comps.size();++ctr)
it=remove(ind.begin(),ind.end(),comps.at(ctr));
ind.resize(design.Ncols()-comps.size());
if(debug.value()){
for (it=ind.begin(); it!=ind.end(); ++it)
cout << " " << *it;
cout << endl;
}
if(ind.size()>0){
newMix=design.Column(ind.at(0));
for(int ctr = 1; ctr < (int)ind.size();++ctr)
newMix |= design.Column(ind.at(ctr));
newMix = newMix - noisedes * (pinv(noisedes)*newMix);
if(debug.value())
cerr << " newMix " << newMix.Nrows() << " x " << newMix.Ncols() << endl;
}
return 0;
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
int setup(){
if(FslFileExists(fnin.value())){//read data
//input is 3D/4D vol
volume4D<float> tmpdata;
read_volume4D(tmpdata,fnin.value());
TR=tmpdata.TR();
// create mask
if(fnmask.value()>""){
read_volume(mask,fnmask.value());
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: Mask image does not match input image" << endl;
return 1;
};
}else{
if(verbose.value())
cout << " Creating mask image " << endl;
Mean = meanvol(tmpdata);
float Mmin, Mmax;
Mmin = Mean.min(); Mmax = Mean.max();
mask = binarise(Mean,float(Mmin + 0.01* (Mmax-Mmin)),Mmax);
}
data = tmpdata.matrix(mask);
voxels = data.Ncols();
if(verbose.value())
cout << " Data matrix size : " << data.Nrows() << " x " << voxels << endl;
cerr << "ERROR: cannot read input image " << fnin.value()<<endl;
return 1;
design = read_ascii_matrix(fndesign.value());
if(!isimage(data)){
cerr << "ERROR: need to specify 4D input to use filtering" << endl;
return 1;
}
meanR=mean(data,1);
data = remmean(data,1);
meanC=mean(design,1);
design = remmean(design,1);
if(perfvn.value())
vnscales = Melodic::varnorm(data);
if(debug.value()) cerr << " data: " << data.Nrows() << " x " << data.Ncols() << endl;
if(debug.value()) cerr << " design: " << design.Nrows() << " x " << design.Ncols() << endl;
return 0;
}
void write_res(){
saveit(newData,fnout.value());
if(outdata.value()>"")
saveit(data,outdata.value());
if(outvnscales.value()>"")
saveit(vnscales,outvnscales.value());
if(outmix.value()>"" && newMix.Storage()>0)
saveit(newMix,outmix.value());
}
int do_work(int argc, char* argv[]) {
if(setup())
exit(1);
if(get_comp())
exit(1);
if(dofilter())
exit(1);
write_res();
return 0;
}
using namespace FSL_REGFILT;
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
Tracer tr("main");
OptionParser options(title, examples);
try{
// must include all wanted options here (the order determines how
// the help message is printed)
options.add(fnin);
options.add(fnout);
options.add(fndesign);
options.add(fnmask);
options.add(filter);
options.add(freqfilt);
options.add(freq_ic);
options.add(freq_ic_smooth);
options.add(freqthresh);
options.add(freqthresh2);
options.add(perfvn);
options.add(verbose);
options.add(aggressive);
options.add(help);
options.add(debug);
options.add(outdata);
options.add(outmix);
options.add(outvnscales);
options.parse_command_line(argc, argv);
// line below stops the program if the help was requested or
// a compulsory option was not set
if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){
options.usage();
exit(EXIT_FAILURE);
}else{
// Call the local functions
return do_work(argc,argv);
}
}catch(X_OptionError& e) {
options.usage();
cerr << endl << e.what() << endl;
exit(EXIT_FAILURE);
}catch(std::exception &e) {
cerr << e.what() << endl;
}