Newer
Older
/* fsl_glm -
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 2006-2008 University of Oxford */
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/* Part of FSL - FMRIB's Software Library
http://www.fmrib.ox.ac.uk/fsl
fsl@fmrib.ox.ac.uk
Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance
Imaging of the Brain), Department of Clinical Neurology, Oxford
University, Oxford, UK
LICENCE
FMRIB Software Library, Release 4.0 (c) 2007, The University of
Oxford (the "Software")
The Software remains the property of the University of Oxford ("the
University").
The Software is distributed "AS IS" under this Licence solely for
non-commercial use in the hope that it will be useful, but in order
that the University as a charitable foundation protects its assets for
the benefit of its educational and research purposes, the University
makes clear that no condition is made or to be implied, nor is any
warranty given or to be implied, as to the accuracy of the Software,
or that it will be suitable for any particular purpose or for use
under any specific conditions. Furthermore, the University disclaims
all responsibility for the use which is made of the Software. It
further disclaims any liability for the outcomes arising from using
the Software.
The Licensee agrees to indemnify the University and hold the
University harmless from and against any and all claims, damages and
liabilities asserted by third parties (including claims for
negligence) which arise directly or indirectly from the use of the
Software or the sale of any products based on the Software.
No part of the Software may be reproduced, modified, transmitted or
transferred in any form or by any means, electronic or mechanical,
without the express permission of the University. The permission of
the University is not required if the said reproduction, modification,
transmission or transference is done without financial return, the
conditions of this Licence are imposed upon the receiver of the
product, and all original and amended source code is included in any
transmitted product. You may be held legally responsible for any
copyright infringement that is caused or encouraged by your failure to
abide by these terms and conditions.
You are not permitted under this Licence to use this Software
commercially. Use for which any financial return is received shall be
defined as commercial use, and includes (1) integration of all or part
of the source code or the Software into a product for sale or license
by or on behalf of Licensee to third parties or (2) use of the
Software or any derivative of it for research with the final aim of
developing software products for sale or license to a third party or
(3) use of the Software or any derivative of it for research with the
final aim of developing non-software products for sale or license to a
third party, or (4) use of the Software to provide any service to an
external organisation for which payment is received. If you are
interested in using the Software commercially, please contact Isis
Innovation Limited ("Isis"), the technology transfer company of the
University, to negotiate a licence. Contact details are:
innovation@isis.ox.ac.uk quoting reference DE/1112. */
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
//Header & includes
#include "libvis/miscplot.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include "utils/options.h"
#include <vector>
#include "newimage/newimageall.h"
#include "melhlprfns.h"
#define message(msg) { \
if(verbose.value()) \
{ \
cout << msg; \
} \
}
#define dbgmsg(msg) { \
if(debug.value()) {\
cerr << msg << endl; } \
}
#define outMsize(msg,Mat) { \
if(debug.value()) \
cerr << " " << msg << " " <<Mat.Nrows() << " x " << Mat.Ncols() << endl; \
}
#define outM(msg,Mat) { \
if(verbose.value()) \
cout << " " << msg << " " <<Mat.Nrows() << " x " << Mat.Ncols() << endl; \
}
using namespace MISCPLOT;
using namespace MISCMATHS;
using namespace Utilities;
using namespace std;
//Command-line output
// The two strings below specify the title and example usage that is
// printed out as the help or usage message
string title=string("fsl_mvlm (Version 1.0)")+
string("\nCopyright(c) 2008, University of Oxford (Christian F. Beckmann)\n")+
string(" \n Multivariate Linear Model regression on\n")+
string(" time courses and/or 3D/4D imges using SVD (PCA), PLS, normalised PLS, \n")+
string(" CVA, SVD-CVA or MLM\n\n");
string examples="fsl_mvlm -i <input> -o <output> [options]";
//Command line Options
Option<string> fnin(string("-i,--in"), string(""),
string(" input file name (text matrix or 3D/4D image file)"),
true, requires_argument);
Option<string> fnout(string("-o,--out"), string(""),
string("basename for output files "),
true, requires_argument);
Option<string> approach(string("-a,--alg"), string("PCA"),
string("algorithm for decomposition: PCA (or SVD; default), PLS, orthoPLS, CVA, SVD-CVA, MLM, NMF"),
false, requires_argument);
Option<string> fndesign(string("-d,--design"), string(""),
string("file name of the GLM design matrix (time courses or spatial maps)"),
false, requires_argument);
Option<string> fnmask(string("-m,--mask"), string(""),
string("mask image file name if input is image"),
false, requires_argument);
Option<bool> normdes(string("--des_norm"),FALSE,
string("switch on normalisation of the design matrix columns to unit std. deviation"),
false, no_argument);
Option<bool> perfvn(string("--vn"),FALSE,
string(" perform MELODIC variance-normalisation on data"),
false, no_argument);
Option<bool> perf_demean(string("--demean"),FALSE,
string("switch on de-meaning of design and data"),
false, no_argument);
Option<int> nmfdim(string("--nmf_dim"), 0,
string(" Number of underlying factors for NMF"),
false,requires_argument);
Option<int> nmfitt(string("--nmfitt"), 100,
string("number of NMF itterations (default 100)"),
false,requires_argument);
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
Option<int> help(string("-h,--help"), 0,
string("display this help text"),
false,no_argument);
Option<bool> verbose(string("-v,--verbose"),FALSE,
string("switch on verbose output"),
false, no_argument);
Option<bool> debug(string("--debug"),FALSE,
string("switch on debug output"),
false, no_argument, false);
// Output options
Option<string> outres(string("--out_res"),string(""),
string("output file name for residuals"),
false, requires_argument, false);
Option<string> outdata(string("--out_data"),string(""),
string("output file name for pre-processed data"),
false, requires_argument);
Option<string> outvnscales(string("--out_vnscales"),string(""),
string("output file name for scaling factors for variance normalisation"),
false, requires_argument);
//Globals
Melodic::basicGLM glm;
int voxels = 0;
Matrix data, tmpdata;
Matrix design;
Matrix meanR;
Matrix svd_X_U, svd_X_V, svd_Y_U, svd_Y_V;
DiagonalMatrix svd_X_D, svd_Y_D;
RowVector vnscales;
////////////////////////////////////////////////////////////////////////////
// Local functions
void save4D(Matrix what, string fname){
if(what.Ncols()==data.Ncols()||what.Nrows()==data.Nrows()){
volume4D<float> tempVol;
if(what.Nrows()>what.Ncols())
tempVol.setmatrix(what.t(),mask);
else
tempVol.setmatrix(what,mask);
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
}
}
bool isimage(Matrix what){
if((voxels > 0)&&(what.Ncols()==voxels || what.Nrows()==voxels))
return TRUE;
else
return FALSE;
}
void saveit(Matrix what, string fname){
if(isimage(what))
save4D(what,fname);
else if(fsl_imageexists(fndesign.value()))
write_ascii_matrix(what.t(),fname);
else
write_ascii_matrix(what,fname);
}
int setup(){
dbgmsg(" In <setup>");
message(" Reading data " << fnin.value() << " ... ");
if(fsl_imageexists(fnin.value())){//read data
//input is 3D/4D vol
volume4D<float> tmpdata;
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// create mask
if(fnmask.value()>""){
read_volume(mask,fnmask.value());
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: Mask image does not match input image" << endl;
return 1;
};
}else{
mask = tmpdata[0]*0.0+1.0;
}
data = tmpdata.matrix(mask);
voxels = data.Ncols();
if(perf_demean.value())
data = remmean(data,1);
if(perfvn.value())
vnscales = Melodic::varnorm(data);
}
else
data = read_ascii_matrix(fnin.value());
message("done" << endl;);
if(fndesign.value().length()>0){
message(" Reading design " << fndesign.value() << " ... ");
if(fsl_imageexists(fndesign.value())){//read design
volume4D<float> tmpdata;
read_volume4D(tmpdata,fndesign.value());
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: GLM design does not match input image in size" << endl;
return 1;
}
design = tmpdata.matrix(mask).t();
data = data.t();
}else{
design = read_ascii_matrix(fndesign.value());
}
message("done" << endl;);
}else
design = ones(data.Nrows(),1);
meanR=mean(data,1);
if(perf_demean.value()){
data = remmean(data,1);
design = remmean(design,1);
}
if(normdes.value())
design = SP(design,ones(design.Nrows(),1)*pow(stdev(design,1),-1));
SVD( design, svd_X_D, svd_X_U, svd_X_V );
if(approach.value()!=string("NMF")){
if(data.Nrows()>=data.Ncols())
SVD ( data, svd_Y_D, svd_Y_U, svd_Y_V );
else{
SVD ( data.t(), svd_Y_D, svd_Y_V, svd_Y_U );
}
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
}
if(fnout.value().length() == 0){
string basename = fnin.value();
basename = make_basename(basename);
fnout.set_T(basename+string("_mvlm_"));
}
outM("Data matrix : ", data);
outM("Design matrix : ", design);
dbgmsg(" initial SVD : ");
outMsize("svd_Y_U",svd_Y_U);
outMsize("svd_Y_V",svd_Y_V);
outMsize("svd_Y_D",svd_Y_D);
outMsize("svd_X_U",svd_X_U);
outMsize("svd_X_V",svd_X_V);
outMsize("svd_X_D",svd_X_D);
dbgmsg(" Leaving <setup>");
return 0;
}
void write_res(){
dbgmsg(" In <write_res>");
message(" Writing results ... ")
if(isimage(svd_Y_V)){
saveit(svd_Y_V,fnout.value()+string("maps"));
saveit(svd_Y_U,fnout.value()+string("tcs"));
}
else{
saveit(svd_Y_V.t(),fnout.value()+string("tcs"));
saveit(svd_Y_U,fnout.value()+string("maps"));
}
saveit(svd_Y_D.AsColumn(),fnout.value()+string("scales"));
if(outres.value()>"")
if(outdata.value()>"")
saveit(data,outdata.value());
if(outvnscales.value()>"")
saveit(vnscales,outvnscales.value());
message("done" << endl;);
dbgmsg(" Leaving <write_res>");
}
int do_work(int argc, char* argv[]) {
dbgmsg(" In <do_work>");
if(setup())
exit(1);
//modify data
//X = svd_X_U * svd_X_D * svd_X_V.t();
//Y = svd_Y_U * svd_Y_D * svd_Y_V.t();
//X'X = svd_X_V *pow(svd_X_D,2) * svd_X_V.t();
//(X'X)^(-1) = svd_X_V *pow(svd_X_D,-2) * svd_X_V.t()
//(X'X)^(-1/2) = svd_X_V *pow(svd_X_D,-1) * svd_X_V.t()
if(approach.value()==string("PLS")) {
message(" Using method : " << approach.value() << endl;);
data = design.t() * data;
}
if(approach.value()==string("orthoPLS")) {
message(" Using method : " << approach.value() << endl;);
data = (svd_X_V * svd_X_D.i() * svd_X_V.t()) * design.t() * data;
}
if(approach.value()==string("CVA")) {
message(" Using method : " << approach.value() << endl;);
data = design.t() * svd_Y_U * svd_Y_V.t();
data = (svd_X_V * svd_X_D.i() * svd_X_V.t() ) * data;
}
if(approach.value()==string("SVD-CVA")) {
message(" Using method : " << approach.value() << endl;);
tmpdata = data;
data = design.t() * svd_Y_U;
data = (svd_X_V * svd_X_D.i() * svd_X_V.t() ) * data;
}
if(approach.value()==string("MLM")) {
message(" Using method : " << approach.value() << endl;);
Matrix RE;
DiagonalMatrix RD;
SymmetricMatrix tmp;
tmp << cov(data.t());
EigenValues(tmp,RD,RE);
// S = RE * RD * RE.t()
tmp << sqrtm(svd_X_V * svd_X_D * svd_X_U.t() * RE * RD * RE.t() *svd_X_U * svd_X_D * svd_X_V.t());
data = tmp.i()*design.t() * data;
}
if( approach.value()!=string("MLM") && approach.value()!=string("CVA") && approach.value()!=string("PLS") &&
approach.value()!=string("SVD-CVA") && approach.value()!=string("orthoPLS") && approach.value()!=string("NMF"))
message(" Using method : PCA" << endl;);
//perform an SVD on data
outMsize(" New Data ", data);
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
if(approach.value()!=string("NMF")){
if(data.Nrows()>=data.Ncols())
SVD ( data, svd_Y_D, svd_Y_U, svd_Y_V );
else{
SVD ( data.t(), svd_Y_D, svd_Y_V, svd_Y_U );
svd_Y_U = svd_Y_U.t();
svd_Y_V = svd_Y_V.t();
}
dbgmsg(" Finished SVD : ");
outMsize("svd_Y_U",svd_Y_U);
outMsize("svd_Y_V",svd_Y_V);
outMsize("svd_Y_D",svd_Y_D);
svd_Y_V = sqrtm(svd_Y_D) * svd_Y_V;
svd_Y_U = svd_Y_U * sqrtm(svd_Y_D);
if(approach.value()==string("SVD-CVA"))
svd_Y_V = svd_Y_V *tmpdata;
}
else{ //NMF
float err, err_old;
Matrix Ratio, Diff;
if(nmfdim.value()==0)
nmfdim.set_T(data.Nrows());
message("Using "<< nmfdim.value() << " dimensions" << endl;);
svd_Y_U = unifrnd(data.Nrows(), nmfdim.value());
svd_Y_V = unifrnd(nmfdim.value(), data.Ncols());
// re-scale columns of svd_Y_U to unit amplitude
Ratio = pow(stdev(svd_Y_U),-1);
svd_Y_U = SP(svd_Y_U,ones(svd_Y_U.Nrows(),1)*Ratio);
Diff = data - svd_Y_U * svd_Y_V;
err = Diff.SumAbsoluteValue()/(data.Ncols()*data.Nrows());
for(int k=1; k< nmfitt.value(); k++)
{
// Ratio = SP(data,pow(svd_Y_U * svd_Y_V,-1));
// svd_Y_U = SP(svd_Y_U, Ratio * svd_Y_V.t());
// svd_Y_U = SP(svd_Y_U, pow( ones(svd_Y_U.Nrows(),1) * sum(svd_Y_U,1),-1));
// svd_Y_V = SP(svd_Y_V, svd_Y_U.t()* Ratio);
//
// Lee & Seung multiplicatice updates
Ratio = SP(svd_Y_U.t() * data, pow(svd_Y_U.t() * svd_Y_U * svd_Y_V ,-1));
svd_Y_V = SP(svd_Y_V,Ratio);
Ratio = SP(data * svd_Y_V.t(),pow(svd_Y_U * (svd_Y_V * svd_Y_V.t()),-1));
svd_Y_U = SP(svd_Y_U,Ratio);
// re-scale columns of svd_Y_U to unit amplitude
Ratio = pow(stdev(svd_Y_U),-1);
svd_Y_U = SP(svd_Y_U,ones(svd_Y_U.Nrows(),1)*Ratio);
Diff = data - svd_Y_U * svd_Y_V;
err_old = err;
err = Diff.SumSquare()/(data.Ncols()*data.Nrows());
message(" Error " << err << endl;);
}
}
write_res();
dbgmsg(" Leaving <do_work>");
return 0;
}
////////////////////////////////////////////////////////////////////////////
int main(int argc,char *argv[]){
Tracer tr("main");
OptionParser options(title, examples);
try{
// must include all wanted options here (the order determines how
// the help message is printed)
options.add(fnin);
options.add(fnout);
options.add(approach);
options.add(fndesign);
options.add(fnmask);
options.add(normdes);
options.add(perfvn);
options.add(perf_demean);
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
options.add(help);
options.add(verbose);
options.add(debug);
options.add(outres);
options.add(outdata);
options.add(outvnscales);
options.parse_command_line(argc, argv);
// line below stops the program if the help was requested or
// a compulsory option was not set
if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){
options.usage();
exit(EXIT_FAILURE);
}else{
// Call the local functions
return do_work(argc,argv);
}
}
catch(X_OptionError& e){
options.usage();
cerr << endl << e.what() << endl;
exit(EXIT_FAILURE);
}
catch(std::exception &e){
cerr << e.what() << endl;
}
}