Newer
Older
/* MELODIC - Multivariate exploratory linear optimized decomposition into
independent components
melodic.cc - main program file
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 1999-2008 University of Oxford */
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/* Part of FSL - FMRIB's Software Library
http://www.fmrib.ox.ac.uk/fsl
fsl@fmrib.ox.ac.uk
Developed at FMRIB (Oxford Centre for Functional Magnetic Resonance
Imaging of the Brain), Department of Clinical Neurology, Oxford
University, Oxford, UK
LICENCE
FMRIB Software Library, Release 4.0 (c) 2007, The University of
Oxford (the "Software")
The Software remains the property of the University of Oxford ("the
University").
The Software is distributed "AS IS" under this Licence solely for
non-commercial use in the hope that it will be useful, but in order
that the University as a charitable foundation protects its assets for
the benefit of its educational and research purposes, the University
makes clear that no condition is made or to be implied, nor is any
warranty given or to be implied, as to the accuracy of the Software,
or that it will be suitable for any particular purpose or for use
under any specific conditions. Furthermore, the University disclaims
all responsibility for the use which is made of the Software. It
further disclaims any liability for the outcomes arising from using
the Software.
The Licensee agrees to indemnify the University and hold the
University harmless from and against any and all claims, damages and
liabilities asserted by third parties (including claims for
negligence) which arise directly or indirectly from the use of the
Software or the sale of any products based on the Software.
No part of the Software may be reproduced, modified, transmitted or
transferred in any form or by any means, electronic or mechanical,
without the express permission of the University. The permission of
the University is not required if the said reproduction, modification,
transmission or transference is done without financial return, the
conditions of this Licence are imposed upon the receiver of the
product, and all original and amended source code is included in any
transmitted product. You may be held legally responsible for any
copyright infringement that is caused or encouraged by your failure to
abide by these terms and conditions.
You are not permitted under this Licence to use this Software
commercially. Use for which any financial return is received shall be
defined as commercial use, and includes (1) integration of all or part
of the source code or the Software into a product for sale or license
by or on behalf of Licensee to third parties or (2) use of the
Software or any derivative of it for research with the final aim of
developing software products for sale or license to a third party or
(3) use of the Software or any derivative of it for research with the
final aim of developing non-software products for sale or license to a
third party, or (4) use of the Software to provide any service to an
external organisation for which payment is received. If you are
interested in using the Software commercially, please contact Isis
Innovation Limited ("Isis"), the technology transfer company of the
University, to negotiate a licence. Contact details are:
innovation@isis.ox.ac.uk quoting reference DE/1112. */
#include "newmatap.h"
#include "newmatio.h"
#include "newimage/newimageall.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include "utils/options.h"
#include "utils/log.h"
#include "meloptions.h"
#include "meldata.h"
#include "melpca.h"
#include "melica.h"
#include "melodic.h"
#include "melreport.h"
#include "melgmix.h"
using namespace Utilities;
using namespace NEWMAT;
using namespace NEWIMAGE;
using namespace Melodic;
using namespace MISCPLOT;
string myfloat2str(float f, int width, int prec, bool scientif){
ostringstream os;
int redw = int(std::abs(std::log10(std::abs(f))))+1;
if(width>0)
os.width(width);
if(scientif)
os.setf(ios::scientific);
os.precision(redw+std::abs(prec));
os.setf(ios::internal, ios::adjustfield);
os << f;
return os.str();
}
Matrix mmall(Log& logger, MelodicOptions& opts,
MelodicData& melodat, MelodicReport& report, Matrix& probs);
void mmonly(Log& logger, MelodicOptions& opts,
MelodicData& melodat, MelodicReport& report);
try{
// Setup logging:
Log& logger = LogSingleton::getInstance();
// parse command line - will output arguments to logfile
MelodicOptions& opts = MelodicOptions::getInstance();
opts.parse_command_line(argc, argv, logger, Melodic::version);
//set up data object
MelodicData melodat(opts,logger);
MelodicReport report(melodat,opts,logger);
if (opts.filtermode || opts.filtermix.value().length()>0){
if(opts.filtermode){ // just filter out some noise from a previous run
if(opts.debug.value())
message(" Denoising data setup completed "<< endl);
int retry = 0;
bool no_conv;
bool leaveloop = false;
melodat.setup();
do{
//do PCA pre-processing
MelodicPCA pcaobj(melodat,opts,logger,report);
pcaobj.perf_pca();
pcaobj.perf_white();
//do ICA
MelodicICA icaobj(melodat,opts,logger,report);
icaobj.perf_ica(melodat.get_white()*melodat.get_Data());
no_conv = icaobj.no_convergence;
opts.maxNumItt.set_T(500);
if((opts.approach.value()=="symm")&&(retry > std::min(opts.retrystep,3)))
{
if(no_conv){
retry++;
opts.approach.set_T("defl");
message(endl << "Restarting MELODIC using deflation approach"
<< endl << endl);
if(no_conv){
retry++;
if(opts.pca_dim.value()-retry*opts.retrystep >
0.1*melodat.data_dim()){
opts.pca_dim.set_T(opts.pca_dim.value()-retry*opts.retrystep);
}
else{
if(opts.pca_dim.value()+retry*opts.retrystep < melodat.data_dim()){
opts.pca_dim.set_T(opts.pca_dim.value()+retry*opts.retrystep);
}else{
leaveloop = true; //stupid, but break does not compile
//on all platforms
}
}
if(!leaveloop){
if(opts.paradigmfname.value().length()>0)
opts.pca_dim.set_T(std::max(opts.pca_dim.value(),melodat.get_param().Ncols()+3*opts.retrystep-1));
message(endl << "Restarting MELODIC using -d "
<< opts.pca_dim.value()
<< endl << endl);
}
} while (no_conv && retry<opts.maxRestart.value() && !leaveloop);
if(!no_conv){
//save raw IC results
melodat.save();
Matrix pmaps;//(melodat.get_IC());
Matrix mmres;
message("Creating report index page ...");
if( bool(opts.genreport.value()) ){
report.analysistxt();
if(melodat.get_numfiles()>1)
report.Smode_rep();
report.PPCA_rep();
}
if(opts.perf_mm.value())
mmres = mmall(logger,opts,melodat,report,pmaps);
else{
if( bool(opts.genreport.value()) ){
message(endl
<< "Creating web report in " << report.getDir()
<< " " << endl);
for(int ctr=1; ctr<= melodat.get_IC().Nrows(); ctr++){
string prefix = "IC_"+num2str(ctr);
message(" " << ctr);
report.IC_simplerep(prefix,ctr,melodat.get_IC().Nrows());
}
message(endl << endl <<
" To view the output report point your web browser at " <<
report.getDir() + "/00index.html" << endl<< endl);
}
}
message("finished!" << endl << endl);
}
message(endl <<"No convergence -- giving up " << endl << endl);
return 0;
}
void mmonly(Log& logger, MelodicOptions& opts,
Matrix ICs;
Matrix mixMatrix;
Matrix fmixMatrix;
volume<float> Mask;
volume<float> Mean;
{
volume4D<float> RawData;
message("Reading data file " << opts.inputfname.value().at(0) << " ... ");
read_volume4D(RawData,opts.inputfname.value().at(0));
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
message(" done" << endl);
Mean = meanvol(RawData);
}
{
volume4D<float> RawIC;
message("Reading components " << opts.ICsfname.value() << " ... ");
read_volume4D(RawIC,opts.ICsfname.value());
message(" done" << endl);
message("Creating mask ... ");
Mask = binarise(RawIC[0],float(RawIC[0].min()),float(RawIC[0].max()));
ICs = RawIC.matrix(Mask);
if(ICs.Nrows()>1){
Matrix DStDev=stdev(ICs);
volume4D<float> tmpMask;
tmpMask.setmatrix(DStDev,Mask);
float tMmax;
volume<float> tmpMask2;
tmpMask2 = tmpMask[0];
tMmax = tmpMask2.max();
double st_mean = DStDev.Sum()/DStDev.Ncols();
double st_std = stdev(DStDev.t()).AsScalar();
Mask = binarise(tmpMask2,(float) max((float) st_mean-3*st_std,
(float) 0.01*st_mean),tMmax);
ICs = RawIC.matrix(Mask);
}
else{
Mask = binarise(RawIC[0],float(0.001),float(RawIC[0].max()))
+ binarise(RawIC[0],float(RawIC[0].min()),float(-0.001));
ICs = RawIC.matrix(Mask);
}
//cerr << "ICs : " << ICs.Ncols() << ICs.Nrows() << endl;
message(" done" << endl);
}
message("Reading mixing matrix " << opts.filtermix.value() << " ... ");
mixMatrix = read_ascii_matrix(opts.filtermix.value());
if (mixMatrix.Storage()<=0) {
cerr <<" Please specify the mixing matrix correctly" << endl;
exit(2);
}
message(" done" << endl);
if(opts.smodename.value().length() > 0){
message("Reading matrix of subject modes: " << opts.smodename.value());
Matrix tmp;
tmp = read_ascii_matrix(opts.smodename.value());
if (tmp.Storage()<=0) {
cerr <<" Please specify the mixing matrix correctly" << endl;
exit(2);
}
message(" done" << endl);
for (int ctr = 1; ctr <= tmp.Ncols(); ctr++){
Matrix tmp2 = tmp.Column(ctr);
melodat.add_Smodes(tmp2);
}
}
melodat.set_mask(Mask);
melodat.set_mean(Mean);
melodat.set_IC(ICs);
melodat.set_mix(mixMatrix);
fmixMatrix = calc_FFT(mixMatrix, opts.logPower.value());
melodat.set_fmix(fmixMatrix);
fmixMatrix = pinv(mixMatrix);
melodat.set_unmix(fmixMatrix);
// write_ascii_matrix("ICs",ICs);
Matrix mmres;
Matrix pmaps;//(ICs);
Matrix mmall(Log& logger, MelodicOptions& opts,MelodicData& melodat, MelodicReport& report, Matrix& pmaps){
Matrix mmpars(5*melodat.get_IC().Nrows(),5);
mmpars = 0;
Log stats;
if(opts.output_MMstats.value()){
stats.makeDir(logger.appendDir("stats"),"stats.log");
}
message(endl
<< "Running Mixture Modelling on Z-transformed IC maps ..."
<< endl);
ColumnVector diagvals;
diagvals=pow(diag(melodat.get_unmix()*melodat.get_unmix().t()),-0.5);
for(int ctr=1; ctr <= melodat.get_IC().Nrows(); ctr++){
MelGMix mixmod(opts, logger);
message(" IC map " << ctr << " ... "<< endl;);
Matrix ICmap;
dbgmsg(" stdNoisei max : "<< melodat.get_stdNoisei().Maximum() <<" "<< melodat.get_stdNoisei().Minimum() << endl);
if(opts.varnorm.value()&&melodat.get_stdNoisei().Storage()>0){
ICmap = SP(melodat.get_IC().Row(ctr),diagvals(ctr)*melodat.get_stdNoisei());
string wherelog;
if(opts.genreport.value())
wherelog = report.getDir();
else
wherelog = logger.getDir();
dbgmsg(" ICmap max : "<< mean(ICmap,2).AsScalar() << endl);
wherelog,ctr,
melodat.get_mask(),
melodat.get_mean(),3);
mixmod.fit("GGM");
if(opts.output_MMstats.value()){
//re-scale spatial maps to mean 0 for nht
if(opts.rescale_nht.value()){
message(" re-scaling spatial maps ... "<< endl);
RowVector tmp;
tmp = mixmod.get_means();
float dmean = tmp(1);
tmp = mixmod.get_vars();
float dstdev = sqrt(tmp(1));
tmp = (mixmod.get_means() - dmean)/dstdev;
mixmod.set_means(tmp);
tmp = (mixmod.get_vars() / (dstdev*dstdev));
mixmod.set_vars(tmp);
//tmp = (mixmod.get_data() - dmean)/dstdev;
tmp = (ICmap - dmean)/dstdev;
mixmod.set_data(tmp);
//if(opts.varnorm.value()&&melodat.get_stdNoisei().Storage()>0)
// tmp = SP(tmp,pow(diagvals(ctr)*melodat.get_stdNoisei(),-1));
melodat.set_IC(ctr,tmp);
}
if(opts.smooth_probmap.value()<0.0){
message(" smoothing probability map ... "<< endl);
mixmod.smooth_probs(0.5*(std::min(std::min(std::abs(melodat.get_mean().xdim()),std::abs(melodat.get_mean().ydim())),std::abs(melodat.get_mean().zdim()))));
}
if(opts.smooth_probmap.value()>0.0){
message(" smoothing probability map ... "<< endl);
mixmod.smooth_probs(opts.smooth_probmap.value());
}
message(" thresholding ... "<< endl);
mixmod.threshold(opts.mmthresh.value());
Matrix tmp;
tmp=(mixmod.get_threshmaps().Row(1));
float posint = SP(tmp,gt(tmp,zeros(1,tmp.Ncols()))).Sum();
float negint = -SP(tmp,lt(tmp,zeros(1,tmp.Ncols()))).Sum();
if((posint<0.01)&&(negint<0.01)){
mixmod.clear_infstr();
mixmod.threshold("0.05n "+opts.mmthresh.value());
posint = SP(tmp,gt(tmp,zeros(1,tmp.Ncols()))).Sum();
negint = -SP(tmp,lt(tmp,zeros(1,tmp.Ncols()))).Sum();
}
if(negint>posint){//flip map
// melodat.flipres(ctr);
// mixmod.flipres(ctr);
}
//save mixture model stats
if(opts.output_MMstats.value()){
stats << " IC " << num2str(ctr) << " " << mixmod.get_type() << endl
<< " Means : " << mixmod.get_means() << endl
<< " Vars. : " << mixmod.get_vars() << endl
<< " Prop. : " << mixmod.get_pi() << endl << endl;
melodat.save4D(mixmod.get_threshmaps(),
string("stats/thresh_zstat")+num2str(ctr));
}
//save mmpars
// mmpars((ctr-1)*5+1,1) = ctr;
// if(mixmod.get_type()=="GGM")
// mmpars((ctr-1)*5+1,2) = 1.0;
// else
// mmpars((ctr-1)*5+1,2) = 0.0;
// mmpars((ctr-1)*5+1,2) = mixmod.get_means().Ncols();
// tmp = mixmod.get_means();
// for(int ctr2=1;ctr2<=mixmod.get_means().Ncols();ctr2++)
// mmpars((ctr-1)*5+2,ctr2) = tmp(1,ctr2);
// tmp = mixmod.get_vars();
// for(int ctr2=1;ctr2<=mixmod.get_vars().Ncols();ctr2++)
// mmpars((ctr-1)*5+3,ctr2) = tmp(1,ctr2);
// tmp = mixmod.get_pi();
// for(int ctr2=1;ctr2<=mixmod.get_pi().Ncols();ctr2++)
// mmpars((ctr-1)*5+4,ctr2) = tmp(1,ctr2);
// mmpars((ctr-1)*5+5,1) = mixmod.get_offset();
if( bool(opts.genreport.value()) ){
message(" creating report page ... ");
report.IC_rep(mixmod,ctr,melodat.get_IC().Nrows(),melodat.get_ICstats());
if(!opts.filtermode&&opts.filtermix.value().length()==0){
//now safe new data
// bool what = opts.verbose.value();
//opts.verbose.set_T(false);
melodat.set_after_mm(TRUE);
melodat.save();
//if(melodat.get_IC().Storage()>0){
// volume4D<float> tempVol;
// tempVol.setmatrix(melodat.get_IC(),melodat.get_mask());
// save_volume4D(tempVol,logger.appendDir(opts.outputfname.value()
// + "_IC"),melodat.tempInfo);
// message(endl<< endl << " Saving " << logger.appendDir(opts.outputfname.value() + "_IC") <<endl);
//}
message(endl << endl <<
" To view the output report point your web browser at " <<
report.getDir() + "/00index.html" << endl << endl);