Skip to content
Snippets Groups Projects
meldata.cc 22.2 KiB
Newer Older
Mark Jenkinson's avatar
Mark Jenkinson committed
/*  MELODIC - Multivariate exploratory linear optimized decomposition into 
              independent components
    
    meldata.cc - data handler / container class

    Christian F. Beckmann, FMRIB Image Analysis Group
    
Christian Beckmann's avatar
Christian Beckmann committed
    Copyright (C) 1999-2004 University of Oxford */
Mark Jenkinson's avatar
Mark Jenkinson committed

// {{{  includes/namespaces

Mark Jenkinson's avatar
Mark Jenkinson committed
/*  CCOPYRIGHT  */

#include "newimage/newimageall.h"
Mark Jenkinson's avatar
Mark Jenkinson committed
#include "meloptions.h"
#include "meldata.h"
#include "melodic.h" 
#include "utils/log.h"
#include <time.h>
#include "miscmaths/miscprob.h"
#include "melhlprfns.h" 
Mark Jenkinson's avatar
Mark Jenkinson committed

using namespace Utilities;
using namespace NEWIMAGE;

Mark Jenkinson's avatar
Mark Jenkinson committed
namespace Melodic{
// {{{ Setup
Mark Jenkinson's avatar
Mark Jenkinson committed

  Matrix MelodicData::process_file(string fname, int numfiles)
Mark Jenkinson's avatar
Mark Jenkinson committed
  {
    volume4D<float> RawData;

    //read data
    message("Reading data file " << fname << "  ... ");
    read_volume4D(RawData,fname);
    message(" done" << endl);
    del_vols(RawData,opts.dummy.value());
Mark Jenkinson's avatar
Mark Jenkinson committed
    
    Mean += meanvol(RawData)/numfiles;
Mark Jenkinson's avatar
Mark Jenkinson committed
	
    //reshape
    Matrix tmpData;
    tmpData = RawData.matrix(Mask);
    
    //estimate smoothness
    if(Resels == 0)
      Resels = est_resels(RawData,Mask);
        
    //convert to percent BOLD signal change
    if(opts.pbsc.value()){
      message("  Converting data to percent BOLD signal change ...");
      Matrix meanimg = convert_to_pbsc(tmpData);
      meanR = meanimg.Row(1);
      message(" done" << endl);
    }
    else{
      message(string("  Removing mean image ..."));
      meanR = mean(tmpData);
      tmpData = remmean(tmpData);
      message(" done" << endl);
    }

    //convert to power spectra
    if(opts.pspec.value()){
      message("  Converting data to powerspectra ...");
      tmpData = calc_FFT(tmpData);
      message(" done" << endl);
    }
	
    meanC = mean(tmpData,2);

    //switch dimension in case temporal ICA is required
    if(opts.temporal.value()){
      message(string("  Switching dimensions for temporal ICA") << endl);
      tmpData = tmpData.t();
      Matrix tmp;
      tmp = meanC;
      meanC = meanR.t();
      meanR = tmp.t();
      message("  Data size : " << Data.Nrows() << " x " << Data.Ncols() <<endl);
    }
Mark Jenkinson's avatar
Mark Jenkinson committed
      
    //variance - normalisation
    if(opts.varnorm.value()){
      message("  Normalising by voxel-wise variance ..."); 
      stdDev = varnorm(tmpData,tmpData.Nrows(),3.1);
      stdDevi = pow(stdDev,-1); 
      message(" done" << endl);
Mark Jenkinson's avatar
Mark Jenkinson committed
    }

    return tmpData;
  }

  Matrix MelodicData::expand_mix()
  {
    Matrix out;
    out = expand_dimred(mixMatrix);
    return out;
  }

  Matrix MelodicData::expand_dimred(const Matrix& Mat)
  {
    int first, last;
    first = 1;
    last = DWM.at(0).Ncols();
    Matrix tmp = DWM.at(0) * Mat.Rows(first,last);
    for(unsigned int ctr = 1; ctr < DWM.size(); ctr++){
      first = last + 1;
      last += DWM.at(ctr).Ncols();
      tmp &= DWM.at(ctr) * Mat.Rows(first, last);
Mark Jenkinson's avatar
Mark Jenkinson committed
    }
    return tmp;
  }

  Matrix MelodicData::reduce_dimred(const Matrix& Mat)
  {
    int first, last;
    first = 1;
    last = WM.at(0).Ncols();
    Matrix tmp = WM.at(0) * Mat.Rows(first,last);
    for(unsigned int ctr = 1; ctr < WM.size(); ctr++){
      first = last + 1;
      last += WM.at(ctr).Ncols();
      tmp &= WM.at(ctr) * Mat.Rows(first, last);
Mark Jenkinson's avatar
Mark Jenkinson committed
    }
  void MelodicData::set_TSmode()
  {
Christian Beckmann's avatar
Christian Beckmann committed
    message("Calculating T- and S-modes " << endl);
    Matrix tmp, tmpT, tmpS, tmpT2, tmpS2;
    tmp = expand_dimred(mixMatrix);
    tmpT = zeros(tmp.Nrows()/numfiles, tmp.Ncols());
    tmpS = zeros(numfiles, tmp.Ncols());
    krfact(tmp,tmpT,tmpS);
Christian Beckmann's avatar
Christian Beckmann committed
    Tmodes.clear(); Smodes.clear();
    for(int ctr = 1; ctr <= tmp.Ncols(); ctr++){
      tmpT2 << tmpT.Column(ctr);
      tmpS2 << tmpS.Column(ctr);
      add_Tmodes(tmpT2);
      add_Smodes(tmpS2);
  }

  void MelodicData::setup()
  { 
    setup_misc();
    numfiles = (int)opts.inputfname.value().size();
Christian Beckmann's avatar
Christian Beckmann committed
    if((numfiles > 1) && (opts.approach.value()==string("defl") || opts.approach.value()==string("symm")))
      opts.approach.set_T("tica");

    Matrix alldat, tmpData;
    alldat = process_file(opts.inputfname.value().at(0), numfiles) / numfiles;
    for(int ctr = 1; ctr < numfiles; ctr++){
      tmpData = process_file(opts.inputfname.value().at(ctr), numfiles);
      alldat += tmpData / numfiles;
    }

Christian Beckmann's avatar
Christian Beckmann committed
    //update mask
    if(opts.update_mask.value()){
      message("  Excluding voxels with constant value ...");
      update_mask(Mask, alldat);
      message(" done" << endl);
    }

    message(endl << "Initial data size : "<<alldat.Nrows()<<" x "<<alldat.Ncols()<<endl<<endl);
    //estimate model order
    ColumnVector PPCA;
    RowVector AdjEV, PercEV;
    Matrix Corr, tmpE;
    int order;
    if(opts.pca_dim.value() == 0){
      order = ppca_dim(alldat, RXweight, PPCA, AdjEV, PercEV, Corr, pcaE, pcaD, Resels, opts.pca_est.value());	  
Christian Beckmann's avatar
Christian Beckmann committed
      calc_white(pcaE, pcaD, order, whiteMatrix, dewhiteMatrix); 
      opts.pca_dim.set_T(order);
    }
    else{
      order = opts.pca_dim.value();
      std_pca(tmpData, RXweight, Corr, pcaE, pcaD);
      calc_white(pcaE, pcaD, order, whiteMatrix, dewhiteMatrix);
    }  
Mark Jenkinson's avatar
Mark Jenkinson committed
      
    if(numfiles < 2){
      Data = alldat;
      Matrix tmp = Identity(Data.Nrows());
      DWM.push_back(tmp);
      WM.push_back(tmp);
    } else {
      for(int ctr = 0; ctr < numfiles; ctr++){
	tmpData = process_file(opts.inputfname.value().at(ctr), numfiles);
Christian Beckmann's avatar
Christian Beckmann committed

	//  whiten (separate / joint) 
	if(!opts.joined_whiten.value()){	  
      	  std_pca(tmpData, RXweight, Corr, pcaE, pcaD);
	  calc_white(pcaE, pcaD, order, whiteMatrix, dewhiteMatrix);
Mark Jenkinson's avatar
Mark Jenkinson committed
	}
	tmpData = whiteMatrix * tmpData;
	DWM.push_back(dewhiteMatrix);
	WM.push_back(whiteMatrix);

	//concatenate Data
	if(Data.Storage() == 0)
	  Data = tmpData;
	else
	  Data &= tmpData;
Mark Jenkinson's avatar
Mark Jenkinson committed
      }
    message("  Data size : "<<Data.Nrows()<<" x "<<Data.Ncols()<<endl);
    
    /*    {//remove row mean
Mark Jenkinson's avatar
Mark Jenkinson committed
      if(opts.temporal.value()){
	message(string("Removing mean image ... "));
Mark Jenkinson's avatar
Mark Jenkinson committed
      }else{
	message(string("Removing mean time course ... "));
      meanC=mean(Data,2);
      /*  Data=remmean(Data,2); 
      message("done"<<endl);
      }*/
        
    //save the mean & mask
    save_volume(Mask,logger.appendDir("mask"));
    save_volume(Mean,logger.appendDir("mean"));
Mark Jenkinson's avatar
Mark Jenkinson committed
    
  } // void setup()
// }}}

  void MelodicData::setup_misc()
  {

    //initialize Mean
    read_volume(Mean,opts.inputfname.value().at(0),tempInfo);

    //save first image
    tmpnam(Mean_fname); // generate a tmp name
    save_volume(Mean,Mean_fname);    

    //create mask
    create_mask(Mask);

    // clean /tmp
    char callRMstr[1000];
    ostrstream osc(callRMstr,1000);
    osc  << "rm " << string(Mean_fname) <<"*  " << '\0';
    system(callRMstr);
 
    if(!samesize(Mean,Mask)){
      cerr << "ERROR:: mask and data have different dimensions  \n\n";
      exit(2);
    }

    //reset mean
    Mean *= 0;
     
    //set up weighting
Mark Jenkinson's avatar
Mark Jenkinson committed
    if(opts.segment.value().length()>0){
      create_RXweight();
Mark Jenkinson's avatar
Mark Jenkinson committed
    }

    //seed the random number generator
    double tmptime = time(NULL);
    srand((unsigned int) tmptime);
Mark Jenkinson's avatar
Mark Jenkinson committed

Mark Jenkinson's avatar
Mark Jenkinson committed
  void MelodicData::save()
  {   

    //check for temporal ICA
    if(opts.temporal.value()){
      message(string("temporal ICA: transform back the data ... "));
Mark Jenkinson's avatar
Mark Jenkinson committed
      Matrix tmpIC = mixMatrix.t();
      mixMatrix=IC.t();
      IC=tmpIC;

      unmixMatrix=pinv(mixMatrix);
      Data = Data.t();
      tmpIC = meanC;
      meanC = meanR.t();
      meanR = tmpIC.t();
      //  whiteMatrix = whiteMatrix.t;
      //  dewhiteMatrix = dewhiteMatrix.t();
      message(string("done") << endl);
      opts.temporal.set_T(false); // Do not switch again!
    message(endl << "Writing results to : " << endl);
Mark Jenkinson's avatar
Mark Jenkinson committed

    //Output IC	
    if((IC.Storage()>0)&&(opts.output_origIC.value())&&(after_mm==false))
      save4D(IC,opts.outputfname.value() + "_oIC");
      
Mark Jenkinson's avatar
Mark Jenkinson committed

    //Output IC -- adjusted for noise	
      if(IC.Storage()>0){
	volume4D<float> tempVol;	
   
	//Matrix ICadjust;
	if(after_mm){
	  save4D(IC,opts.outputfname.value() + "_IC");
	  // ICadjust = IC;
	}	else{
	  stdNoisei = pow(stdev(Data - mixMatrix * IC)*std::sqrt((float)(Data.Nrows()-1))/
			  std::sqrt((float)(Data.Nrows()-IC.Nrows())),-1);
	  
	  ColumnVector diagvals;
	  diagvals=pow(diag(unmixMatrix*unmixMatrix.t()),-0.5);
	  save4D(SP(IC,diagvals*stdNoisei),opts.outputfname.value() + "_IC");
	}
	//	tempVol.setmatrix(ICadjust,Mask);
	//strncpy(tempInfo.header.hist.aux_file,"render3",24);
	//save_volume4D(tempVol,logger.appendDir(opts.outputfname.value() 
	//				       + "_IC"),tempInfo);
	//message("  " << logger.appendDir(opts.outputfname.value() + "_IC") <<endl);
	
	if(opts.output_origIC.value())
	  save4D(stdNoisei,string("Noise_stddev_inv"));
Christian Beckmann's avatar
Christian Beckmann committed
      }
Christian Beckmann's avatar
Christian Beckmann committed
     
    //Output T- & S-modes
    save_Tmodes();
    save_Smodes();
Christian Beckmann's avatar
Christian Beckmann committed

Mark Jenkinson's avatar
Mark Jenkinson committed
    //Output mixMatrix
    if(mixMatrix.Storage()>0){
      saveascii(mixMatrix, opts.outputfname.value() + "_mix");
      mixFFT=calc_FFT(mixMatrix, opts.logPower.value());
      saveascii(mixFFT,opts.outputfname.value() + "_FTmix");      
    if(ICstats.Storage()>0)
      saveascii(ICstats,opts.outputfname.value() + "_ICstats"); 
      
Mark Jenkinson's avatar
Mark Jenkinson committed
    //Output unmixMatrix
    if(opts.output_unmix.value() && unmixMatrix.Storage()>0)
      saveascii(unmixMatrix,opts.outputfname.value() + "_unmix");
Mark Jenkinson's avatar
Mark Jenkinson committed

    //Output Mask
    message("  "<< logger.appendDir("mask") <<endl);

    //Output mean
    if(opts.output_mean.value() && meanC.Storage()>0 && meanR.Storage()>0){
      saveascii(meanR,opts.outputfname.value() + "_meanR");
      saveascii(meanC,opts.outputfname.value() + "_meanC");
Mark Jenkinson's avatar
Mark Jenkinson committed
    }

    //Output white
    if(opts.output_white.value() && whiteMatrix.Storage()>0&&
       dewhiteMatrix.Storage()>0){
      saveascii(whiteMatrix,opts.outputfname.value() + "_white");
      saveascii(dewhiteMatrix,opts.outputfname.value() + "_dewhite");
Mark Jenkinson's avatar
Mark Jenkinson committed
      Matrix tmp;
      tmp=calc_FFT(dewhiteMatrix, opts.logPower.value());
      saveascii(tmp,opts.outputfname.value() + "_FTdewhite");
Mark Jenkinson's avatar
Mark Jenkinson committed
    }

    //Output PCA
    if(opts.output_pca.value() && pcaD.Storage()>0&&pcaE.Storage()>0){
      saveascii(pcaE,opts.outputfname.value() + "_pcaE");
      saveascii((Matrix) diag(pcaD),opts.outputfname.value() + "_pcaD");
Mark Jenkinson's avatar
Mark Jenkinson committed
      Matrix PCAmaps;
      if(whiteMatrix.Ncols()==Data.Ncols()){
	PCAmaps = dewhiteMatrix.t();
      }else
	PCAmaps = whiteMatrix * Data;
Mark Jenkinson's avatar
Mark Jenkinson committed

      save4D(PCAmaps,opts.outputfname.value() + "_pca");
     
    }
Mark Jenkinson's avatar
Mark Jenkinson committed
  } //void save()
// }}}

// {{{ remove_components  
Mark Jenkinson's avatar
Mark Jenkinson committed
  int MelodicData::remove_components()
  {  
    message("Reading " << opts.filtermix.value() << endl) 
    mixMatrix = read_ascii_matrix(opts.filtermix.value());
    if (mixMatrix.Storage()<=0) {
      cerr <<" Please specify the mixing matrix correctly" << endl;
      exit(2);
    }
    
    unmixMatrix = pinv(mixMatrix);
    IC = unmixMatrix * Data;

    string tmpstr;
    tmpstr = opts.filter.value();

    Matrix noiseMix;
    Matrix noiseIC;

    int ctr=0;    
    char *p;
    char t[1024];
    const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?";
    
    message("Filtering the data...");
    strcpy(t, tmpstr.c_str());
    p=strtok(t,discard);
    ctr = atoi(p);
    if(ctr>0 && ctr<=mixMatrix.Ncols()){
      message(" "<< ctr );
      noiseMix = mixMatrix.Column(ctr);
      noiseIC  = IC.Row(ctr).t();    
    }else{
      cerr << endl<< "component number "<<ctr<<" does not exist" << endl;
    }
    
    do{
      p=strtok(NULL,discard);
      if(p){
	ctr = atoi(p);
	
        if(ctr>0 && ctr<=mixMatrix.Ncols()){
	  message(" "<<ctr);
	  noiseMix |= mixMatrix.Column(ctr);
	  noiseIC  |= IC.Row(ctr).t();
	}
	else{
	  cerr << endl<< "component number "<<ctr<<" does not exist" << endl;
	}
      }
    }while(p);
    message(endl);
    Matrix newData;
    newData = Data - noiseMix * noiseIC.t();

    //cerr << newData.Nrows() << " x " << newData.Ncols() << endl;
    //cerr << meanC.Nrows() << " x " << meanC.Ncols() << endl;
    //cerr << meanR.Nrows() << " x " << meanR.Ncols() << endl;
    newData = newData + meanC*ones(1,newData.Ncols());
    newData = newData + ones(newData.Nrows(),1)*meanR;
    
    volume4D<float> tmp;
    read_volume4D(tmp,opts.inputfname.value().at(0)); 
Mark Jenkinson's avatar
Mark Jenkinson committed
    tmp.setmatrix(newData,Mask);
    save_volume4D(tmp,logger.appendDir(opts.outputfname.value() + "_ICAfiltered")); 
   
    return 0;
  } // int remove_components()
// }}}
// {{{ create_RXweight
Mark Jenkinson's avatar
Mark Jenkinson committed
  void MelodicData::create_RXweight()
  {
    message("Reading the weights for the covariance R_X from file "<< opts.segment.value() << endl);
  
    volume4D<float> tmpRX;
    read_volume4D(tmpRX,opts.segment.value());
    RXweight = tmpRX.matrix(Mask);
  } 

  void MelodicData::est_smoothness(){
    if(Resels == 0){
      string SM_path = opts.binpath + "smoothest";
      string Mask_fname = logger.appendDir("mask");

      if(opts.segment.value().length()>0){
	Mask_fname =  opts.segment.value();
      } 

      // Setup external call to smoothest:
      char callSMOOTHESTstr[1000];
      ostrstream osc(callSMOOTHESTstr,1000);
      osc  << SM_path << " -d " << data_dim()
	   << " -r " << opts.inputfname.value().at(0) << " -m " 
	   << Mask_fname << " > " << logger.appendDir("smoothest") << '\0';
      
      message("  Calling Smoothest: " << callSMOOTHESTstr << endl);
      system(callSMOOTHESTstr);

      //read back the results
      ifstream in;
      string str;
      Resels = 1.0;
      
      in.open(logger.appendDir("smoothest").c_str(), ios::in);
      if(in>0){
	for(int ctr=1; ctr<7; ctr++){ in >> str;}
	in.close();
	if(str!="nan"){
	  Resels = atof(str.c_str());
	}
      }
    }
  }

  unsigned long MelodicData::standardise(volume<float>& mask, 
			    volume4D<float>& R)
  {
    unsigned long count = 0;
    int M=R.tsize();
    
    for (int z=mask.minz(); z<=mask.maxz(); z++) {
      for (int y=mask.miny(); y<=mask.maxy(); y++) {
	for (int x=mask.minx(); x<=mask.maxx(); x++) {
	  
	  if( mask(x,y,z) > 0.5) {
	    
	    count ++;
	  
	    if( M > 2 ) {
	      
	      // For each voxel 
	      //    calculate mean and standard deviation...
	      double Sx = 0.0, SSx = 0.0;
	      
	      for ( int t = 0; t < M; t++ ) {
		float R_it = R(x,y,z,t);
		
		Sx += R_it;
		SSx += (R_it)*(R_it);
	      }
	      
	      float mean = Sx / M;
	      float sdsq = (SSx - ((Sx)*(Sx) / M)) / (M - 1) ;
	      
	      if (sdsq<=0) {
		// trap for differences between mask and invalid data
		mask(x,y,z)=0;
		count--;
	      } else {
	      //    ... and use them to standardise to N(0, 1).
		for ( unsigned short t = 0; t < M; t++ ) {
		  R(x,y,z,t) = (R(x,y,z,t) - mean) / sqrt(sdsq);
		}
	      } 
	    }
	  }
	}
      }
    }  
    return count;
  }

  float MelodicData::est_resels(volume4D<float> R, volume<float> mask)
  {
    message("  Estimating data smoothness ... ");
    unsigned long mask_volume = standardise(mask, R);

    int dof = R.tsize();
    unsigned long N = mask_volume;

    // MJ additions to make it cope with 2D images
    bool usez = true;
    if (R.zsize() <= 1) { usez = false; }

    enum {X = 0, Y, Z};
    float SSminus[3] = {0, 0, 0}, S2[3] = {0, 0, 0};

    int zstart=1;
    if (!usez) zstart=0;
    for ( unsigned short z = zstart; z < R.zsize() ; z++ )
      for ( unsigned short y = 1; y < R.ysize() ; y++ )
	for ( unsigned short x = 1; x < R.xsize() ; x++ )
	  // Sum over N
	  if( (mask(x, y, z)>0.5) &&
	      (mask(x-1, y, z)>0.5) && 
	      (mask(x, y-1, z)>0.5) && 
	      ( (!usez) || (mask(x, y, z-1)>0.5) ) ) {
	    
	    N++;
	  
	    for ( unsigned short t = 0; t < R.tsize(); t++ ) {
	      // Sum over M
	      SSminus[X] += R(x, y, z, t) * R(x-1, y, z, t);
	      SSminus[Y] += R(x, y, z, t) * R(x, y-1, z, t);
	      if (usez) SSminus[Z] += R(x, y, z, t) * R(x, y, z-1, t);

	      S2[X] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) + R(x-1, y, z, t)*R(x-1, y, z, t));
	      S2[Y] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) + R(x, y-1, z, t)*R(x, y-1, z, t));
	      if (usez) S2[Z] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) + R(x, y, z-1, t)*R(x, y, z-1, t));
	    }
	  }

    float norm = 1.0/(float) N;
    float v = dof;	// v - degrees of freedom (nu)  
    if(R.tsize() > 1) {
      norm = (v - 2) / ((v - 1) * N * R.tsize());
    }
Mark Jenkinson's avatar
Mark Jenkinson committed
 
    // for extreme smoothness 
    if (SSminus[X]>=0.99999999*S2[X]) 
      SSminus[X]=0.99999*S2[X];  
    if (SSminus[Y]>=0.99999999*S2[Y]) 
      SSminus[Y]=0.99999*S2[Y];
    if (usez) 
      if (SSminus[Z]>=0.99999999*S2[Z]) 
	SSminus[Z]=0.99999*S2[Z];
    // Convert to sigma squared
    float sigmasq[3] = {0,0,0};
    sigmasq[X] = -1.0 / (4 * log(fabs(SSminus[X]/S2[X])));
    sigmasq[Y] = -1.0 / (4 * log(fabs(SSminus[Y]/S2[Y])));
    if (usez) { sigmasq[Z] = -1.0 / (4 * log(fabs(SSminus[Z]/S2[Z]))); }
    
    // Convert to full width half maximum
    float FWHM[3] = {0,0,0};
    FWHM[X] = sqrt(8 * log(2) * sigmasq[X]);
    FWHM[Y] = sqrt(8 * log(2) * sigmasq[Y]);
    if (usez) { FWHM[Z] = sqrt(8 * log(2) * sigmasq[Z]); }
    float resels = FWHM[X] * FWHM[Y];
    if (usez) resels *= FWHM[Z];

    message(" done " <<endl);
    return resels;
  }
// }}}
// {{{ create_mask 
  void MelodicData::create_mask(volume<float>& theMask)
Mark Jenkinson's avatar
Mark Jenkinson committed
  {
    if(opts.use_mask.value() && opts.maskfname.value().size()>0){   // mask provided 
      read_volume(theMask,opts.maskfname.value());
Christian Beckmann's avatar
Christian Beckmann committed
      message("Mask provided : " << opts.maskfname.value()<<endl<<endl);
Mark Jenkinson's avatar
Mark Jenkinson committed
    }
    else{
      if(opts.perf_bet.value() && opts.use_mask.value()){ //use BET
	message("Create mask ... ");
	// set up all strings
	string BET_outputfname = string(Mean_fname)+"_brain";

	string BET_path = opts.binpath + "bet";
	string BET_optarg = "-m -f 0.4"; // see man bet
Stephen Smith's avatar
Stephen Smith committed
	string Mask_fname = BET_outputfname+"_mask";
Mark Jenkinson's avatar
Mark Jenkinson committed

	// Setup external call to BET:

	char callBETstr[1000];
	ostrstream osc(callBETstr,1000);
Mark Jenkinson's avatar
Mark Jenkinson committed
	osc  << BET_path << " " << Mean_fname << " " 
	     << BET_outputfname << " " << BET_optarg << " > /dev/null " << '\0';
Mark Jenkinson's avatar
Mark Jenkinson committed
	
        message("  Calling BET: " << callBETstr << endl);
	system(callBETstr);
Mark Jenkinson's avatar
Mark Jenkinson committed
	
	// read back the Mask file   
	read_volume(theMask,Mask_fname);

	message("done" << endl);
      }  
      else{
	if(opts.use_mask.value()){   //just threshold the Mean
	  message("Create mask ... ");
	  float Mmin, Mmax, Mtmp;
	  Mmin = Mean.min(); Mmax = Mean.max();
	  theMask = binarise(Mean,Mmin + opts.threshold.value()* (Mmax-Mmin),Mmax);
          Mtmp = Mmin + opts.threshold.value()* (Mmax-Mmin);
	  message("done" << endl);
	}
	else{ //well, don't threshold then
	  theMask = Mean;
	  theMask = 1.0;
	}
      }
    }
    if(opts.remove_endslices.value()){ 
      // just in case mc introduced something nasty
      message("  Deleting end slices" << endl);
      for(int ctr1=theMask.miny(); ctr1<=theMask.maxy(); ctr1++){
	for(int ctr2=theMask.minx(); ctr2<=theMask.maxx(); ctr2++){   
	  theMask(ctr2,ctr1,Mask.minz()) = 0.0;
	  theMask(ctr2,ctr1,Mask.maxz()) = 0.0;
	}
      }
    }
  } //void create_mask()
// }}}
// {{{ Sort
  void MelodicData::sort()
  {
    int numComp = mixMatrix.Ncols(), numVox = IC.Ncols(), 
        numTime = mixMatrix.Nrows(), i,j;

    for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){
      if(IC.Row(ctr_i).Sum()<0){
	flipres(ctr_i); };}
    //    cerr << "HERE2" << endl << endl;


    // re-order wrt standard deviation of IC maps
    message("Sorting IC maps" << endl);  
    Matrix tmpscales, tmpICrow, tmpMIXcol;
    tmpscales = stdev(IC,2);
    ICstats = tmpscales;

    double max_val, min_val = tmpscales.Minimum()-1;

    for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){

      max_val = tmpscales.Maximum2(i,j);
      ICstats(ctr_i,1)=max_val;
  
      tmpICrow = IC.Row(ctr_i);
      tmpMIXcol = mixMatrix.Column(ctr_i);
      
      IC.SubMatrix(ctr_i,ctr_i,1,numVox) = IC.SubMatrix(i,i,1,numVox);
      mixMatrix.SubMatrix(1,numTime,ctr_i,ctr_i) = 
	mixMatrix.SubMatrix(1,numTime,i,i);
  
      IC.SubMatrix(i,i,1,numVox) = tmpICrow.SubMatrix(1,1,1,numVox);
      mixMatrix.SubMatrix(1,numTime,i,i) = tmpMIXcol.SubMatrix(1,numTime,1,1);
  
      tmpscales(i,1)=tmpscales(ctr_i,1);
      tmpscales(ctr_i,1)=min_val;

    ICstats /= ICstats.Column(1).Sum();
    ICstats *= 100;
    
    if(EVP.Storage()>0){
      tmpscales = ICstats.Column(1).AsMatrix(ICstats.Nrows(),1) * EVP(1,numComp);
      ICstats |= tmpscales;
    }

    if(Data.Storage()>0&&stdDev.Storage()>0){
    //if(DataVN.Storage()>0&&stdDev.Storage()>0){
      //cerr << " ICstats " << ICstats << endl << endl;

      Matrix copeP(tmpscales), copeN(tmpscales);
      Matrix max_ICs(tmpscales), min_ICs(tmpscales);

      for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){
	int i,j;
	max_ICs(ctr_i,1) = IC.Row(ctr_i).Maximum2(i,j);
	//cerr << " ICstats " << ICstats << endl << endl;

	//cerr << endl <<(pinv(mixMatrix)*DataVN.Column(j)) << endl;
	copeP(ctr_i,1) = std::abs((pinv(mixMatrix)*Data.Column(j)).Row(ctr_i).AsScalar()*stdDev(1,j)*100*(mixMatrix.Column(ctr_i).Maximum()-mixMatrix.Column(ctr_i).Minimum())/meanR(1,j));

	min_ICs(ctr_i,1) = IC.Row(ctr_i).Minimum2(i,j);
	copeN(ctr_i,1) = -1.0*std::abs((pinv(mixMatrix)*Data.Column(j)).Row(ctr_i).AsScalar()*stdDev(1,j)*100*(mixMatrix.Column(ctr_i).Maximum()-mixMatrix.Column(ctr_i).Minimum())/meanR(1,j));
    mixFFT=calc_FFT(mixMatrix, opts.logPower.value());
    unmixMatrix = pinv(mixMatrix);

    //if(ICstats.Storage()>0){cout << "ICstats: " << ICstats.Nrows() <<"x" << ICstats.Ncols() << endl;}else{cout << "ICstats empty " <<endl;}
  }
// }}}
// {{{ Status
Mark Jenkinson's avatar
Mark Jenkinson committed

  void MelodicData::status(const string &txt)
  {
    cout << "MelodicData Object " << txt << endl;
    if(Data.Storage()>0){cout << "Data: " << Data.Nrows() <<"x" << Data.Ncols() << endl;}else{cout << "Data empty " <<endl;}
    if(pcaE.Storage()>0){cout << "pcaE: " << pcaE.Nrows() <<"x" << pcaE.Ncols() << endl;}else{cout << "pcaE empty " <<endl;}
    if(pcaD.Storage()>0){cout << "pcaD: " << pcaD.Nrows() <<"x" << pcaD.Ncols() << endl;}else{cout << "pcaD empty " <<endl;}
    if(whiteMatrix.Storage()>0){cout << "white: " << whiteMatrix.Nrows() <<"x" << whiteMatrix.Ncols() << endl;}else{cout << "white empty " <<endl;}
    if(dewhiteMatrix.Storage()>0){cout << "dewhite: " << dewhiteMatrix.Nrows() <<"x" << dewhiteMatrix.Ncols() << endl;}else{cout << "dewhite empty " <<endl;}
    if(mixMatrix.Storage()>0){cout << "mix: " << mixMatrix.Nrows() <<"x" << mixMatrix.Ncols() << endl;}else{cout << "mix empty " <<endl;}
    if(unmixMatrix.Storage()>0){cout << "unmix: " << unmixMatrix.Nrows() <<"x" << unmixMatrix.Ncols() << endl;}else{cout << "unmix empty " <<endl;}
    if(IC.Storage()>0){cout << "IC: " << IC.Nrows() <<"x" << IC.Ncols() << endl;}else{cout << "IC empty " <<endl;}
  } //void status()
// }}}