Newer
Older
/* fsl_glm -
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 2008 University of Oxford */
/* CCOPYRIGHT */
#include "libvis/miscplot.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include "utils/options.h"
#include <vector>
#include "newimage/newimageall.h"
#include "melhlprfns.h"
using namespace MISCPLOT;
using namespace MISCMATHS;
using namespace Utilities;
using namespace std;
// The two strings below specify the title and example usage that is
// printed out as the help or usage message
string title=string("fsl_sbca (Version 1.0)")+
string("\nCopyright(c) 2008, University of Oxford (Christian F. Beckmann)\n")+
string(" \n Performs seed-based correlation analysis on FMRI data\n")+
string(" using either a single seed coordinate or a seed mask \n")+
string(" ");
string examples="fsl_sbca -i <input> -s <seed> -t <target> -o <basename> [options]";
//Command line Options {
Option<string> fnin(string("-i,--in"), string(""),
string(" input file name (4D image file)"),
true, requires_argument);
Option<string> fnout(string("-o,--out"), string(""),
string("output file base name"),
true, requires_argument);
Option<string> fnseed(string("-s,--seed"), string(""),
string("seed voxel coordinate or file name of seed mask (3D file)"),
Option<string> fntarget(string("-t,--target"), string(""),
string("file name of target mask(s) (3D or 4D file)"),
true, requires_argument);
Option<bool> regress_only(string("-r,--reg"), false,
string("perform time series regression rather than classification to targets"),
false, no_argument);
Option<string> fnconf(string("--conf"), string(""),
string(" file name (or comma-separated list of file name) for confound ascii txt files"),
false, requires_argument);
Option<bool> map_bin(string("--bin"), false,
string(" binarise spatial maps prior to calculation of time courses"),
false, no_argument);
Option<bool> verbose(string("-v,--verbose"), false,
string("switch on diagnostic messages"),
false, no_argument);
Option<bool> tc_mean(string("--mean"), false,
string(" use mean instead of Eigenvariates for calculation of time courses"),
false, no_argument);
string(" number of Eigenvariates (default 1)"),
false, requires_argument);
Option<bool> out_seeds(string("--out_seeds"), false,
string("output seed mask image as <basename>_seeds"),
false, no_argument);
Option<bool> out_seedmask(string("--out_seedmask"), false,
string("output seed mask image as <basename>_seedmask"),
false, no_argument);
Option<bool> out_ttcs(string("--out_ttcs"), false,
string("output target time courses as <basename>_ttc<X>.txt"),
false, no_argument);
Option<bool> out_conf(string("--out_conf"), false,
string("output confound time courses as <basename>_confounds.txt"),
false, no_argument);
Option<bool> out_tcorr(string("--out_tcorr"), false,
string("output target correlations as <basename>_tcorr.txt"),
false, no_argument, false);
Option<int> help(string("-h,--help"), 0,
string("display this help text"),
false,no_argument);
Option<bool> debug(string("--debug"), false,
string(" switch on debug messages"),
false, no_argument, false);
/*
}
*/
//Globals {
Matrix data, confounds;
volume4D<float> orig_data;
/*
}
*/
////////////////////////////////////////////////////////////////////////////
// Local functions
void save4D(Matrix what, volume<float>& msk, string fname){
if(debug.value())
cerr << "DBG: in save4D" << endl;
volume4D<float> tempVol;
tempVol.setmatrix(what,msk);
save_volume4D(tempVol,fname,volinf);
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
void save4D(volume<float>& in, string fname){
if(debug.value())
cerr << "DBG: in save4D" << endl;
volume4D<float> tempVol;
tempVol.addvolume(in);
save_volume4D(tempVol,fname,volinf);
}
ReturnMatrix create_coords(string what){
if(debug.value())
cerr << "DBG: in create_coords" << endl;
Matrix res;
ifstream fs(what.c_str());
if (!fs) {
Matrix tmp(1,3);
char *p;
char t[1024];
const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?";
strcpy(t, what.c_str());
p=strtok(t,discard);
tmp(1,1) = atoi(p);
p=strtok(NULL,discard);
tmp(1,2) = atoi(p);
p=strtok(NULL,discard);
tmp(1,3) = atoi(p);
res = tmp;
do{
p=strtok(NULL,discard);
if(p){
tmp(1,1) = atoi(p);
p=strtok(NULL,discard);
tmp(1,2) = atoi(p);
p=strtok(NULL,discard);
tmp(1,3) = atoi(p);
res &= tmp;
}
}while(p);
}else{
res = read_ascii_matrix(fs);
fs.close();
}
if(res.Ncols()!=3){
cerr << "ERROR: incorrect format " << what << endl;
exit(1);
}
// if(verbose.value())
// cout << " Created seed coordinates (size: " << res.Nrows() << " x " << res.Ncols() << ")" << endl;
res.Release();
return res;
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
void create_mask(string what){
if(debug.value())
cerr << "DBG: in create_mask" << endl;
coords = create_coords(what);
maskS = orig_data[0] * 0.0;
for(int ctr = 1; ctr <= coords.Nrows(); ctr++)
maskS(coords(ctr,1),coords(ctr,2),coords(ctr,3)) = 1.0;
maskS.binarise(1e-8);
}
void create_seeds(string what){
if(debug.value())
cerr << "DBG: in create_seeds" << endl;
if(fsl_imageexists(what)){
read_volume(maskS,what);
if(!samesize(orig_data[0],maskS)){
cerr << "ERROR: Seed mask image does not match input image" << endl;
exit(1);
}
}
else
create_mask(what);
volume4D<float> tmp_mask;
tmp_mask.addvolume(maskS);
maskS.binarise(1e-8);
Matrix scales = tmp_mask.matrix(maskS);
seeds = remmean(orig_data.matrix(maskS),1);
if(!map_bin.value())
seeds = SP(seeds, ones(seeds.Nrows(),1) * scales);
voxels = seeds.Ncols();
if(debug.value()){
cerr << "DBG: " << voxels << " voxels" << endl;
cerr << "DBG: seeds matrix is " << seeds.Nrows() << " x " << seeds.Ncols() << endl;
}
if(verbose.value())
cout << " Created seed time courses " << endl;
if(debug.value())
cerr << "DBG: in create_confs" << endl;
Matrix res, tmp;
char *p;
char t[1024];
const char *discard = ",";
strcpy(t, what.c_str());
p=strtok(t,discard);
res = remmean(read_ascii_matrix(string(p)),1);
do{
p=strtok(NULL,discard);
if(p){
tmp = read_ascii_matrix(string(p));
if(tmp.Nrows()!=res.Nrows()){
cerr << "ERROR: confound matrix" << string(p) << " is of wrong size "<< endl;
exit(1);
}
res |= remmean(tmp,1);
if(verbose.value())
cout << " Created confound matrix (size: " << res.Nrows() << " x " << res.Ncols() << ")" << endl;
res.Release();
return res;
}
ReturnMatrix calc_ttc(volume<float>& in){
if(debug.value())
cerr << "DBG: in calc_ttc" << endl;
Matrix res, tmp, scales;
volume<float> tmp1;
volume4D<float> tmp2;
tmp1 = in;
tmp1.binarise(1e-8);
tmp2.addvolume(in);
scales = tmp2.matrix(tmp1);
tmp = remmean(orig_data.matrix(tmp1),1);
if(!map_bin.value())
tmp = SP(tmp, ones(tmp.Nrows(),1) * scales);
if(tc_mean.value())
res = mean(tmp,2);
else{
SymmetricMatrix Corr;
Corr << tmp * tmp.t() / tmp.Ncols();
DiagonalMatrix tmpD;
EigenValues(Corr,tmpD,res);
res = fliplr(res.Columns(res.Ncols()-tc_order.value()+1 , res.Ncols())) * std::sqrt(tmp.Nrows());
}
if(debug.value())
cerr << "DBG: size is " << res.Nrows() << " x " << res.Ncols() << endl;
res.Release();
return res;
}
void create_target_tcs(){
if(debug.value())
cerr << "DBG: in create_target_tcs" << endl;
volume4D<float> tmptarg;
read_volume4D(tmptarg,fntarget.value());
for(int ctr=0; ctr < tmptarg.tsize(); ctr++){
ttcs.push_back(calc_ttc(tmptarg[ctr]));
}
if(debug.value()) {
cerr << "DBG: " << ttcs.size() << " target matrices created " << endl;
}
if(verbose.value())
cout << " Created target mask time courses " << endl;
if(debug.value())
cerr << "DBG: in setup" << endl;
if(fsl_imageexists(fnin.value())){ //read data
if(verbose.value())
cout << " Reading input file " << fnin.value() << endl;
read_volume4D(orig_data,fnin.value(),volinf);
}
else{
cerr << "ERROR: Invalid input file " << fnin.value() << endl;
exit(1);
create_seeds(fnseed.value());
if(!regress_only.value())
create_target_tcs();
else{
volume4D<float> tmptarg;
read_volume4D(tmptarg,fntarget.value());
maskT = tmptarg[0];
maskT.binarise(1e-8);
data = orig_data.matrix(maskT);
data = remmean(data,1);
}
if(fnconf.value()>"")
confounds = create_confs(fnconf.value());
ReturnMatrix calc_tcorr(int in){
if(debug.value())
cerr << "DBG: in calc_tcorr" << endl;
Matrix res = zeros(1,seeds.Ncols()), partial_conf, targetcol;
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
for(int ctr = 0; ctr < (int)ttcs.size(); ctr++)
if(ctr != in){
if(partial_conf.Storage() == 0)
partial_conf = ttcs.at(ctr);
else
partial_conf |= ttcs.at(ctr);
}
if(ttcs.at(in).Ncols()>1)
if(partial_conf.Storage()>0)
partial_conf = ttcs.at(in).Columns(2,ttcs.at(in).Ncols()) | partial_conf;
else
partial_conf = ttcs.at(in).Columns(2,ttcs.at(in).Ncols());
if(confounds.Storage() > 0)
if(partial_conf.Storage()>0)
partial_conf |= confounds;
else
partial_conf = confounds;
if(debug.value() && partial_conf.Storage()>0)
cerr << "DBG: partial_conf " << partial_conf.Nrows() << " x " << partial_conf.Ncols() << endl;
targetcol = ttcs.at(in).Column(1);
if(debug.value())
cerr << "DBG: targetcol " << targetcol.Nrows() << " x " << targetcol.Ncols() << endl;
for(int ctr = 1; ctr <= seeds.Ncols(); ctr++)
res(1,ctr) = Melodic::corrcoef(targetcol, seeds.Column(ctr), partial_conf).AsScalar();
res.Release();
return res;
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
if(debug.value())
cerr << "DBG: in calc_res" << endl;
out2 = zeros(1,seeds.Ncols());
if(!regress_only.value()){
//Target TCs exist
if(verbose.value())
cout << " Calculating partial correlation scores between seeds and targets " << endl;
Matrix tmp;
int tmp2;
out1=zeros(ttcs.size(),seeds.Ncols());
for(int ctr = 0 ;ctr < (int)ttcs.size(); ctr++)
out1.Row(ctr+1) = calc_tcorr(ctr);
for(int ctr = 1 ;ctr <= out1.Ncols(); ctr++){
out1.Column(ctr).Maximum1(tmp2);
out2(1,ctr) = tmp2;
}
if(debug.value()){
cerr << "DBG: out1 " << out1.Nrows() << " x " << out1.Ncols() << endl;
cerr << "DBG: out2 " << out2.Nrows() << " x " << out2.Ncols() << endl;
}
}
else{
//no Target TCs
if(verbose.value())
cout << " Calculating partial correlation maps " << endl;
out1 = zeros(seeds.Ncols(), data.Ncols());
if(confounds.Storage()>0){
data = data - confounds * pinv(confounds) * data;
seeds = seeds - confounds * pinv(confounds) * seeds;
}
if(debug.value()){
cerr << "DBG: seeds " << seeds.Nrows() << " x " << seeds.Ncols() << endl;
cerr << "DBG: data " << data.Nrows() << " x " << data.Ncols() << endl;
}
for(int ctr = 1 ;ctr <= seeds.Ncols(); ctr++){
Matrix tmp;
if(coords.Storage()>0){
tmp = orig_data.voxelts(coords(ctr,1), coords(ctr,2), coords(ctr,3));
volume4D<float> tmpVol;
tmpVol.setmatrix(out2,maskS);
tmpVol( coords(ctr,1), coords(ctr,2), coords(ctr,3), 0) = ctr;
out2 = tmpVol.matrix(maskS);
if(confounds.Storage()>0)
tmp = tmp - confounds * pinv(confounds) * tmp;
}
else{
tmp = seeds.Column(ctr);
out2(1,ctr) = ctr;
}
for(int ctr2 =1; ctr2 <= data.Ncols(); ctr2++)
out1(ctr,ctr2) = Melodic::corrcoef(tmp,data.Column(ctr2)).AsScalar();
}
if(debug.value()){
cerr << "DBG: out1 " << out1.Nrows() << " x " << out1.Ncols() << endl;
cerr << "DBG: out2 " << out2.Nrows() << " x " << out2.Ncols() << endl;
}
}
void write_res(){
if(verbose.value())
cout << " Saving results " << endl;
if(debug.value())
cerr << "DBG: in write_res" << endl;
if(regress_only.value()){
save4D(out2,maskS, fnout.value()+"_index");
save4D(out1,maskT, fnout.value()+"_corr");
}
else{
save4D(out1,maskS, fnout.value()+"_corr");
save4D(out2,maskS, fnout.value()+"_index");
}
if(out_ttcs.value() && ttcs.size()>0)
for(int ctr = 0 ;ctr < (int)ttcs.size(); ctr++)
write_ascii_matrix(ttcs.at(ctr),fnout.value()+"_ttc"+num2str(ctr+1)+".txt");
if(out_conf.value() && confounds.Storage()>0)
write_ascii_matrix(confounds, fnout.value()+"_confounds.tx");
if(out_seeds.value())
save4D(seeds, maskS, fnout.value()+"_seeds");
if(out_seedmask.value())
save4D(maskS,fnout.value()+"_seedmask");
}
int do_work(int argc, char* argv[]) {
if(setup())
exit(1);
calc_res();
write_res();
return 0;
}
////////////////////////////////////////////////////////////////////////////
int main(int argc,char *argv[]){
Tracer tr("main");
OptionParser options(title, examples);
try{
// must include all wanted options here (the order determines how
// the help message is printed)
options.add(fnin);
options.add(fnseed);
options.add(fnconf);
options.add(map_bin);
options.add(tc_mean);
options.add(tc_order);
options.add(out_seeds);
options.add(out_seedmask);
options.add(out_ttcs);
options.add(out_conf);
options.add(out_tcorr);
options.parse_command_line(argc, argv);
// line below stops the program if the help was requested or
// a compulsory option was not set
if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){
options.usage();
exit(EXIT_FAILURE);
}else{
// Call the local functions
return do_work(argc,argv);
}
}catch(X_OptionError& e) {
options.usage();
cerr << endl << e.what() << endl;
exit(EXIT_FAILURE);
}catch(std::exception &e) {
cerr << e.what() << endl;
}
}