Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/* MELODIC - Multivariate exploratory linear optimized decomposition into
independent components
melhlprfns.cc - misc functions
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 1999-2007 University of Oxford */
/* CCOPYRIGHT */
#include "melhlprfns.h"
#include "libprob.h"
#include "miscmaths/miscprob.h"
namespace Melodic{
void update_mask(volume<float>& mask, Matrix& Data)
{
Matrix DStDev=stdev(Data);
volume4D<float> tmpMask, RawData;
tmpMask.setmatrix(DStDev,mask);
RawData.setmatrix(Data,mask);
float tMmax;
volume<float> tmpMask2;
tmpMask2 = tmpMask[0];
tMmax = tmpMask2.max();
double st_mean = DStDev.Sum()/DStDev.Ncols();
double st_std = stdev(DStDev.t()).AsScalar();
mask = binarise(tmpMask2,(float) max((float) st_mean-3*st_std,(float) 0.01*st_mean),tMmax);
Data = RawData.matrix(mask);
}
void del_vols(volume4D<float>& in, int howmany)
{
for(int ctr=1; ctr<=howmany; ctr++){
in.deletevolume(ctr);
}
}
Matrix calc_FFT(const Matrix& Mat, const bool logpwr)
{
Matrix res;
for(int ctr=1; ctr <= Mat.Ncols(); ctr++){
ColumnVector tmpCol;
tmpCol=Mat.Column(ctr);
ColumnVector FtmpCol_real;
ColumnVector FtmpCol_imag;
ColumnVector tmpPow;
if(tmpCol.Nrows()%2 != 0){
Matrix empty(1,1); empty=0;
tmpCol &= empty;
}
RealFFT(tmpCol,FtmpCol_real,FtmpCol_imag);
tmpPow = pow(FtmpCol_real,2)+pow(FtmpCol_imag,2);
tmpPow = tmpPow.Rows(2,tmpPow.Nrows());
if(logpwr) tmpPow = log(tmpPow);
if(res.Storage()==0){res= tmpPow;}else{res|=tmpPow;}
}
return res;
} //Matrix calc_FFT()
Matrix smoothColumns(const Matrix& inp)
{
Matrix temp(inp);
int ctr1 = temp.Nrows();
Matrix temp2(temp);
temp2=0;
temp = temp.Row(4) & temp.Row(3) & temp.Row(2) & temp & temp.Row(ctr1-1)
& temp.Row(ctr1-2) &temp.Row(ctr1-3);
double kern[] ={0.0045 , 0.055, 0.25, 0.4, 0.25, 0.055, 0.0045};
double fac = 0.9090909;
for(int cc=1;cc<=temp2.Ncols();cc++){
for(int cr=1;cr<=temp2.Nrows();cr++){
temp2(cr,cc) = fac*( kern[0] * temp(cr,cc) + kern[1] * temp(cr+1,cc) +
kern[2] * temp(cr+2,cc) + kern[3] * temp(cr+3,cc) +
kern[4] * temp(cr+4,cc) + kern[5] * temp(cr+5,cc) +
kern[6] * temp(cr+6,cc));
}
}
return temp2;
} //Matrix smoothColumns()
Matrix convert_to_pbsc(Matrix& inp)
{
Matrix meanimg;
meanimg = mean(inp);
float eps = 0.00001;
for(int ctr=1; ctr <= inp.Ncols(); ctr++){
if(meanimg(1,ctr) < eps)
meanimg(1,ctr) = eps;
}
for(int ctr=1; ctr <= inp.Nrows(); ctr++){
Matrix tmp;
tmp << inp.Row(ctr);
inp.Row(ctr) << 100 * SP((tmp - meanimg),pow(meanimg,-1));
}
inp = remmean(inp);
return meanimg;
} //void convert_to_pbsc
RowVector varnorm(Matrix& in, int dim, float level)
{
Matrix Corr;
Corr = calc_corr(in);
RowVector out;
out = varnorm(in,Corr,dim,level);
return out;
} //RowVector varnorm
RowVector varnorm(Matrix& in, Matrix& Corr, int dim, float level)
{
Matrix tmpE, white, dewhite;
RowVector tmpD;
std_pca(in, Corr, tmpE, tmpD);
calc_white(tmpE,tmpD, dim, white, dewhite);
Matrix ws = white * in;
for(int ctr1 = 1; ctr1<=ws.Ncols(); ctr1++)
for(int ctr2 = 1; ctr2<=ws.Nrows(); ctr2++)
if(std::abs(ws(ctr2,ctr1)) < level)
ws(ctr2,ctr1)=0;
tmpD = stdev(in - dewhite*ws);
in = SP(in,pow(ones(in.Nrows(),1) * tmpD,-1));
return tmpD;
} //RowVector varnorm
Matrix SP2(const Matrix& in, const Matrix& weights, bool econ)
{
Matrix Res;
Res = in;
if(econ){
ColumnVector tmp;
for(int ctr=1; ctr <= in.Ncols(); ctr++){
tmp = in.Column(ctr);
tmp = tmp * weights(1,ctr);
Res.Column(ctr) = tmp;
}
}
else{
Res = ones(in.Nrows(),1)*weights.Row(1);
Res = SP(in,Res);
}
return Res;
} //Matrix SP
Matrix calc_corr(const Matrix& in, bool econ)
{
Matrix Res;
Res = zeros(in.Nrows(),in.Nrows());
if(econ){
ColumnVector tmp;
for(int ctr=1; ctr <= in.Ncols(); ctr++){
tmp = in.Column(ctr);
tmp = tmp - mean(tmp).AsScalar();
Res += (tmp * tmp.t()) / in.Ncols();
}
}
else
Res = cov(in.t());
return Res;
} //Matrix calc_corr
Matrix calc_corr(const Matrix& in, const Matrix& weights, bool econ)
{
Matrix Res;
Res = zeros(in.Nrows(),in.Nrows());
Matrix localweights;
if(weights.Storage() == 0)
localweights = ones(1,in.Ncols());
else
localweights = weights;
if(econ){
ColumnVector tmp;
for(int ctr=1; ctr <= in.Ncols(); ctr++){
tmp = in.Column(ctr);
tmp = tmp - mean(tmp).AsScalar();
tmp = tmp * localweights(1,ctr);
Res += (tmp * tmp.t()) / in.Ncols();
}
}
else{
Res = SP2(in,localweights);
Res = calc_corr(Res, 0);
}
return Res;
} //Matrix calc_corr
float calc_white(const Matrix& tmpE, const RowVector& tmpD, const RowVector& PercEV, int dim, Matrix& white, Matrix& dewhite)
{
Matrix RE;
DiagonalMatrix RD;
int N = tmpE.Ncols();
dim = std::min(dim,N);
RE = tmpE.Columns(N-dim+1,N);
RD << abs(diag(tmpD.t()));
RD << RD.SymSubMatrix(N-dim+1,N);
float res = 1.0;
white = sqrt(abs(RD.i()))*RE.t();
dewhite = RE*sqrt(RD);
if(dim < N)
res = PercEV(dim);
return res;
} //Matrix calc_white
void calc_white(const Matrix& tmpE, const RowVector& tmpD, int dim, Matrix& white, Matrix& dewhite)
{
RowVector tmp(tmpE.Ncols());
float tmp2;
tmp2 = calc_white(tmpE,tmpD, tmp, dim, white, dewhite);
} //Matrix calc_white
void calc_white(const Matrix& Corr, int dim, Matrix& white, Matrix& dewhite)
{
Matrix RE;
DiagonalMatrix RD;
SymmetricMatrix tmp;
RowVector tmp2;
tmp << Corr;
EigenValues(tmp,RD,RE);
tmp2 = diag(RD).t();
calc_white(RE,tmp2, dim, white, dewhite);
} //Matrix calc_white
void std_pca(const Matrix& Mat, const Matrix& weights, Matrix& Corr, Matrix& evecs, RowVector& evals)
{
if(weights.Storage()>0)
Corr << calc_corr(Mat, weights);
else
Corr << calc_corr(Mat);
SymmetricMatrix tmp;
tmp << Corr;
DiagonalMatrix tmpD;
EigenValues(tmp,tmpD,evecs);
evals = tmpD.AsRow();
} //void std_pca
void std_pca(const Matrix& Mat, Matrix& Corr, Matrix& evecs, RowVector& evals)
{
Matrix weights;
std_pca(Mat,weights,Corr,evecs,evals);
} //void std_pca
void em_pca(const Matrix& Mat, Matrix& evecs, RowVector& evals, int num_pc, int iter)
{
Matrix guess;
guess = normrnd(Mat.Nrows(),num_pc);
em_pca(Mat,guess,evecs,evals,num_pc,iter);
} //void em_pca
void em_pca(const Matrix& Mat, Matrix& guess, Matrix& evecs, RowVector& evals, int num_pc, int iter)
{
Matrix C;
if(guess.Ncols() < num_pc){
C=normrnd(Mat.Nrows(),num_pc);
C.Columns(1,guess.Ncols()) = guess;
}
else
C = guess;
Matrix tmp, tmp2;
for(int ctr=1; ctr <= iter; ctr++){
// E-Step
tmp = C.t()*C;
tmp = tmp.i();
tmp = tmp * C.t();
tmp = tmp * Mat;
// M-Step
tmp2 = tmp * tmp.t();
tmp2 = tmp2.i();
tmp2 = Mat*tmp.t()*tmp2;
C = tmp2;
}
symm_orth(C);
Matrix Evc, tmpC;
RowVector Evl;
tmp = C.t() * Mat;
std_pca(tmp,tmpC,Evc,Evl);
evals = Evl;
evecs = C * Evc;
} //void em_pca
void rankapprox(const Matrix& Mat, Matrix& cols, Matrix& rows, int dim)
{
Matrix Corr, Evecs, tmpWM, tmpDWM, tmp;
RowVector Evals;
std_pca(Mat.t(), Corr, Evecs, Evals);
calc_white(Corr, dim, tmpWM, tmpDWM);
tmp = tmpWM * Mat.t();
cols = tmp.t();
rows << tmpDWM;
} // rankapprox
void krfact(const Matrix& Mat, Matrix& cols, Matrix& rows)
{
Matrix out;
for(int ctr1 = 1; ctr1 <= Mat.Ncols(); ctr1++)
{
Matrix tmpVals(cols.Nrows(),rows.Nrows());
for(int ctr2 = 1; ctr2 <= rows.Nrows(); ctr2++)
tmpVals.Column(ctr2) << Mat.SubMatrix(cols.Nrows() * (ctr2 - 1) + 1,cols.Nrows()*ctr2 ,ctr1,ctr1);
Matrix tmpcols, tmprows;
rankapprox(tmpVals, tmpcols, tmprows);
cols.Column(ctr1) = tmpcols;
rows.Column(ctr1) = tmprows;
}
} // krfact
void krfact(const Matrix& Mat, int colnum, Matrix& cols, Matrix& rows)
{
cols = zeros(colnum,Mat.Ncols());
rows = zeros(int(Mat.Nrows() / colnum),Mat.Ncols());
krfact(Mat,cols,rows);
} // krfact
Matrix krprod(const Matrix& cols, const Matrix& rows)
{
Matrix out;
out = zeros(cols.Nrows()*rows.Nrows(),cols.Ncols());
for(int ctr1 = 1; ctr1 <= cols.Ncols(); ctr1++)
for(int ctr2 = 1; ctr2 <= rows.Nrows(); ctr2++)
{
out.SubMatrix(cols.Nrows()*(ctr2-1)+1,cols.Nrows()*ctr2,ctr1,ctr1) << cols.Column(ctr1) * rows(ctr2,ctr1);
}
return out;
} // krprod
Matrix krapprox(const Matrix& Mat, int size_cols, int dim)
{
Matrix out, cols, rows;
out = zeros(Mat.Nrows(), Mat.Ncols());
cols = zeros(size_cols,Mat.Ncols());
rows = zeros(int(Mat.Nrows() / size_cols), Mat.Ncols());
krfact(Mat,cols,rows);
out = krprod(cols, rows);
return out;
} // krapprox
void adj_eigspec(const RowVector& in, RowVector& out1, RowVector& out2, RowVector& out3, int& out4, int num_vox, float resels)
{
RowVector AdjEV;
AdjEV << in.AsRow();
AdjEV = AdjEV.Columns(3,AdjEV.Ncols());
AdjEV = AdjEV.Reverse();
RowVector CircleLaw;
int NumVox = (int) floor(num_vox/(2.5*resels));
CircleLaw = Feta(int(AdjEV.Ncols()), NumVox);
for(int ctr=1;ctr<=CircleLaw.Ncols(); ctr++){
if(CircleLaw(ctr)<5*10e-10){CircleLaw(ctr) = 5*10e-10;}
}
/* float slope;
slope = CircleLaw.Columns(int(AdjEV.Ncols()/4),AdjEV.Ncols() -
int(AdjEV.Ncols()/4)).Sum() /
AdjEV.Columns(int(AdjEV.Ncols()/4),AdjEV.Ncols() -
int(AdjEV.Ncols()/4)).Sum();*/
RowVector PercEV(AdjEV);
PercEV = cumsum(AdjEV / sum(AdjEV,2).AsScalar());
AdjEV << SP(AdjEV,pow(CircleLaw.Columns(1,AdjEV.Ncols()),-1));
SortDescending(AdjEV);
int maxEV = 1;
float threshold = 0.98;
for(int ctr_i = 1; ctr_i < PercEV.Ncols(); ctr_i++){
if((PercEV(ctr_i)<threshold)&&(PercEV(ctr_i+1)>=threshold)){maxEV=ctr_i;}
}
if(maxEV<3){maxEV=PercEV.Ncols()/2;}
RowVector NewEV;
Matrix temp1;
temp1 = abs(AdjEV);
NewEV << temp1.SubMatrix(1,1,1,maxEV);
AdjEV = (AdjEV - min(AdjEV).AsScalar())/(max(AdjEV).AsScalar() - min(AdjEV).AsScalar());
out1 = AdjEV;
out2 = PercEV;
out3 = NewEV;
out4 = maxEV;
} //adj_eigspec
void adj_eigspec(const RowVector& in, RowVector& out1, RowVector& out2)
{
RowVector AdjEV, PercEV;
AdjEV = in.Reverse();
SortDescending(AdjEV);
PercEV = cumsum(AdjEV / sum(AdjEV,2).AsScalar());
AdjEV = (AdjEV - min(AdjEV).AsScalar())/(max(AdjEV).AsScalar() - min(AdjEV).AsScalar());
out1 = AdjEV;
out2 = PercEV;
} //adj_eigspec
RowVector Feta(int n1, int n2)
{
float nu = (float) n1/n2;
float bm = pow((1-sqrt(nu)),2.0);
float bp = pow((1+sqrt(nu)),2.0);
float lrange = 0.9*bm;
float urange = 1.1*bp;
RowVector eta(30*n1);
float rangestepsize = (urange - lrange) / eta.Ncols();
for(int ctr_i = 0; ctr_i < eta.Ncols(); ctr_i++){
eta(ctr_i+1) = lrange + rangestepsize * (ctr_i);
}
RowVector teta(10*n1);
teta = 0;
float stepsize = (bp - bm) / teta.Ncols();
for(int ctr_i = 0; ctr_i < teta.Ncols(); ctr_i++){
teta(ctr_i+1) = stepsize*(ctr_i);
}
RowVector feta(teta);
feta = SP(pow(2*M_PI*nu*(teta + bm),-1), pow(SP(teta, bp-bm-teta),0.5));
teta = teta + bm;
RowVector claw(eta);
claw = 0;
for(int ctr_i = 1; ctr_i <= eta.Ncols(); ctr_i++){
double tmpval = 0.0;
for(int ctr_j = 1; ctr_j <= teta.Ncols(); ctr_j++){
if(( double(teta(ctr_j))/double(eta(ctr_i)) )<1)
tmpval += feta(ctr_j);
}
claw(ctr_i) = n1*(1-stepsize*tmpval);
}
RowVector Res(n1); //invert the CDF
for(int ctr_i = 1; ctr_i < eta.Ncols(); ctr_i++){
if(floor(claw(ctr_i))>floor(claw(ctr_i+1))){
Res(int(floor(claw(ctr_i)))) = eta(ctr_i);
}
}
return Res;
} //RowVector Feta
RowVector cumsum(const RowVector& Inp)
{
UpperTriangularMatrix UT(Inp.Ncols());
UT=1.0;
RowVector Res;
Res = Inp * UT;
return Res;
} //RowVector cumsum
int ppca_dim(const Matrix& in, const Matrix& weights, ColumnVector& PPCA, RowVector& AdjEV, RowVector& PercEV, Matrix& Corr, Matrix& tmpE, RowVector &tmpD, float resels, string which)
{
std_pca(in,weights,Corr,tmpE,tmpD);
int maxEV = 1;
RowVector NewEV;
adj_eigspec(tmpD.AsRow(),AdjEV,PercEV,NewEV,maxEV,in.Ncols(),resels);
int res;
PPCA = ppca_select(ppca_est(NewEV, in.Ncols(),resels), res, maxEV, which);
return res;
} //int ppca_dim
int ppca_dim(const Matrix& in, const Matrix& weights, ColumnVector& PPCA, RowVector& AdjEV, RowVector& PercEV, float resels, string which)
{
RowVector tmpD;
Matrix tmpE;
Matrix Corr;
int res = ppca_dim(in, weights, PPCA, AdjEV, PercEV, Corr, tmpE, tmpD, resels, which);
return res;
} //int ppca_dim
int ppca_dim(const Matrix& in, const Matrix& weights, float resels, string which)
{
ColumnVector PPCA;
RowVector AdjEV, PercEV;
int res = ppca_dim(in,weights,PPCA,AdjEV,PercEV,resels,which);
return res;
} //int ppca_dim
ColumnVector ppca_select(const Matrix& PPCAest, int& dim, int maxEV, string which)
{
RowVector estimators(5);
estimators = 1.0;
Matrix PPCA2(PPCAest);
for(int ctr=1; ctr<=PPCA2.Ncols(); ctr++){
PPCA2.Column(ctr) = (PPCA2.Column(ctr) -
min(PPCA2.Column(ctr)).AsScalar()) /
( max(PPCA2.Column(ctr)).AsScalar() -
min(PPCA2.Column(ctr)).AsScalar());
}
int ctr_i = 1;
while((ctr_i< PPCAest.Nrows()-1)&&
(PPCAest(ctr_i,2) < PPCAest(ctr_i+1,2))&&(ctr_i<maxEV))
{estimators(1)=ctr_i+1;ctr_i++;}
ctr_i = 1;
while((ctr_i< PPCAest.Nrows()-1)&&
(PPCAest(ctr_i,3) < PPCAest(ctr_i+1,3))&&(ctr_i<maxEV))
{estimators(2)=ctr_i+1;ctr_i++;}
ctr_i = 1;
while((ctr_i< PPCAest.Nrows()-1)&&
(PPCAest(ctr_i,4) < PPCAest(ctr_i+1,4))&&(ctr_i<maxEV))
{estimators(3)=ctr_i+1;ctr_i++;}
ctr_i = 1;
while((ctr_i< PPCAest.Nrows()-1)&&
(PPCAest(ctr_i,5) < PPCAest(ctr_i+1,5))&&(ctr_i<maxEV))
{estimators(4)=ctr_i+1;ctr_i++;}
ctr_i = 1;
while((ctr_i< PPCAest.Nrows()-1)&&
(PPCAest(ctr_i,6) < PPCAest(ctr_i+1,6))&&(ctr_i<maxEV))
{estimators(5)=ctr_i+1;ctr_i++;}
int res = 0;
ColumnVector PPCA;
if(which == string("lap")){
res = int(estimators(1));
PPCA << PPCA2.Column(2);
}
if(which == string("bic")){
res = int(estimators(2));
PPCA << PPCA2.Column(2);
}
if(which == string("mdl")){
res = int(estimators(3));
PPCA << PPCA2.Column(4);
}
if(which == string("aic")){
res = int(estimators(5));
PPCA << PPCA2.Column(6);
}
if(res==0){//median estimator
PPCA = PPCA2.Column(2);
for(int ctr=1; ctr<=PPCA2.Nrows(); ctr++){
RowVector tmp = PPCA2.SubMatrix(ctr,ctr,2,6);
PPCA(ctr) = float(tmp.Sum()/5);
}
ctr_i = 1;
while((PPCA(ctr_i) < PPCA(ctr_i+1))&&(ctr_i<maxEV)){
res=ctr_i+1;ctr_i++;
}
}
dim = res;
return PPCA;
} //RowVector ppca_select
Matrix ppca_est(const RowVector& eigenvalues, const int N1, const float N2)
{
Matrix Res;
Res = ppca_est(eigenvalues, (int) floor(N1/(2.5*N2)));
return Res;
} //Matrix ppca_est
Matrix ppca_est(const RowVector& eigenvalues, const int N)
{
RowVector logLambda(eigenvalues);
logLambda = log(eigenvalues);
int d = logLambda.Ncols();
RowVector k(d);
for(int ctr_i = 1; ctr_i <=d; ctr_i++){
k(ctr_i)=ctr_i;
}
RowVector m(d);
m=d*k-0.5*SP(k,k+1);
RowVector loggam(d);
loggam = 0.5*k.Reverse();
for(int ctr_i = 1; ctr_i <=d; ctr_i++){
loggam(ctr_i)=lgam(loggam(ctr_i));
}
loggam = cumsum(loggam);
RowVector l_probU(d);
l_probU = -log(2)*k + loggam - cumsum(0.5*log(M_PI)*k.Reverse());
RowVector tmp1;
tmp1 = -cumsum(eigenvalues).Reverse()+sum(eigenvalues,2).AsScalar();
tmp1(1) = 0.95*tmp1(2);
tmp1=tmp1.Reverse();
RowVector tmp2;
tmp2 = -cumsum(logLambda).Reverse()+sum(logLambda,2).AsScalar();
tmp2(1)=tmp2(2);
tmp2=tmp2.Reverse();
RowVector tmp3;
tmp3 = d-k;
tmp3(d) = 1.0;
RowVector tmp4;
tmp4 = SP(tmp1,pow(tmp3,-1));
for(int ctr_i = 1; ctr_i <=d; ctr_i++){
if(tmp4(ctr_i)<0.01){tmp4(ctr_i)=0.01;}
if(tmp3(ctr_i)<0.01){tmp3(ctr_i)=0.01;}
if(tmp1(ctr_i)<0.01){tmp1(ctr_i)=0.01;}
}
RowVector l_nu;
l_nu = SP(-N/2*(d-k),log(tmp4));
l_nu(d) = 0;
RowVector l_lam;
l_lam = -(N/2)*cumsum(logLambda);
RowVector l_lhood;
l_lhood = SP(pow(tmp3,-1),tmp2)-log(SP(pow(tmp3,-1),tmp1));
Matrix t1,t2, t3;
UpperTriangularMatrix triu(d);
triu = 1.0;
for(int ctr_i = 1; ctr_i <= triu.Ncols(); ctr_i++){
triu(ctr_i,ctr_i)=0.0;
}
t1 = (ones(d,1) * eigenvalues);
t1 = SP(triu,t1.t() - t1);
t2 = pow(tmp4,-1).t()*ones(1,d);
t3 = ones(d,1)*pow(eigenvalues,-1);
t2 = SP(triu, t2.t()-t3.t());
for(int ctr_i = 1; ctr_i <= t1.Ncols(); ctr_i++){
for(int ctr_j = 1; ctr_j <= t1.Nrows(); ctr_j++){
if(t1(ctr_j,ctr_i)<=0){t1(ctr_j,ctr_i)=1;}
}
}
for(int ctr_i = 1; ctr_i <= t2.Ncols(); ctr_i++){
for(int ctr_j = 1; ctr_j <= t2.Nrows(); ctr_j++){
if(t2(ctr_j,ctr_i)<=0){t2(ctr_j,ctr_i)=1;}
}
}
t1 = cumsum(sum(log(t1),2).AsRow());
t2 = cumsum(sum(log(t2),2).AsRow());
RowVector l_Az(d);
l_Az << (t1+t2);
RowVector l_lap;
l_lap = l_probU + l_nu +l_Az + l_lam + 0.5*log(2*M_PI)*(m+k)-0.5*log(N)*k;
RowVector l_BIC;
l_BIC = l_lam + l_nu - 0.5*log(N)*(m+k);
RowVector l_RRN;
l_RRN = -0.5*N*SP(k,log(SP(cumsum(eigenvalues),pow(k,-1))))+l_nu;
RowVector l_AIC;
l_AIC = -2*N*SP(tmp3,l_lhood)+ 2*(1+d*k+0.5*(k-1));
l_AIC = -l_AIC;
RowVector l_MDL;
l_MDL = -N*SP(tmp3,l_lhood)+ 0.5*(1+d*k+0.5*(k-1))*log(N);
l_MDL = -l_MDL;
Matrix Res;
Res = eigenvalues.t();
Res |= l_lap.t();
Res |= l_BIC.t();
Res |= l_MDL.t();
Res |= l_RRN.t();
Res |= l_AIC.t();
return Res;
} //Matrix ppca_est
ColumnVector acf(const ColumnVector& in, int order)
{
double meanval;
meanval = mean(in).AsScalar();
int tpoints = in.Nrows();
ColumnVector y, res;
Matrix X, tmp;
y = in.Rows(order+1,tpoints) - meanval;
X = zeros(order + 1, order);
for(int ctr1 = 1; ctr1 <= order; ctr1++)
X.Column(ctr1) = in.Rows(order + 1 - ctr1, tpoints - ctr1) - meanval;
tmp = X.t()*X;
tmp = tmp.i();
tmp = tmp * X.t();
res << tmp * y;
return res;
} //ColumnVector acf
ColumnVector pacf(const ColumnVector& in, int maxorder)
{
int tpoint = in.Nrows();
ColumnVector res;
res = acf(in, maxorder);
for(int ctr1 = 1; ctr1 <= maxorder; ctr1++)
if ( res.Column(ctr1).AsScalar() < (1/tpoint) + 2/(float)std::pow(tpoint,0.5))
res.Column(ctr1) = 0;
return res;
} //ColumnVector pacf
Matrix est_ar(const Matrix& Mat, int maxorder)
{
Matrix res;
res = zeros(maxorder, Mat.Ncols());
ColumnVector tmp;
for (int ctr = 1; ctr <= Mat.Ncols(); ctr++){
tmp = pacf(Mat.Column(ctr));
res.Column(ctr) = tmp;
}
return res;
} //Matrix est_ar
ColumnVector gen_ar(const ColumnVector& in, int maxorder)
{
float sdev;
sdev = stdev(in).AsScalar();
ColumnVector x, arcoeff, scaled;
scaled = in / sdev;
arcoeff = pacf( scaled, maxorder);
x = normrnd(in.Nrows(),1).AsColumn() * sdev;
for(int ctr1=2; ctr1 <= in.Nrows(); ctr1++)
for(int ctr2 = 1; ctr2 <= maxorder; ctr2++)
x(ctr1) = arcoeff(ctr2) * x(std::max(1,int(ctr1-ctr2))) + x(ctr1);
return x;
} //ColumnVector gen_ar
Matrix gen_ar(const Matrix& in, int maxorder)
{
Matrix res;
res = in;
ColumnVector tmp;
for(int ctr=1; ctr <= in.Ncols(); ctr++){
tmp = in.Column(ctr);
res.Column(ctr) = gen_ar(tmp, maxorder);
}
return res;
} //Matrix gen_ar
Matrix gen_arCorr(const Matrix& in, int maxorder)
{
Matrix res;
res = zeros(in.Nrows(), in.Nrows());
ColumnVector tmp;
for(int ctr=1; ctr<= in.Ncols(); ctr++){
tmp = in.Column(ctr);
tmp = gen_ar(tmp, maxorder);
res += tmp * tmp.t();
}
return res;
} //Matrix gen_arCorr
}