Newer
Older
/* MELODIC - Multivariate exploratory linear optimized decomposition into
independent components
melodic.cc - main program file
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 1999-2008 University of Oxford */
#include "newmatap.h"
#include "newmatio.h"
#include "newimage/newimageall.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include "utils/options.h"
#include "utils/log.h"
#include "meloptions.h"
#include "meldata.h"
#include "melpca.h"
#include "melica.h"
#include "melodic.h"
#include "melreport.h"
#include "melgmix.h"
using namespace Utilities;
using namespace NEWMAT;
using namespace NEWIMAGE;
using namespace Melodic;
using namespace MISCPLOT;
string myfloat2str(float f, int width, int prec, bool scientif){
ostringstream os;
int redw = int(std::abs(std::log10(std::abs(f))))+1;
if(width>0)
os.width(width);
if(scientif)
os.setf(ios::scientific);
os.precision(redw+std::abs(prec));
os.setf(ios::internal, ios::adjustfield);
os << f;
return os.str();
}
Matrix mmall(Log& logger, MelodicOptions& opts,
MelodicData& melodat, MelodicReport& report, Matrix& probs);
void mmonly(Log& logger, MelodicOptions& opts,
MelodicData& melodat, MelodicReport& report);
try{
// Setup logging:
Log& logger = LogSingleton::getInstance();
// parse command line - will output arguments to logfile
MelodicOptions& opts = MelodicOptions::getInstance();
opts.parse_command_line(argc, argv, logger, Melodic::version);
//set up data object
MelodicData melodat(opts,logger);
if (opts.filtermode || opts.filtermix.value().length()>0 || opts.ICsfname.value().length()>0){
if(opts.filtermode){ // just filter out some noise from a previous run
if(opts.debug.value())
message(" Denoising data setup completed "<< endl);
int retry = 0;
bool no_conv;
bool leaveloop = false;
melodat.setup();
if (opts.maxRestart.value()<0)
opts.maxRestart.set_T(melodat.data_dim());
//do PCA pre-processing
MelodicPCA pcaobj(melodat,opts,logger,report);
pcaobj.perf_pca();
pcaobj.perf_white();
//do ICA
MelodicICA icaobj(melodat,opts,logger,report);
icaobj.perf_ica(melodat.get_white()*melodat.get_Data());
if(no_conv){
retry++;
if((opts.approach.value()=="symm")&&(retry == opts.maxRestart.value())){
// try final round with defl
opts.approach.set_T("defl");
message(endl << "Restarting MELODIC using deflation approach" << endl << endl);
}
else{
// try using different dim
if((int)opts.pca_dim.value()*opts.retryfactor.value() > (int)(0.05*melodat.data_dim()+1)){
opts.pca_dim.set_T((int)opts.pca_dim.value()*opts.retryfactor.value());
}
else{
if((int)opts.pca_dim.value()/opts.retryfactor.value() > (int)(melodat.data_dim())){
opts.pca_dim.set_T((int)opts.pca_dim.value()/opts.retryfactor.value());
}
else{
leaveloop = TRUE;
}
}
}
} while (no_conv && retry<opts.maxRestart.value() && !leaveloop);
if(!no_conv){
//save raw IC results
melodat.save();
Matrix pmaps;//(melodat.get_IC());
Matrix mmres;
message("Creating report index page ...");
if( bool(opts.genreport.value()) ){
report.analysistxt();
if(melodat.get_numfiles()>1)
report.Smode_rep();
report.PPCA_rep();
}
if(opts.perf_mm.value())
mmres = mmall(logger,opts,melodat,report,pmaps);
else{
if( bool(opts.genreport.value()) ){
message(endl
<< "Creating web report in " << report.getDir()
<< " " << endl);
for(int ctr=1; ctr<= melodat.get_IC().Nrows(); ctr++){
string prefix = "IC_"+num2str(ctr);
message(" " << ctr);
report.IC_simplerep(prefix,ctr,melodat.get_IC().Nrows());
}
message(endl << endl <<
" To view the output report point your web browser at " <<
report.getDir() + "/00index.html" << endl<< endl);
}
}
message("finished!" << endl << endl);
}
message(endl <<"No convergence -- giving up " << endl << endl);
return 0;
}
void mmonly(Log& logger, MelodicOptions& opts,
Matrix ICs;
Matrix mixMatrix;
Matrix fmixMatrix;
volume<float> Mask;
volume<float> Mean;
{
volume4D<float> RawData;
message("Reading data file " << opts.inputfname.value().at(0) << " ... ");
read_volume4D(RawData,opts.inputfname.value().at(0));
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
message(" done" << endl);
Mean = meanvol(RawData);
}
{
volume4D<float> RawIC;
message("Reading components " << opts.ICsfname.value() << " ... ");
read_volume4D(RawIC,opts.ICsfname.value());
message(" done" << endl);
message("Creating mask ... ");
Mask = binarise(RawIC[0],float(RawIC[0].min()),float(RawIC[0].max()));
ICs = RawIC.matrix(Mask);
if(ICs.Nrows()>1){
Matrix DStDev=stdev(ICs);
volume4D<float> tmpMask;
tmpMask.setmatrix(DStDev,Mask);
float tMmax;
volume<float> tmpMask2;
tmpMask2 = tmpMask[0];
tMmax = tmpMask2.max();
double st_mean = DStDev.Sum()/DStDev.Ncols();
double st_std = stdev(DStDev.t()).AsScalar();
Mask = binarise(tmpMask2,(float) max((float) st_mean-3*st_std,
(float) 0.01*st_mean),tMmax);
ICs = RawIC.matrix(Mask);
}
else{
Mask = binarise(RawIC[0],float(0.001),float(RawIC[0].max()))
+ binarise(RawIC[0],float(RawIC[0].min()),float(-0.001));
ICs = RawIC.matrix(Mask);
}
//cerr << "ICs : " << ICs.Ncols() << ICs.Nrows() << endl;
message(" done" << endl);
}
if(opts.filtermix.value().length() > 0){
message("Reading mixing matrix " << opts.filtermix.value() << " ... ");
mixMatrix = read_ascii_matrix(opts.filtermix.value());
if (mixMatrix.Storage()<=0) {
cerr <<" Please specify the mixing matrix correctly" << endl;
exit(2);
}
message(" done" << endl);
}else{
mixMatrix=unifrnd(ICs.Nrows()+1,ICs.Nrows());
if(opts.smodename.value().length() > 0){
message("Reading matrix of subject modes: " << opts.smodename.value());
Matrix tmp;
tmp = read_ascii_matrix(opts.smodename.value());
if (tmp.Storage()<=0) {
cerr <<" Please specify the mixing matrix correctly" << endl;
exit(2);
}
message(" done" << endl);
for (int ctr = 1; ctr <= tmp.Ncols(); ctr++){
Matrix tmp2 = tmp.Column(ctr);
melodat.add_Smodes(tmp2);
}
}
melodat.set_mask(Mask);
melodat.set_mean(Mean);
melodat.set_IC(ICs);
melodat.set_mix(mixMatrix);
fmixMatrix = calc_FFT(mixMatrix, opts.logPower.value());
melodat.set_fmix(fmixMatrix);
fmixMatrix = pinv(mixMatrix);
melodat.set_unmix(fmixMatrix);
// write_ascii_matrix("ICs",ICs);
Matrix mmres;
Matrix pmaps;//(ICs);
Matrix mmall(Log& logger, MelodicOptions& opts,MelodicData& melodat, MelodicReport& report, Matrix& pmaps){
Matrix mmpars(5*melodat.get_IC().Nrows(),5);
mmpars = 0;
Log stats;
if(opts.output_MMstats.value()){
stats.makeDir(logger.appendDir("stats"),"stats.log");
}
message(endl
<< "Running Mixture Modelling on Z-transformed IC maps ..."
<< endl);
ColumnVector diagvals;
diagvals=pow(diag(melodat.get_unmix()*melodat.get_unmix().t()),-0.5);
for(int ctr=1; ctr <= melodat.get_IC().Nrows(); ctr++){
MelGMix mixmod(opts, logger);
message(" IC map " << ctr << " ... "<< endl;);
Matrix ICmap;
if(melodat.get_stdNoisei().Storage()>0)
dbgmsg(" stdNoisei max : "<< melodat.get_stdNoisei().Maximum() <<" "<< melodat.get_stdNoisei().Minimum() << endl);
if(opts.varnorm.value()&&melodat.get_stdNoisei().Storage()>0){
ICmap = SP(melodat.get_IC().Row(ctr),diagvals(ctr)*melodat.get_stdNoisei());
string wherelog;
if(opts.genreport.value())
wherelog = report.getDir();
else
wherelog = logger.getDir();
dbgmsg(" ICmap max : "<< mean(ICmap,2).AsScalar() << endl);
wherelog,ctr,
melodat.get_mask(),
melodat.get_mean(),3);
mixmod.fit("GGM");
if(opts.output_MMstats.value()){
message(" saving mixture model fit:");
melodat.saveascii(mixmod.get_params(),
string("stats/MMstats_")+num2str(ctr));
//re-scale spatial maps to mean 0 for nht
if(opts.rescale_nht.value()){
message(" re-scaling spatial maps ... "<< endl);
RowVector tmp;
tmp = mixmod.get_means();
float dmean = tmp(1);
tmp = mixmod.get_vars();
float dstdev = sqrt(tmp(1));
tmp = (mixmod.get_means() - dmean)/dstdev;
mixmod.set_means(tmp);
tmp = (mixmod.get_vars() / (dstdev*dstdev));
mixmod.set_vars(tmp);
//tmp = (mixmod.get_data() - dmean)/dstdev;
tmp = (ICmap - dmean)/dstdev;
mixmod.set_data(tmp);
//if(opts.varnorm.value()&&melodat.get_stdNoisei().Storage()>0)
// tmp = SP(tmp,pow(diagvals(ctr)*melodat.get_stdNoisei(),-1));
melodat.set_IC(ctr,tmp);
}
if(opts.smooth_probmap.value()<0.0){
message(" smoothing probability map ... "<< endl);
mixmod.smooth_probs(0.5*(std::min(std::min(std::abs(melodat.get_mean().xdim()),std::abs(melodat.get_mean().ydim())),std::abs(melodat.get_mean().zdim()))));
}
if(opts.smooth_probmap.value()>0.0){
message(" smoothing probability map ... "<< endl);
mixmod.smooth_probs(opts.smooth_probmap.value());
}
message(" thresholding ... "<< endl);
mixmod.threshold(opts.mmthresh.value());
Matrix tmp;
tmp=(mixmod.get_threshmaps().Row(1));
float posint = SP(tmp,gt(tmp,zeros(1,tmp.Ncols()))).Sum();
float negint = -SP(tmp,lt(tmp,zeros(1,tmp.Ncols()))).Sum();
if((posint<0.01)&&(negint<0.01)){
mixmod.clear_infstr();
mixmod.threshold("0.05n "+opts.mmthresh.value());
posint = SP(tmp,gt(tmp,zeros(1,tmp.Ncols()))).Sum();
negint = -SP(tmp,lt(tmp,zeros(1,tmp.Ncols()))).Sum();
}
if(negint>posint){//flip map
// melodat.flipres(ctr);
// mixmod.flipres(ctr);
}
//save mixture model stats
if(opts.output_MMstats.value()){
stats << " IC " << num2str(ctr) << " " << mixmod.get_type() << endl
<< " Means : " << mixmod.get_means() << endl
<< " Vars. : " << mixmod.get_vars() << endl
<< " Prop. : " << mixmod.get_pi() << endl << endl;
melodat.save4D(mixmod.get_threshmaps(),
string("stats/thresh_zstat")+num2str(ctr));
}
//save mmpars
// mmpars((ctr-1)*5+1,1) = ctr;
// if(mixmod.get_type()=="GGM")
// mmpars((ctr-1)*5+1,2) = 1.0;
// else
// mmpars((ctr-1)*5+1,2) = 0.0;
// mmpars((ctr-1)*5+1,2) = mixmod.get_means().Ncols();
// tmp = mixmod.get_means();
// for(int ctr2=1;ctr2<=mixmod.get_means().Ncols();ctr2++)
// mmpars((ctr-1)*5+2,ctr2) = tmp(1,ctr2);
// tmp = mixmod.get_vars();
// for(int ctr2=1;ctr2<=mixmod.get_vars().Ncols();ctr2++)
// mmpars((ctr-1)*5+3,ctr2) = tmp(1,ctr2);
// tmp = mixmod.get_pi();
// for(int ctr2=1;ctr2<=mixmod.get_pi().Ncols();ctr2++)
// mmpars((ctr-1)*5+4,ctr2) = tmp(1,ctr2);
// mmpars((ctr-1)*5+5,1) = mixmod.get_offset();
if( bool(opts.genreport.value()) ){
message(" creating report page ... ");
report.IC_rep(mixmod,ctr,melodat.get_IC().Nrows(),melodat.get_ICstats());
if(!opts.filtermode&&opts.ICsfname.value().length()==0){
//now safe new data
// bool what = opts.verbose.value();
//opts.verbose.set_T(false);
melodat.set_after_mm(TRUE);
melodat.save();
//if(melodat.get_IC().Storage()>0){
// volume4D<float> tempVol;
// tempVol.setmatrix(melodat.get_IC(),melodat.get_mask());
// save_volume4D(tempVol,logger.appendDir(opts.outputfname.value()
// + "_IC"),melodat.tempInfo);
// message(endl<< endl << " Saving " << logger.appendDir(opts.outputfname.value() + "_IC") <<endl);
//}
message(endl << endl <<
" To view the output report point your web browser at " <<
report.getDir() + "/00index.html" << endl << endl);