Skip to content
Snippets Groups Projects
melica.cc 11.7 KiB
Newer Older
Mark Jenkinson's avatar
Mark Jenkinson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
/*  MELODIC - Multivariate exploratory linear optimized decomposition into 
              independent components
    
    melica.cc - ICA estimation 

    Christian F. Beckmann, FMRIB Image Analysis Group
    
    Copyright (C) 1999-2002 University of Oxford */

/*  CCOPYRIGHT  */

#include <stdlib.h>
#include "newimageall.h"
#include "log.h"
#include "meloptions.h"
#include "meldata.h"
#include "melodic.h"
#include "newmatap.h"
#include "newmatio.h"
#include "melica.h"
#include "melpca.h"
#include "miscprob.h"

using namespace Utilities;
using namespace NEWIMAGE;

namespace Melodic{
    
  void MelodicICA::ica_fastica_symm(const Matrix &Data)
  {
    // based on Aapo Hyvrinen's fastica method
    // see www.cis.hut.fi/projects/ica/fastica/
    
    //initialize matrices
    Matrix redUMM_old;
    Matrix tmpU;    
    
     //srand((unsigned int)timer(NULL));
    
    redUMM = melodat.get_white()*
       unifrnd(melodat.get_white().Ncols(),dim); // got to start somewhere
    
    if(opts.guessfname.value().size()>1){
      message("  Use columns in " << opts.guessfname.value() 
	      << " as initial values for the mixing matrix " <<endl);
      Matrix guess ;
      guess  = melodat.get_white()*read_ascii_matrix(opts.guessfname.value());
      redUMM.Columns(1,guess.Ncols()) = guess;
    }
    
    symm_orth(redUMM);

    int itt_ctr=1; 
    double minAbsSin = 1.0;
    do{ // da loop!!!

      redUMM_old = redUMM;
      
      //calculate IC estimates
      tmpU = Data.t() * redUMM;
      
      //update redUMM depending on nonlinearity
      if(opts.nonlinearity.value()=="pow4"){
	redUMM = (Data * pow(tmpU,3.0)) / samples - 3 * redUMM;
	}
      if(opts.nonlinearity.value()=="pow3"){
        tmpU /= opts.nlconst1.value();
	redUMM = 3 * (Data * pow(tmpU,2.0)) / samples  - 
	  (SP(ones(dim,1)*sum(tmpU,1),redUMM))/ samples;
      }
      if(opts.nonlinearity.value()=="tanh"){
	Matrix hyptanh;
	hyptanh = tanh(opts.nlconst1.value()*tmpU);
	redUMM = (Data * hyptanh - opts.nlconst1.value()*SP(ones(dim,1)*
							    sum(1-pow(hyptanh,2),1),redUMM))/samples;
      }
      if(opts.nonlinearity.value()=="gauss"){
	Matrix tmpUsq;
	Matrix tmpU2;
	Matrix gauss;
	Matrix dgauss;
	tmpUsq = pow(tmpU,2);
	tmpU2 = exp(-(opts.nlconst2.value()/2) * tmpUsq);
	gauss = SP(tmpU,tmpU2);
	dgauss = SP(1-opts.nlconst2.value()*tmpUsq,tmpU2);
	redUMM = (Data * gauss - SP(ones(dim,1)*
				     sum(dgauss,1),redUMM))/samples;
      }
      
      // orthogonalize the unmixing-matrix 
      symm_orth(redUMM);

      //termination condition : angle between old and new < epsilon
      minAbsSin = 1 - diag(abs(redUMM.t()*redUMM_old)).Minimum();
      message("  Step no. " << itt_ctr << " change : " << minAbsSin << endl);
      if(abs(minAbsSin) < opts.epsilon.value()){ break;}
      
      itt_ctr++;
    } while(itt_ctr < opts.maxNumItt.value());
    
    if(itt_ctr>=opts.maxNumItt.value()){
      cerr << "  No convergence after " << itt_ctr <<" steps "<<endl;
    } else {
      message("  Convergence after " << itt_ctr <<" steps " << endl << endl);
      no_convergence = false;
      {Matrix temp(melodat.get_dewhite() * redUMM);
       melodat.set_mix(temp);}
      {Matrix temp(redUMM.t()*melodat.get_white());
      melodat.set_unmix(temp);}
    } 
  }
  

   void MelodicICA::ica_fastica_defl(const Matrix &Data)
   {
     if(!opts.explicitnums || opts.numICs.value()>dim){
      opts.numICs.set_T(dim); 
      message("  Using numICs:" << opts.numICs.value() << endl);
     }
     
     //redUMM = zeros(dim); // got to start somewhere
     redUMM = melodat.get_white()*
       unifrnd(melodat.get_white().Ncols(),opts.numICs.value());
     int guesses=0;
     if(opts.guessfname.value().size()>1){
       message("  Use columns in " << opts.guessfname.value() << " as initial values for the mixing matrix " <<endl);
       Matrix guess;
       guess  = melodat.get_white()*read_ascii_matrix(opts.guessfname.value());
       guesses = guess.Ncols();
       redUMM.Columns(1,guesses) = guess;
     }

     int ctrIC = 1;
     int numRestart = 0;
     
     while(ctrIC<=opts.numICs.value()){
       
       message("  Extracting IC " << ctrIC << "  ... ");
       ColumnVector w;
       ColumnVector w_old;   
       ColumnVector tmpU;
       if(ctrIC <= guesses){
	 w = redUMM.Column(ctrIC);}
       else{
	 w = unifrnd(dim,1);}
       
       w = w - redUMM * redUMM.t() * w;
       w = w / norm2(w);  
       int itt_ctr = 1; 

       do{
	 w_old = w;
 
	 tmpU = Data.t() * w;
	 
	if(opts.nonlinearity.value()=="pow4"){
	  w =  (Data * pow(tmpU,3.0)) / samples - 3 * w;
	}
	if(opts.nonlinearity.value()=="tanh"){
	  ColumnVector hyptanh;
          hyptanh = tanh(opts.nlconst1.value()*tmpU);
 	  w = (Data * hyptanh - opts.nlconst1.value()*SP(ones(dim,1)*
                  sum(1-pow(hyptanh,2),1),w))/samples;
	} 
	if(opts.nonlinearity.value()=="pow3"){
	  tmpU /= opts.nlconst1.value();
 	  w = 3*(Data * pow(tmpU,2.0)) / samples - 2*(SP(ones(dim,1)*
                  sum(tmpU,1),w))/samples;
	} 
	if(opts.nonlinearity.value()=="gauss"){
	  ColumnVector tmpUsq;
	  ColumnVector tmpU2;
	  ColumnVector gauss;
	  ColumnVector dgauss;
	  tmpUsq = pow(tmpU,2);
	  tmpU2 = exp(-(opts.nlconst2.value()/2) * tmpUsq);
	  gauss = SP(tmpU,tmpU2);
	  dgauss = SP(1-opts.nlconst2.value()*tmpUsq,tmpU2);
          w = (Data * gauss - SP(ones(dim,1)*
				 sum(dgauss,1),w))/samples;
	}
 
	// orthogonalize w
	w = w - redUMM * redUMM.t() * w;
	w = w / norm2(w);  

	//termination condition : angle between old and new < epsilon
	if(norm2(w-w_old) < opts.epsilon.value() || 
	   norm2(w+w_old) < opts.epsilon.value()){break;}
        //cout << norm2(w-w_old) << "   " << norm2(w+w_old) << endl;
	itt_ctr++;
      } while(itt_ctr <= opts.maxNumItt.value());

      if(itt_ctr<opts.maxNumItt.value()){
	redUMM.Column(ctrIC) = w;
        message(" estimated using " << itt_ctr << " iterations " << endl);
        ctrIC++; 
        numRestart = 0;
      } 
      else{
        if(numRestart > opts.maxRestart.value()){
	  message(endl << "  Estimation failed after " 
		  << numRestart << " attempts " 
		  << " giving up " << endl);
	  break;
	}
	else{
          numRestart++;
	  message(endl <<"  Estimation failed - restart " 
		  << numRestart << endl);
	}
      }
     }
     if(numRestart < opts.maxRestart.value()){
       no_convergence = false;
       {Matrix temp(melodat.get_dewhite() * redUMM);
       melodat.set_mix(temp);}
       {Matrix temp(redUMM.t()*melodat.get_white());
       melodat.set_unmix(temp);}
     }
   }


  void MelodicICA::ica_maxent(const Matrix &Data)
  {
    cerr << "  Not fully implemented yet " << endl;
    //     cout << "maxent" <<endl;
  }


  void MelodicICA::ica_jade(const Matrix &Data)
  { 
    int dim_sym = (int) (dim*(dim+1))/2;  
    int num_CM = dim_sym;
    Matrix CM;
    Matrix R; R = Identity(dim);
    Matrix Qij; Qij = zeros(dim);
    Matrix Xim;
    Matrix Xjm;
    Matrix scale; scale = ones(dim,1)/samples;

    for (int im =1; im <= dim; im++){
      Xim = Data.Row(im);
write_ascii_matrix("Xim",Data.Row(1));
      //Qij = SP((scale * pow(Xim,2)),Data) * Data.t();//- R - 2*R.Column(im)*R.Column(im).t();
      Qij = (pow(Xim,2)) * Data.t();//- R - 2*R.Column(im)*R.Column(im).t();
      if(im==1){CM = Qij; write_ascii_matrix("CM",CM);exit(2);}else{CM |= Qij;}
      for (int jm = 1; jm < im; jm++){
	Xjm = Data.Row(jm);
	Qij = (SP((scale * SP(Xim,Xjm)),Data) * Data.t() - R.Column(im)*R.Column(jm).t() 
	       - R.Column(jm)*R.Column(im).t());
	Qij *= sqrt(2);
	CM  |= Qij;
      }
    }

    write_ascii_matrix("CM",CM);

    Matrix redUMM; redUMM = Identity(dim);
  
    bool exitloop = false;
    int ctr_itt = 0;
    int ctr_updates = 0;
    Matrix Givens; Givens = zeros(2,num_CM);
    Matrix Givens_ip; Givens_ip = zeros(2);
    Matrix Givens_ro; Givens_ro = zeros(2);
    double det_on, det_off;
    double cos_theta, sin_theta, theta;

    while(!exitloop && ctr_itt <= opts.maxNumItt.value()){
      ctr_itt++;
      cout << "loop" <<endl;
      for(int ctr_p = 1; ctr_p < dim; ctr_p++){
	for(int ctr_q = ctr_p+1; ctr_q <= dim; ctr_q++){

	  for(int ctr_i = 0; ctr_i < num_CM; ctr_i++){
	    int Ip = ctr_p + ctr_i * dim;
	    int Iq = ctr_q + ctr_i * dim;
	    Givens(1,ctr_i + 1) = CM(ctr_p,Ip) - CM(ctr_q,Iq);
	    Givens(2,ctr_i + 1) = CM(ctr_p,Iq) - CM(ctr_q,Ip);
	  }
	  
	  Givens_ip = Givens * Givens.t();
	  det_on = Givens_ip(1,1) - Givens_ip(2,2);
	  det_off = Givens_ip(1,2) + Givens_ip(2,1);
	  theta = 0.5 * atan2(det_off, det_on + sqrt(det_on*det_on + det_off*det_off));

	  cout << theta << endl;

	  if(abs(theta) > opts.epsilon.value()){
	    ctr_updates++;
	    message("  Step No. "<< ctr_itt << " change : " << theta << endl);

	    //create Givens rotation matrix
	    cos_theta = cos(theta);
	    sin_theta = sin(theta);
	    Givens_ro(1,1) = cos_theta;
	    Givens_ro(1,2) = -sin_theta;
	    Givens_ro(2,1) = sin_theta;
	    Givens_ro(2,2) = cos_theta;

	    //update 2 entries of redUMM
	    {Matrix tmp_redUMM;
	    tmp_redUMM = redUMM.Column(ctr_p);
	    tmp_redUMM |= redUMM.Column(ctr_q);
	    tmp_redUMM *= Givens_ro;
	    redUMM.Column(ctr_p) = tmp_redUMM.Column(1);
	    redUMM.Column(ctr_q) = tmp_redUMM.Column(2);}

	    //update Cumulant matrix
	    {Matrix tmp_CM;
	    tmp_CM = CM.Row(ctr_p);
	    tmp_CM &= CM.Row(ctr_q);
	    tmp_CM = Givens_ro.t() * tmp_CM;
	    CM.Row(ctr_p) = tmp_CM.Row(1);
	    CM.Row(ctr_q) = tmp_CM.Row(2);}

	    //update Cumulant matrices
	    for(int ctr_i = 0; ctr_i < num_CM; ctr_i++){
	      int Ip = ctr_p + ctr_i * dim;
	      int Iq = ctr_q + ctr_i * dim;
	      CM.Column(Ip) = cos_theta*CM.Column(Ip)+sin_theta*CM.Column(Iq);
	      CM.Column(Iq) = cos_theta*CM.Column(Iq)-sin_theta*CM.Column(Ip);
	    }
	  }
	  else{
	    exitloop = true;
	  }
	}
      }
    }//while loop
    if(ctr_itt > opts.maxNumItt.value()){
       cerr << "  No convergence after " << ctr_itt <<" steps "<<endl;
     } else {
       message("  Convergence after " << ctr_itt <<" steps " << endl << endl);
       no_convergence = false;
       {Matrix temp(melodat.get_dewhite() * redUMM);
       melodat.set_mix(temp);}
       {Matrix temp(redUMM.t()*melodat.get_white());
       melodat.set_unmix(temp);
       }
     }
  }

  Matrix MelodicICA::sign(const Matrix &Inp)
  {
    Matrix Res = Inp;
    Res = 1;
    for(int ctr_i = 1; ctr_i <= Inp.Ncols(); ctr_i++){
      for(int ctr_j = 1; ctr_j <= Inp.Nrows(); ctr_j++){
	if(Inp(ctr_j,ctr_i)<0){Res(ctr_j,ctr_i)=-1;}
      }
    } 
    return Res;
  }

  void MelodicICA::sort()
  {
    int numComp = melodat.get_mix().Ncols();

    Matrix tmpIC = melodat.get_IC();
    Matrix tmpA  = melodat.get_mix();

    for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){
      if(tmpIC.Row(ctr_i).Sum()>0){
	tmpIC.Row(ctr_i) = -tmpIC.Row(ctr_i);
	tmpA.Column(ctr_i) = -tmpA.Column(ctr_i);
      };

    }
    melodat.set_mix(tmpA);
    melodat.set_IC(tmpIC);
    Matrix tmpW = pinv(tmpA);
    melodat.set_unmix(tmpW);
  }

  void MelodicICA::perf_ica(const Matrix &Data)
  { 
    message("Starting ICA estimation using " << opts.approach.value() 
	    << endl << endl);
    dim = Data.Nrows();
    samples = Data.Ncols();
    
    no_convergence = true;
    //switch to the chosen method
    
    //      cout << endl << "Dim = " << dim << endl << "Samples = " << samples << endl;
    if(opts.approach.value()==string("symm")){
      ica_fastica_symm(Data);}
    if(opts.approach.value()==string("defl")){
      ica_fastica_defl(Data);}
    if(opts.approach.value()==string("jade")){
      ica_jade(Data);}
    if(opts.approach.value()==string("maxent")){
      ica_maxent(Data);}
    
    if(!no_convergence){//calculate the IC
      Matrix temp(melodat.get_unmix()*melodat.get_Data());
      //  Add the mean time course again  
      temp += melodat.get_unmix()*melodat.get_meanC()*ones(1,temp.Ncols());

      melodat.set_IC(temp);
      sort();
    }
  }
}