Skip to content
Snippets Groups Projects
melpca.cc 16.1 KiB
Newer Older
Mark Jenkinson's avatar
Mark Jenkinson committed
/*  MELODIC - Multivariate exploratory linear optimized decomposition into 
              independent components
    
    melpca.cc - PCA and whitening 

    Christian F. Beckmann, FMRIB Image Analysis Group
    
Christian Beckmann's avatar
Christian Beckmann committed
    Copyright (C) 1999-2004 University of Oxford */
Mark Jenkinson's avatar
Mark Jenkinson committed

/*  CCOPYRIGHT  */

#include "newimage/newimageall.h"
#include "utils/log.h"
Mark Jenkinson's avatar
Mark Jenkinson committed
#include "meloptions.h"
#include "meldata.h"
#include "melodic.h"
#include "newmatap.h"
#include "newmatio.h"
Mark Jenkinson's avatar
Mark Jenkinson committed
#include "melpca.h"
#include "libprob.h"
Mark Jenkinson's avatar
Mark Jenkinson committed
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

using namespace Utilities;
using namespace NEWIMAGE;

namespace Melodic{

   void MelodicPCA::perf_pca(const Matrix &Data)
   {    
     message("Starting PCA  ... ");

     SymmetricMatrix Corr;

     if(opts.segment.value().length()>0){
       Matrix Res;
       Res = ones(Data.Nrows(),1)*melodat.get_RXweight();
       Res = SP(melodat.get_Data(),Res);
       Corr = cov(Res.t());
     }
     else{
       Corr = cov(melodat.get_Data().t());
     }

     Matrix tmpE;
     DiagonalMatrix tmpD;
 
     EigenValues(Corr,tmpD,tmpE);

     if(opts.tsmooth.value()){
       message(" temporal smoothing of Eigenvectors " << endl);
       tmpE=melodat.smoothColumns(tmpE);
     }
  
     melodat.set_pcaE(tmpE);
     melodat.set_pcaD(tmpD);
     
     RowVector AdjEV;
     AdjEV = tmpD.AsRow().Reverse();
     SortDescending(AdjEV);
  
     RowVector PercEV(AdjEV);     
     PercEV = cumsum(AdjEV / sum(AdjEV,2).AsScalar());
     write_ascii_matrix(logger.appendDir("eigenvalues_percent"),PercEV);
     melodat.set_EVP(PercEV);
     AdjEV = (AdjEV - min(AdjEV).AsScalar())/(max(AdjEV).AsScalar() - min(AdjEV).AsScalar());
     melodat.set_EV((AdjEV));
     message("done" << endl);
   }
  
  void MelodicPCA::perf_white(const Matrix &Data)
  {
    Matrix RE;
    DiagonalMatrix RD;
    Matrix tmpWhite;
    Matrix tmpDeWhite;

    int N = melodat.get_pcaE().Ncols();    
    if(opts.pca_dim.value() > N){
      message("dimensionality too large - using -dim " << N << 
              " instead " << endl);
      opts.pca_dim.set_T(N);
    }
    if(opts.pca_dim.value() < 0){
      if(opts.remove_meanvol.value()){
	opts.pca_dim.set_T(N-2);
      }else{
	opts.pca_dim.set_T(N-1);
      }
    }
    if(opts.pca_dim.value() ==0){
      opts.pca_dim.set_T(pcadim());
      if(melodat.get_Data().Nrows()<20){
	opts.pca_dim.set_T(N-2);
	message("too few data points for full estimation, using "
		<< opts.pca_dim.value() << " instead"<< endl);
      }
    }
    if(opts.approach.value()==string("jade") && opts.pca_dim.value() > 30){
      message("dimensionality too large for jade estimation - using --dim 30 instead" << endl);
      opts.pca_dim.set_T(30);
    }
    message("Start whitening using  "<< opts.pca_dim.value()<<" dimensions ... " << endl);
    RowVector tmpEVP;
    tmpEVP << melodat.get_EVP();
    float varp = 1.0;
    if(opts.pca_dim.value() <= tmpEVP.Ncols()){
      varp = tmpEVP(opts.pca_dim.value());
    }
    message("  retaining "<< varp*100 <<" percent of the variability " << endl);

    RE = melodat.get_pcaE().Columns(N-opts.pca_dim.value()+1,N);
    RD << abs(melodat.get_pcaD().SymSubMatrix(N-opts.pca_dim.value()+1,N));    

    tmpWhite = sqrt(abs(RD.i()))*RE.t();
    tmpDeWhite = RE*sqrt(RD);
    melodat.set_white(tmpWhite);
    melodat.set_dewhite(tmpDeWhite);
    message(" ... done"<< endl << endl);
   }

  int MelodicPCA::pcadim()
  { 
    message("Estimating the number of sources from the data (PPCA) ..." << endl);

    //First, estimate the smoothness of the data;
    //   set up all strings

    string SM_path = opts.binpath + "smoothest";
    string Mask_fname = logger.appendDir("mask");

    if(opts.segment.value().length()>0){
      Mask_fname =  opts.segment.value();
    } 

    // Setup external call to smoothest:
    char callSMOOTHESTstr[1000];
    ostrstream osc(callSMOOTHESTstr,1000);
    osc  << SM_path << " -d " << melodat.data_dim()
    	 << " -r " << opts.inputfname.value() << " -m " 
    	 << Mask_fname << " > " << logger.appendDir("smoothest") << '\0';
    
    message("  Calling Smoothest: " << callSMOOTHESTstr << endl);
    system(callSMOOTHESTstr);

    //read back the results
    ifstream in;
    string str;
    float Resel = 1.0;

    in.open(logger.appendDir("smoothest").c_str(), ios::in);
    if(in>0){
      for(int ctr=1; ctr<7; ctr++){ in >> str;}
      in.close();
      if(str!="nan"){
	Resel = atof(str.c_str());
      }
    }

    //cerr << "  Resels : " << Resel << endl << endl;
    
    melodat.set_resels(Resel);
    
    Matrix PPCAest;
  
    //   if(!opts.varnorm.value()){
    SymmetricMatrix Corr;
    if(opts.segment.value().length()>0){
      Matrix Res;
      Res = ones(melodat.get_DataVN().Nrows(),1)*melodat.get_RXweight();
      Res = SP(melodat.get_DataVN(),Res);
      Corr = cov(Res.t());
     }
    else{
      Corr = cov(melodat.get_DataVN().t());
    }
    DiagonalMatrix tmpD;
    Matrix tmpE;
    EigenValues(Corr,tmpD,tmpE);
    // }

    RowVector AdjEV;
    AdjEV << tmpD.AsRow();
    AdjEV = AdjEV.Columns(3,AdjEV.Ncols());
    AdjEV = AdjEV.Reverse();

    RowVector CircleLaw;
    int NumVox = (int) floor(melodat.data_samples()/(2.5*Resel));


    CircleLaw = Feta(int(AdjEV.Ncols()), NumVox);

    for(int ctr=1;ctr<=CircleLaw.Ncols(); ctr++){
      if(CircleLaw(ctr)<5*10e-10){CircleLaw(ctr) = 5*10e-10;}
    } 

    //write_ascii_matrix(logger.appendDir("tmpA1"),AdjEV);
    //AdjEV = AdjEV.Columns(2,AdjEV.Ncols());
    //write_ascii_matrix(logger.appendDir("tmpA2"),AdjEV);

    //cerr<< AdjEV.Nrows() << " x " << AdjEV.Ncols() << endl;
    
    //cerr<< CircleLaw.Nrows() << " x " << CircleLaw.Ncols() << endl;

    float slope;
    slope = CircleLaw.Columns(int(AdjEV.Ncols()/4),AdjEV.Ncols() - 
			      int(AdjEV.Ncols()/4)).Sum() /  
      AdjEV.Columns(int(AdjEV.Ncols()/4),AdjEV.Ncols() - 
		    int(AdjEV.Ncols()/4)).Sum();

    //CircleLaw = slope * (CircleLaw-1) + 1;

    //    write_ascii_matrix(logger.appendDir("claw"),CircleLaw.Columns(1,AdjEV.Ncols()));

    RowVector PercEV(AdjEV);
    PercEV = cumsum(AdjEV / sum(AdjEV,2).AsScalar());

    //    write_ascii_matrix(logger.appendDir("ev"),AdjEV);

    //cerr << int(AdjEV.Ncols()) << "   " << NumVox << "   " << slope << endl;
    AdjEV << SP(AdjEV,pow(CircleLaw.Columns(1,AdjEV.Ncols()),-1));
    //  cerr << "recalculated" << endl;

    SortDescending(AdjEV);
    int maxEV = 1;
    float threshold = 0.98;
    for(int ctr_i = 1; ctr_i < PercEV.Ncols(); ctr_i++){ 
      if((PercEV(ctr_i)<threshold)&&(PercEV(ctr_i+1)>=threshold)){maxEV=ctr_i;}
    }

    if(maxEV<3){maxEV=PercEV.Ncols()/2;}
    RowVector NewEV;
    Matrix temp1;
    temp1 = abs(AdjEV);
    NewEV << temp1.SubMatrix(1,1,1,maxEV);
    PPCAest = ppca_est(NewEV, NumVox);
    RowVector estimators(5);
    estimators = 1.0;
    
    Matrix PPCA2(PPCAest);
    
    for(int ctr=1; ctr<=PPCA2.Ncols(); ctr++){
      PPCA2.Column(ctr) = (PPCA2.Column(ctr) - 
			   min(PPCA2.Column(ctr)).AsScalar()) / 
	( max(PPCA2.Column(ctr)).AsScalar() - 
	  min(PPCA2.Column(ctr)).AsScalar());
    }
    
    int ctr_i = 1;
    while((ctr_i< PPCAest.Nrows()-1)&&
	  (PPCAest(ctr_i,2) < PPCAest(ctr_i+1,2))&&(ctr_i<maxEV))
      {estimators(1)=ctr_i+1;ctr_i++;}
    ctr_i = 1;
    while((ctr_i< PPCAest.Nrows()-1)&&
	  (PPCAest(ctr_i,3) < PPCAest(ctr_i+1,3))&&(ctr_i<maxEV))
      {estimators(2)=ctr_i+1;ctr_i++;}
    ctr_i = 1;
    while((ctr_i< PPCAest.Nrows()-1)&&
	  (PPCAest(ctr_i,4) < PPCAest(ctr_i+1,4))&&(ctr_i<maxEV))
      {estimators(3)=ctr_i+1;ctr_i++;}
    ctr_i = 1;
    while((ctr_i< PPCAest.Nrows()-1)&&
	  (PPCAest(ctr_i,5) < PPCAest(ctr_i+1,5))&&(ctr_i<maxEV))
      {estimators(4)=ctr_i+1;ctr_i++;}
    ctr_i = 1;
    while((ctr_i< PPCAest.Nrows()-1)&&
	  (PPCAest(ctr_i,6) < PPCAest(ctr_i+1,6))&&(ctr_i<maxEV))
      {estimators(5)=ctr_i+1;ctr_i++;}

    int res = 0;
    ColumnVector PPCA;

    if(opts.pca_est.value() == string("lap")){
      res = int(estimators(1));
      PPCA << PPCA2.Column(2);
    }

    if(opts.pca_est.value() == string("bic")){
      res = int(estimators(2));
      PPCA << PPCA2.Column(2);
    }
    if(opts.pca_est.value() == string("mdl")){
      res = int(estimators(3));
      PPCA << PPCA2.Column(4);
    }
    if(opts.pca_est.value() == string("aic")){
      res = int(estimators(5));
      PPCA << PPCA2.Column(6);
    }
    if(res==0){//median estimator
      PPCA = PPCA2.Column(2);

      for(int ctr=1; ctr<=PPCA2.Nrows(); ctr++){ 
	RowVector tmp = PPCA2.SubMatrix(ctr,ctr,2,6);
// 	SortAscending(tmp);
// 	float themean = float(tmp.Sum()/5);
// 	if(std::abs(int(tmp(2)-themean)) < std::abs(int(tmp(3)-themean)))
// 	  PPCA(ctr) = tmp(2);
// 	else
// 	  PPCA(ctr) = tmp(3);

	PPCA(ctr) = float(tmp.Sum()/5);
      }

      ctr_i = 1; 
      while((PPCA(ctr_i) < PPCA(ctr_i+1))&&(ctr_i<maxEV)){
	res=ctr_i+1;ctr_i++;
      }
    }

    //    cerr << estimators << "   "  << res << endl;
			       
    //write_ascii_matrix(logger.appendDir("PPCA2"),PPCA2);
    AdjEV = (AdjEV - min(AdjEV).AsScalar())/(max(AdjEV).AsScalar() - min(AdjEV).AsScalar());


    write_ascii_matrix(logger.appendDir("PPCA"),PPCA);			      
    write_ascii_matrix(logger.appendDir("eigenvalues_adjusted"),AdjEV.t());
    write_ascii_matrix(logger.appendDir("eigenvalues_percent"),PercEV.t());

    melodat.set_EVP(PercEV);
    melodat.set_EV(AdjEV);
    melodat.set_PPCA(PPCA);

    //PPCA << sum(PPCAest.Columns(2,6),2);
    
    //ctr_i = 1;
    
    //while((PPCA(ctr_i) < PPCA(ctr_i+1))&&(ctr_i<maxEV)){
    //  res=ctr_i+1;ctr_i++;
    //} 
    
    //res = int(sum(estimators,2).AsScalar()/5);
    
    // res = int(estimators(1)); // Laplace approximation
    //     SortAscending(estimators);
    //     if(std::abs(int(estimators(2))-res) < std::abs(int(estimators(3))-res))
    //       res = int(estimators(2));
    //     else
    //       res = int(estimators(3));
    
    
    //write_ascii_matrix(logger.appendDir("PPCA"),PPCAest);
    //write_ascii_matrix(logger.appendDir("dimest"),estimators);
    
    return res;
  }

RowVector MelodicPCA::Feta(int n1, int n2)
  {
    float nu = (float) n1/n2; 
    float bm = pow((1-sqrt(nu)),2.0);
    float bp = pow((1+sqrt(nu)),2.0);

    //cerr << "nu, bm, bp " << nu << " " <<bm << " " << bp << endl;

    float lrange = 0.9*bm;
    float urange = 1.1*bp;

    // int dummy;
   
    RowVector eta(30*n1);
    float rangestepsize = (urange - lrange) / eta.Ncols(); 
    for(int ctr_i = 0; ctr_i < eta.Ncols(); ctr_i++){ 
      eta(ctr_i+1) = lrange + rangestepsize * (ctr_i);
    }

    RowVector teta(10*n1);
    teta = 0;
    float stepsize = (bp - bm) / teta.Ncols();
    for(int ctr_i = 0; ctr_i < teta.Ncols(); ctr_i++){ 
      teta(ctr_i+1) = stepsize*(ctr_i);
    }  
    
    //cerr << teta(1)+bm << " " << teta(1000)+bm << endl;
    //cerr << eta(1)<< " " << eta(eta.Ncols())<< endl;
    
    //cerr << "BP1" << endl;
 
    //write_ascii_matrix(logger.appendDir("teta"),teta.t());


    //  RowVector tmp1(teta);
    //     tmp1 = teta + bm;
    
    //     cerr << "tmp1" << endl;
    //     tmp1 =  pow(2*M_PI*nu*(tmp1),-1);
    //     cerr << "tmp1" << endl;
    
    //     RowVector tmp2(teta); 
    //     cerr << "tmp2" << endl;
    //     tmp2 = SP(teta, bp-bm-teta);
    //     cerr << "tmp2" << endl;
    //     tmp2=abs(tmp2);
    //     cerr << "tmp2" << endl;


    RowVector feta(teta);
    feta = SP(pow(2*M_PI*nu*(teta + bm),-1), pow(SP(teta, bp-bm-teta),0.5));
   
    //Matrix location;
    teta = teta + bm;

    //cerr << "teta : " << teta.Nrows() << " x " << teta.Ncols() << endl;
    //cerr << "eta : " << eta.Nrows() << " x " << eta.Ncols() << endl;
    //cerr << "feta : " << feta.Nrows() << " x " << feta.Ncols() << endl;
    //c/err << "vor location (input)" << endl;
    //cin >> dummy;
    //location = SP(teta.t()*ones(1,eta.Ncols()),pow(ones(teta.Ncols(),1)*eta,-1));
    //cerr << "nach location (input)" << endl;
    //cin >> dummy;
    //cerr << " weiter " << endl;

    //for(int ctr_i = 1; ctr_i <= location.Ncols(); ctr_i++){
    //  for(int ctr_j = 1; ctr_j <= location.Nrows(); ctr_j++){
    //	if(location(ctr_j,ctr_i)<1){location(ctr_j,ctr_i)=1;}
    //	else {location(ctr_j,ctr_i)=0;}
    //  }
    // } 
    //write_ascii_matrix(logger.appendDir("location"),location);
    // write_ascii_matrix(logger.appendDir("teta"),teta);
    //write_ascii_matrix(logger.appendDir("eta"),eta);
    //write_ascii_matrix(logger.appendDir("feta"),feta);
 
  
    //RowVector claw; 
    //  claw = n1*(1-sum(SP(stepsize*feta.t()*ones(1,eta.Ncols()),location),1).AsRow());

    RowVector claw(eta);
    claw = 0;
    for(int ctr_i = 1; ctr_i <= eta.Ncols(); ctr_i++){
      double tmpval = 0.0;
      for(int ctr_j = 1; ctr_j <= teta.Ncols(); ctr_j++){
	if(( double(teta(ctr_j))/double(eta(ctr_i)) )<1)
	  tmpval += feta(ctr_j);
      }
      claw(ctr_i) = n1*(1-stepsize*tmpval);
    }
    
    //write_ascii_matrix(logger.appendDir("claw"),claw);
    //cerr << "BP1" << endl;
    RowVector Res(n1); //invert the CDF
    //cerr << "n1=" << n1 << endl;
    for(int ctr_i = 1; ctr_i < eta.Ncols(); ctr_i++){
      if(floor(claw(ctr_i))>floor(claw(ctr_i+1))){
	//	cerr << int(floor(claw(ctr_i))) << " ";
	Res(int(floor(claw(ctr_i)))) = eta(ctr_i);
      }
    }
 
    //cerr << endl;
    //    cerr << " Done with loop " << int(floor(tmp4b(ctr_i))) << endl; 
    //write_ascii_matrix(logger.appendDir("claw-dstn"),Res);
    return Res;
  }


  RowVector MelodicPCA::cumsum(const RowVector& Inp)
  {
    UpperTriangularMatrix UT(Inp.Ncols());
    UT=1.0;
    RowVector Res;
    Res = Inp * UT;
    return Res;
  }


  Matrix MelodicPCA::ppca_est(const RowVector& eigenvalues, const int N)
  {
    RowVector logLambda(eigenvalues);
    logLambda = log(eigenvalues);

    int d = logLambda.Ncols();

    RowVector k(d);
    for(int ctr_i = 1; ctr_i <=d; ctr_i++){
      k(ctr_i)=ctr_i;
    }
   
    RowVector m(d);
    m=d*k-0.5*SP(k,k+1); 

    RowVector loggam(d);
    loggam = 0.5*k.Reverse();
    for(int ctr_i = 1; ctr_i <=d; ctr_i++){
      loggam(ctr_i)=lgam(loggam(ctr_i));
    }
    loggam = cumsum(loggam); 

    RowVector l_probU(d);
    l_probU = -log(2)*k + loggam - cumsum(0.5*log(M_PI)*k.Reverse());

    RowVector tmp1;
    tmp1 = -cumsum(eigenvalues).Reverse()+sum(eigenvalues,2).AsScalar();
    tmp1(1) = 0.95*tmp1(2);
    tmp1=tmp1.Reverse();

    RowVector tmp2;
    tmp2 = -cumsum(logLambda).Reverse()+sum(logLambda,2).AsScalar();
    tmp2(1)=tmp2(2);
    tmp2=tmp2.Reverse();

    RowVector tmp3;
    tmp3 = d-k;
    tmp3(d) = 1.0;

    RowVector tmp4;
    tmp4 = SP(tmp1,pow(tmp3,-1));    
    for(int ctr_i = 1; ctr_i <=d; ctr_i++){
      if(tmp4(ctr_i)<0.01){tmp4(ctr_i)=0.01;}
      if(tmp3(ctr_i)<0.01){tmp3(ctr_i)=0.01;}
      if(tmp1(ctr_i)<0.01){tmp1(ctr_i)=0.01;}
    }

    RowVector l_nu;
    l_nu = SP(-N/2*(d-k),log(tmp4));
    l_nu(d) = 0;

    RowVector l_lam;
    l_lam = -(N/2)*cumsum(logLambda);

    RowVector l_lhood;
    l_lhood = SP(pow(tmp3,-1),tmp2)-log(SP(pow(tmp3,-1),tmp1));

    Matrix t1,t2, t3;
    UpperTriangularMatrix triu(d);
    triu = 1.0;
    for(int ctr_i = 1; ctr_i <= triu.Ncols(); ctr_i++){
      triu(ctr_i,ctr_i)=0.0;
    }
    t1 = (ones(d,1) * eigenvalues);
    t1 = SP(triu,t1.t() - t1);
    t2 = pow(tmp4,-1).t()*ones(1,d);
    t3 = ones(d,1)*pow(eigenvalues,-1);
    t2 = SP(triu, t2.t()-t3.t());
    for(int ctr_i = 1; ctr_i <= t1.Ncols(); ctr_i++){
      for(int ctr_j = 1; ctr_j <= t1.Nrows(); ctr_j++){
	if(t1(ctr_j,ctr_i)<=0){t1(ctr_j,ctr_i)=1;}
      } 
    }
    for(int ctr_i = 1; ctr_i <= t2.Ncols(); ctr_i++){
      for(int ctr_j = 1; ctr_j <= t2.Nrows(); ctr_j++){
	if(t2(ctr_j,ctr_i)<=0){t2(ctr_j,ctr_i)=1;}
      }
    } 
    t1 = cumsum(sum(log(t1),2).AsRow());
    t2 = cumsum(sum(log(t2),2).AsRow());

    RowVector l_Az(d);
    l_Az << (t1+t2);

    RowVector l_lap;
    l_lap = l_probU + l_nu +l_Az + l_lam + 0.5*log(2*M_PI)*(m+k)-0.5*log(N)*k;
 
    RowVector l_BIC;
    l_BIC = l_lam + l_nu - 0.5*log(N)*(m+k);

    RowVector l_RRN;
    l_RRN = -0.5*N*SP(k,log(SP(cumsum(eigenvalues),pow(k,-1))))+l_nu;

    RowVector l_AIC;
    l_AIC = -2*N*SP(tmp3,l_lhood)+ 2*(1+d*k+0.5*(k-1));
    l_AIC = -l_AIC;

    RowVector l_MDL;
    l_MDL = -N*SP(tmp3,l_lhood)+ 0.5*(1+d*k+0.5*(k-1))*log(N);
    l_MDL = -l_MDL;

    Matrix Res;

    Res = eigenvalues.t();
    Res |= l_lap.t();
    Res |= l_BIC.t();
    Res |= l_MDL.t();
    Res |= l_RRN.t();
    Res |= l_AIC.t();
    
   
    return Res;

  }




}