Newer
Older
/* fsl_glm -
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 2008 University of Oxford */
/* CCOPYRIGHT */
#include "libvis/miscplot.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include "utils/options.h"
#include <vector>
#include "newimage/newimageall.h"
#include "melhlprfns.h"
using namespace MISCPLOT;
using namespace MISCMATHS;
using namespace Utilities;
using namespace std;
// The two strings below specify the title and example usage that is
// printed out as the help or usage message
string title=string("fsl_sbca (Version 1.0)")+
string("\nCopyright(c) 2008, University of Oxford (Christian F. Beckmann)\n")+
string(" \n Performs seed-based correlation analysis on FMRI data\n")+
string(" using either a single seed coordinate or a seed mask \n")+
string(" ");
string examples="fsl_sbca -i <input> -s <seed> -t <target> -o <basename> [options]";
//Command line Options {
Option<string> fnin(string("-i,--in"), string(""),
string(" input file name (4D image file)"),
true, requires_argument);
Option<string> fnout(string("-o,--out"), string(""),
string("output file base name"),
true, requires_argument);
Option<string> fnseed(string("-s,--seed"), string(""),
string("seed voxel coordinate or file name of seed mask (3D/4D file)"),
Option<string> fntarget(string("-t,--target"), string(""),
string("file name of target mask(s) (3D or 4D file)"),
true, requires_argument);
Option<bool> regress_only(string("-r,--reg"), false,
string("perform time series regression rather than classification to targets"),
false, no_argument);
Option<string> fnconf(string("--conf"), string(""),
string(" file name (or comma-separated list of file name) for confound ascii txt files"),
false, requires_argument);
Option<string> fnseeddata(string("--seeddata"), string(""),
string("file name of 4D data file for the seed"),
false, requires_argument);
Option<bool> map_bin(string("--bin"), false,
string(" binarise spatial maps prior to calculation of time courses"),
false, no_argument);
Option<bool> verbose(string("-v,--verbose"), false,
string("switch on diagnostic messages"),
false, no_argument);
Option<bool> tc_mean(string("--mean"), false,
string(" use mean instead of Eigenvariates for calculation of time courses"),
false, no_argument);
false, requires_argument);
Option<bool> abscc(string("--abscc"), false,
string(" use maximum absolute value instead of of maximum value of the cross-correlations"),
false, no_argument);
Option<bool> out_seeds(string("--out_seeds"), false,
string("output seed mask image as <basename>_seeds"),
false, no_argument);
Option<bool> out_seedmask(string("--out_seedmask"), false,
string("output seed mask image as <basename>_seedmask"),
false, no_argument);
Option<bool> out_ttcs(string("--out_ttcs"), false,
string("output target time courses as <basename>_ttc<X>.txt"),
false, no_argument);
Option<bool> out_conf(string("--out_conf"), false,
string("output confound time courses as <basename>_confounds.txt"),
false, no_argument);
Option<bool> out_tcorr(string("--out_tcorr"), false,
string("output target correlations as <basename>_tcorr.txt"),
false, no_argument, false);
Option<int> help(string("-h,--help"), 0,
string("display this help text"),
false,no_argument);
Option<bool> debug(string("--debug"), false,
string(" switch on debug messages"),
false, no_argument, false);
/*
}
*/
//Globals {
Matrix data, confounds;
volume4D<float> orig_data;
/*
}
*/
////////////////////////////////////////////////////////////////////////////
// Local functions
void save4D(Matrix what, volume<float>& msk, string fname){
if(debug.value())
cerr << "DBG: in save4D" << endl;
volume4D<float> tempVol;
tempVol.setmatrix(what,msk);
void save4D(volume<float>& in, string fname){
if(debug.value())
cerr << "DBG: in save4D" << endl;
volume4D<float> tempVol;
tempVol.addvolume(in);
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
}
ReturnMatrix create_coords(string what){
if(debug.value())
cerr << "DBG: in create_coords" << endl;
Matrix res;
ifstream fs(what.c_str());
if (!fs) {
Matrix tmp(1,3);
char *p;
char t[1024];
const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?";
strcpy(t, what.c_str());
p=strtok(t,discard);
tmp(1,1) = atoi(p);
p=strtok(NULL,discard);
tmp(1,2) = atoi(p);
p=strtok(NULL,discard);
tmp(1,3) = atoi(p);
res = tmp;
do{
p=strtok(NULL,discard);
if(p){
tmp(1,1) = atoi(p);
p=strtok(NULL,discard);
tmp(1,2) = atoi(p);
p=strtok(NULL,discard);
tmp(1,3) = atoi(p);
res &= tmp;
}
}while(p);
}else{
res = read_ascii_matrix(fs);
fs.close();
}
if(res.Ncols()!=3){
cerr << "ERROR: incorrect format " << what << endl;
exit(1);
}
// if(verbose.value())
// cout << " Created seed coordinates (size: " << res.Nrows() << " x " << res.Ncols() << ")" << endl;
res.Release();
return res;
void create_mask(string what){
if(debug.value())
cerr << "DBG: in create_mask" << endl;
coords = create_coords(what);
maskS = orig_data[0] * 0.0;
for(int ctr = 1; ctr <= coords.Nrows(); ctr++)
maskS(coords(ctr,1),coords(ctr,2),coords(ctr,3)) = 1.0;
maskS.binarise(1e-8);
}
void create_seeds(string what){
if(debug.value())
cerr << "DBG: in create_seeds" << endl;
read_volume4D(tmp_vol,what);
maskS = tmp_vol[0];
if(!samesize(orig_data[0],maskS)){
cerr << "ERROR: Seed mask image does not match input image" << endl;
exit(1);
}
}
else
create_mask(what);
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
if(tmp_vol.tsize() > 1 && tmp_vol.tsize() == orig_data.tsize()){
maskS *= tmp_vol[0] / tmp_vol.tsize();
for(int ctr=1; ctr < tmp_vol.tsize(); ctr++)
maskS += tmp_vol[ctr] * tmp_vol[ctr] / tmp_vol.tsize();
maskS.binarise(1e-8);
seeds = remmean(tmp_vol.matrix(maskS),1);
}
else{
volume4D<float> tmp_mask;
tmp_mask.addvolume(maskS);
maskS.binarise(1e-8);
if(fnseeddata.value()>"" && fsl_imageexists(fnseeddata.value())){
volume4D<float> seed_data;
if(verbose.value())
cout << " Reading input data for seeds " << fnseeddata.value() << endl;
read_volume4D(seed_data,fnseeddata.value());
seeds = remmean(seed_data.matrix(maskS),1);
}else{
seeds = remmean(orig_data.matrix(maskS),1);
if(!map_bin.value()){
Matrix scales = tmp_mask.matrix(maskS);
seeds = SP(seeds, ones(seeds.Nrows(),1) * scales);
}
}
}
if(debug.value()){
cerr << "DBG: " << voxels << " voxels" << endl;
cerr << "DBG: seeds matrix is " << seeds.Nrows() << " x " << seeds.Ncols() << endl;
}
if(verbose.value())
cout << " Created seed time courses " << endl;
if(debug.value())
cerr << "DBG: in create_confs" << endl;
Matrix res, tmp;
char *p;
char t[1024];
const char *discard = ",";
strcpy(t, what.c_str());
p=strtok(t,discard);
res = remmean(read_ascii_matrix(string(p)),1);
do{
p=strtok(NULL,discard);
if(p){
tmp = read_ascii_matrix(string(p));
if(tmp.Nrows()!=res.Nrows()){
cerr << "ERROR: confound matrix" << string(p) << " is of wrong size "<< endl;
exit(1);
}
res |= remmean(tmp,1);
if(verbose.value())
cout << " Created confound matrix (size: " << res.Nrows() << " x " << res.Ncols() << ")" << endl;
res.Release();
return res;
}
ReturnMatrix calc_ttc(volume<float>& in){
if(debug.value())
cerr << "DBG: in calc_ttc" << endl;
Matrix res, tmp, scales;
volume<float> tmp1;
volume4D<float> tmp2;
tmp1 = in;
tmp1.binarise(1e-8);
tmp2.addvolume(in);
scales = tmp2.matrix(tmp1);
tmp = remmean(orig_data.matrix(tmp1),1);
if(!map_bin.value())
tmp = SP(tmp, ones(tmp.Nrows(),1) * scales);
if(tc_mean.value())
res = mean(tmp,2);
else{
SymmetricMatrix Corr;
Corr << tmp * tmp.t() / tmp.Ncols();
DiagonalMatrix tmpD;
EigenValues(Corr,tmpD,res);
res = fliplr(res.Columns(res.Ncols()-tc_order.value()+1 , res.Ncols())) * std::sqrt(tmp.Nrows());
Matrix res2 = mean(tmp,2);
if(debug.value())
cerr << "DBG: mean size is " << res2.Nrows() << " x " << res2.Ncols() << endl;
res2 = res2.Column(1).t() * res.Column(1);
if((float)res2.AsScalar() < 0){
res = -1.0 * res;
if(debug.value())
cerr << "DBG: flipping first eigenvariates" << endl;
}
if(debug.value())
cerr << "DBG: size is " << res.Nrows() << " x " << res.Ncols() << endl;
res.Release();
return res;
}
void create_target_tcs(){
if(debug.value())
cerr << "DBG: in create_target_tcs" << endl;
volume4D<float> tmptarg;
read_volume4D(tmptarg,fntarget.value());
for(int ctr=0; ctr < tmptarg.tsize(); ctr++){
ttcs.push_back(calc_ttc(tmptarg[ctr]));
}
if(debug.value()) {
cerr << "DBG: " << ttcs.size() << " target matrices created " << endl;
}
if(verbose.value())
cout << " Created target mask time courses " << endl;
if(debug.value())
cerr << "DBG: in setup" << endl;
if(fsl_imageexists(fnin.value())){ //read data
if(verbose.value())
cout << " Reading input file " << fnin.value() << endl;
}
else{
cerr << "ERROR: Invalid input file " << fnin.value() << endl;
exit(1);
create_seeds(fnseed.value());
if(!regress_only.value())
create_target_tcs();
else{
volume4D<float> tmptarg;
read_volume4D(tmptarg,fntarget.value());
maskT = tmptarg[0];
maskT.binarise(1e-8);
data = orig_data.matrix(maskT);
data = remmean(data,1);
}
if(fnconf.value()>"")
confounds = create_confs(fnconf.value());
ReturnMatrix calc_tcorr(int in){
if(debug.value())
cerr << "DBG: in calc_tcorr" << endl;
Matrix res = zeros(1,seeds.Ncols()), partial_conf, targetcol;
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
for(int ctr = 0; ctr < (int)ttcs.size(); ctr++)
if(ctr != in){
if(partial_conf.Storage() == 0)
partial_conf = ttcs.at(ctr);
else
partial_conf |= ttcs.at(ctr);
}
if(ttcs.at(in).Ncols()>1)
if(partial_conf.Storage()>0)
partial_conf = ttcs.at(in).Columns(2,ttcs.at(in).Ncols()) | partial_conf;
else
partial_conf = ttcs.at(in).Columns(2,ttcs.at(in).Ncols());
if(confounds.Storage() > 0)
if(partial_conf.Storage()>0)
partial_conf |= confounds;
else
partial_conf = confounds;
if(debug.value() && partial_conf.Storage()>0)
cerr << "DBG: partial_conf " << partial_conf.Nrows() << " x " << partial_conf.Ncols() << endl;
targetcol = ttcs.at(in).Column(1);
if(debug.value())
cerr << "DBG: targetcol " << targetcol.Nrows() << " x " << targetcol.Ncols() << endl;
for(int ctr = 1; ctr <= seeds.Ncols(); ctr++)
res(1,ctr) = Melodic::corrcoef(targetcol, seeds.Column(ctr), partial_conf).AsScalar();
res.Release();
return res;
if(debug.value())
cerr << "DBG: in calc_res" << endl;
out2 = zeros(1,seeds.Ncols());
if(!regress_only.value()){
//Target TCs exist
if(verbose.value())
cout << " Calculating partial correlation scores between seeds and targets " << endl;
Matrix tmp;
int tmp2;
out1=zeros(ttcs.size(),seeds.Ncols());
for(int ctr = 0 ;ctr < (int)ttcs.size(); ctr++)
out1.Row(ctr+1) = calc_tcorr(ctr);
for(int ctr = 1 ;ctr <= out1.Ncols(); ctr++){
if(!abscc.value()){
out1.Column(ctr).Maximum1(tmp2);
out2(1,ctr) = tmp2;
}else
{
out1.Column(ctr).MaximumAbsoluteValue1(tmp2);
out2(1,ctr) = tmp2;
}
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
}
if(debug.value()){
cerr << "DBG: out1 " << out1.Nrows() << " x " << out1.Ncols() << endl;
cerr << "DBG: out2 " << out2.Nrows() << " x " << out2.Ncols() << endl;
}
}
else{
//no Target TCs
if(verbose.value())
cout << " Calculating partial correlation maps " << endl;
out1 = zeros(seeds.Ncols(), data.Ncols());
if(confounds.Storage()>0){
data = data - confounds * pinv(confounds) * data;
seeds = seeds - confounds * pinv(confounds) * seeds;
}
if(debug.value()){
cerr << "DBG: seeds " << seeds.Nrows() << " x " << seeds.Ncols() << endl;
cerr << "DBG: data " << data.Nrows() << " x " << data.Ncols() << endl;
}
for(int ctr = 1 ;ctr <= seeds.Ncols(); ctr++){
Matrix tmp;
if(coords.Storage()>0){
tmp = orig_data.voxelts(coords(ctr,1), coords(ctr,2), coords(ctr,3));
volume4D<float> tmpVol;
tmpVol.setmatrix(out2,maskS);
tmpVol( coords(ctr,1), coords(ctr,2), coords(ctr,3), 0) = ctr;
out2 = tmpVol.matrix(maskS);
if(confounds.Storage()>0)
tmp = tmp - confounds * pinv(confounds) * tmp;
}
else{
tmp = seeds.Column(ctr);
out2(1,ctr) = ctr;
}
for(int ctr2 =1; ctr2 <= data.Ncols(); ctr2++)
out1(ctr,ctr2) = Melodic::corrcoef(tmp,data.Column(ctr2)).AsScalar();
}
if(debug.value()){
cerr << "DBG: out1 " << out1.Nrows() << " x " << out1.Ncols() << endl;
cerr << "DBG: out2 " << out2.Nrows() << " x " << out2.Ncols() << endl;
}
}
void write_res(){
if(verbose.value())
cout << " Saving results " << endl;
if(debug.value())
cerr << "DBG: in write_res" << endl;
if(regress_only.value()){
save4D(out2,maskS, fnout.value()+"_index");
save4D(out1,maskT, fnout.value()+"_corr");
}
else{
save4D(out1,maskS, fnout.value()+"_corr");
save4D(out2,maskS, fnout.value()+"_index");
}
if(out_ttcs.value() && ttcs.size()>0)
for(int ctr = 0 ;ctr < (int)ttcs.size(); ctr++)
write_ascii_matrix(ttcs.at(ctr),fnout.value()+"_ttc"+num2str(ctr+1)+".txt");
if(out_conf.value() && confounds.Storage()>0)
write_ascii_matrix(confounds, fnout.value()+"_confounds.tx");
if(out_seeds.value())
save4D(seeds, maskS, fnout.value()+"_seeds");
if(out_seedmask.value())
save4D(maskS,fnout.value()+"_seedmask");
}
int do_work(int argc, char* argv[]) {
if(setup())
exit(1);
calc_res();
write_res();
return 0;
}
////////////////////////////////////////////////////////////////////////////
int main(int argc,char *argv[]){
Tracer tr("main");
OptionParser options(title, examples);
try{
// must include all wanted options here (the order determines how
// the help message is printed)
options.add(fnin);
options.add(fnseed);
options.add(abscc);
options.add(out_seeds);
options.add(out_seedmask);
options.add(out_ttcs);
options.add(out_conf);
options.add(out_tcorr);
options.parse_command_line(argc, argv);
// line below stops the program if the help was requested or
// a compulsory option was not set
if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){
options.usage();
exit(EXIT_FAILURE);
}else{
// Call the local functions
return do_work(argc,argv);
}
}catch(X_OptionError& e) {
options.usage();
cerr << endl << e.what() << endl;
exit(EXIT_FAILURE);
}catch(std::exception &e) {
cerr << e.what() << endl;
}
}