Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
/* fsl_glm -
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 2006-2008 University of Oxford */
/* CCOPYRIGHT */
//Header & includes
#include "libvis/miscplot.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include "utils/options.h"
#include <vector>
#include "newimage/newimageall.h"
#include "melhlprfns.h"
#define message(msg) { \
if(verbose.value()) \
{ \
cout << msg; \
} \
}
#define dbgmsg(msg) { \
if(debug.value()) {\
cerr << msg << endl; } \
}
#define outMsize(msg,Mat) { \
if(debug.value()) \
cerr << " " << msg << " " <<Mat.Nrows() << " x " << Mat.Ncols() << endl; \
}
#define outM(msg,Mat) { \
if(verbose.value()) \
cout << " " << msg << " " <<Mat.Nrows() << " x " << Mat.Ncols() << endl; \
}
using namespace MISCPLOT;
using namespace MISCMATHS;
using namespace Utilities;
using namespace std;
//Command-line output
// The two strings below specify the title and example usage that is
// printed out as the help or usage message
string title=string("fsl_mvlm (Version 1.0)")+
string("\nCopyright(c) 2008, University of Oxford (Christian F. Beckmann)\n")+
string(" \n Multivariate Linear Model regression on\n")+
string(" time courses and/or 3D/4D imges using SVD (PCA), PLS, normalised PLS, \n")+
string(" CVA, SVD-CVA or MLM\n\n");
string examples="fsl_mvlm -i <input> -o <output> [options]";
//Command line Options
Option<string> fnin(string("-i,--in"), string(""),
string(" input file name (text matrix or 3D/4D image file)"),
true, requires_argument);
Option<string> fnout(string("-o,--out"), string(""),
string("basename for output files "),
true, requires_argument);
Option<string> approach(string("-a,--alg"), string("PCA"),
string("algorithm for decomposition: PCA (or SVD; default), PLS, orthoPLS, CVA, SVD-CVA, MLM, NMF"),
false, requires_argument);
Option<string> fndesign(string("-d,--design"), string(""),
string("file name of the GLM design matrix (time courses or spatial maps)"),
false, requires_argument);
Option<string> fnmask(string("-m,--mask"), string(""),
string("mask image file name if input is image"),
false, requires_argument);
Option<bool> normdes(string("--des_norm"),FALSE,
string("switch on normalisation of the design matrix columns to unit std. deviation"),
false, no_argument);
Option<bool> perfvn(string("--vn"),FALSE,
string(" perform MELODIC variance-normalisation on data"),
false, no_argument);
Option<bool> perf_demean(string("--demean"),FALSE,
string("switch on de-meaning of design and data"),
false, no_argument);
Option<int> nmfdim(string("--nmf_dim"), 0,
string(" Number of underlying factors for NMF"),
false,requires_argument);
Option<int> nmfitt(string("--nmfitt"), 100,
string("number of NMF itterations (default 100)"),
false,requires_argument);
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
Option<int> help(string("-h,--help"), 0,
string("display this help text"),
false,no_argument);
Option<bool> verbose(string("-v,--verbose"),FALSE,
string("switch on verbose output"),
false, no_argument);
Option<bool> debug(string("--debug"),FALSE,
string("switch on debug output"),
false, no_argument, false);
// Output options
Option<string> outres(string("--out_res"),string(""),
string("output file name for residuals"),
false, requires_argument, false);
Option<string> outdata(string("--out_data"),string(""),
string("output file name for pre-processed data"),
false, requires_argument);
Option<string> outvnscales(string("--out_vnscales"),string(""),
string("output file name for scaling factors for variance normalisation"),
false, requires_argument);
//Globals
Melodic::basicGLM glm;
int voxels = 0;
Matrix data, tmpdata;
Matrix design;
Matrix meanR;
Matrix svd_X_U, svd_X_V, svd_Y_U, svd_Y_V;
DiagonalMatrix svd_X_D, svd_Y_D;
RowVector vnscales;
////////////////////////////////////////////////////////////////////////////
// Local functions
void save4D(Matrix what, string fname){
if(what.Ncols()==data.Ncols()||what.Nrows()==data.Nrows()){
volume4D<float> tempVol;
if(what.Nrows()>what.Ncols())
tempVol.setmatrix(what.t(),mask);
else
tempVol.setmatrix(what,mask);
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
}
}
bool isimage(Matrix what){
if((voxels > 0)&&(what.Ncols()==voxels || what.Nrows()==voxels))
return TRUE;
else
return FALSE;
}
void saveit(Matrix what, string fname){
if(isimage(what))
save4D(what,fname);
else if(fsl_imageexists(fndesign.value()))
write_ascii_matrix(what.t(),fname);
else
write_ascii_matrix(what,fname);
}
int setup(){
dbgmsg(" In <setup>");
message(" Reading data " << fnin.value() << " ... ");
if(fsl_imageexists(fnin.value())){//read data
//input is 3D/4D vol
volume4D<float> tmpdata;
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
// create mask
if(fnmask.value()>""){
read_volume(mask,fnmask.value());
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: Mask image does not match input image" << endl;
return 1;
};
}else{
mask = tmpdata[0]*0.0+1.0;
}
data = tmpdata.matrix(mask);
voxels = data.Ncols();
if(perf_demean.value())
data = remmean(data,1);
if(perfvn.value())
vnscales = Melodic::varnorm(data);
}
else
data = read_ascii_matrix(fnin.value());
message("done" << endl;);
if(fndesign.value().length()>0){
message(" Reading design " << fndesign.value() << " ... ");
if(fsl_imageexists(fndesign.value())){//read design
volume4D<float> tmpdata;
read_volume4D(tmpdata,fndesign.value());
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: GLM design does not match input image in size" << endl;
return 1;
}
design = tmpdata.matrix(mask).t();
data = data.t();
}else{
design = read_ascii_matrix(fndesign.value());
}
message("done" << endl;);
}else
design = ones(data.Nrows(),1);
meanR=mean(data,1);
if(perf_demean.value()){
data = remmean(data,1);
design = remmean(design,1);
}
if(normdes.value())
design = SP(design,ones(design.Nrows(),1)*pow(stdev(design,1),-1));
SVD( design, svd_X_D, svd_X_U, svd_X_V );
if(approach.value()!=string("NMF")){
if(data.Nrows()>=data.Ncols())
SVD ( data, svd_Y_D, svd_Y_U, svd_Y_V );
else{
SVD ( data.t(), svd_Y_D, svd_Y_V, svd_Y_U );
}
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
}
if(fnout.value().length() == 0){
string basename = fnin.value();
basename = make_basename(basename);
fnout.set_T(basename+string("_mvlm_"));
}
outM("Data matrix : ", data);
outM("Design matrix : ", design);
dbgmsg(" initial SVD : ");
outMsize("svd_Y_U",svd_Y_U);
outMsize("svd_Y_V",svd_Y_V);
outMsize("svd_Y_D",svd_Y_D);
outMsize("svd_X_U",svd_X_U);
outMsize("svd_X_V",svd_X_V);
outMsize("svd_X_D",svd_X_D);
dbgmsg(" Leaving <setup>");
return 0;
}
void write_res(){
dbgmsg(" In <write_res>");
message(" Writing results ... ")
if(isimage(svd_Y_V)){
saveit(svd_Y_V,fnout.value()+string("maps"));
saveit(svd_Y_U,fnout.value()+string("tcs"));
}
else{
saveit(svd_Y_V.t(),fnout.value()+string("tcs"));
saveit(svd_Y_U,fnout.value()+string("maps"));
}
saveit(svd_Y_D.AsColumn(),fnout.value()+string("scales"));
if(outres.value()>"")
if(outdata.value()>"")
saveit(data,outdata.value());
if(outvnscales.value()>"")
saveit(vnscales,outvnscales.value());
message("done" << endl;);
dbgmsg(" Leaving <write_res>");
}
int do_work(int argc, char* argv[]) {
dbgmsg(" In <do_work>");
if(setup())
exit(1);
//modify data
//X = svd_X_U * svd_X_D * svd_X_V.t();
//Y = svd_Y_U * svd_Y_D * svd_Y_V.t();
//X'X = svd_X_V *pow(svd_X_D,2) * svd_X_V.t();
//(X'X)^(-1) = svd_X_V *pow(svd_X_D,-2) * svd_X_V.t()
//(X'X)^(-1/2) = svd_X_V *pow(svd_X_D,-1) * svd_X_V.t()
if(approach.value()==string("PLS")) {
message(" Using method : " << approach.value() << endl;);
data = design.t() * data;
}
if(approach.value()==string("orthoPLS")) {
message(" Using method : " << approach.value() << endl;);
data = (svd_X_V * svd_X_D.i() * svd_X_V.t()) * design.t() * data;
}
if(approach.value()==string("CVA")) {
message(" Using method : " << approach.value() << endl;);
data = design.t() * svd_Y_U * svd_Y_V.t();
data = (svd_X_V * svd_X_D.i() * svd_X_V.t() ) * data;
}
if(approach.value()==string("SVD-CVA")) {
message(" Using method : " << approach.value() << endl;);
tmpdata = data;
data = design.t() * svd_Y_U;
data = (svd_X_V * svd_X_D.i() * svd_X_V.t() ) * data;
}
if(approach.value()==string("MLM")) {
message(" Using method : " << approach.value() << endl;);
Matrix RE;
DiagonalMatrix RD;
SymmetricMatrix tmp;
tmp << cov(data.t());
EigenValues(tmp,RD,RE);
// S = RE * RD * RE.t()
tmp << sqrtm(svd_X_V * svd_X_D * svd_X_U.t() * RE * RD * RE.t() *svd_X_U * svd_X_D * svd_X_V.t());
data = tmp.i()*design.t() * data;
}
if( approach.value()!=string("MLM") && approach.value()!=string("CVA") && approach.value()!=string("PLS") &&
approach.value()!=string("SVD-CVA") && approach.value()!=string("orthoPLS") && approach.value()!=string("NMF"))
message(" Using method : PCA" << endl;);
//perform an SVD on data
outMsize(" New Data ", data);
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
if(approach.value()!=string("NMF")){
if(data.Nrows()>=data.Ncols())
SVD ( data, svd_Y_D, svd_Y_U, svd_Y_V );
else{
SVD ( data.t(), svd_Y_D, svd_Y_V, svd_Y_U );
svd_Y_U = svd_Y_U.t();
svd_Y_V = svd_Y_V.t();
}
dbgmsg(" Finished SVD : ");
outMsize("svd_Y_U",svd_Y_U);
outMsize("svd_Y_V",svd_Y_V);
outMsize("svd_Y_D",svd_Y_D);
svd_Y_V = sqrtm(svd_Y_D) * svd_Y_V;
svd_Y_U = svd_Y_U * sqrtm(svd_Y_D);
if(approach.value()==string("SVD-CVA"))
svd_Y_V = svd_Y_V *tmpdata;
}
else{ //NMF
float err, err_old;
Matrix Ratio, Diff;
if(nmfdim.value()==0)
nmfdim.set_T(data.Nrows());
message("Using "<< nmfdim.value() << " dimensions" << endl;);
svd_Y_U = unifrnd(data.Nrows(), nmfdim.value());
svd_Y_V = unifrnd(nmfdim.value(), data.Ncols());
// re-scale columns of svd_Y_U to unit amplitude
Ratio = pow(stdev(svd_Y_U),-1);
svd_Y_U = SP(svd_Y_U,ones(svd_Y_U.Nrows(),1)*Ratio);
Diff = data - svd_Y_U * svd_Y_V;
err = Diff.SumAbsoluteValue()/(data.Ncols()*data.Nrows());
for(int k=1; k< nmfitt.value(); k++)
{
// Ratio = SP(data,pow(svd_Y_U * svd_Y_V,-1));
// svd_Y_U = SP(svd_Y_U, Ratio * svd_Y_V.t());
// svd_Y_U = SP(svd_Y_U, pow( ones(svd_Y_U.Nrows(),1) * sum(svd_Y_U,1),-1));
// svd_Y_V = SP(svd_Y_V, svd_Y_U.t()* Ratio);
//
// Lee & Seung multiplicatice updates
Ratio = SP(svd_Y_U.t() * data, pow(svd_Y_U.t() * svd_Y_U * svd_Y_V ,-1));
svd_Y_V = SP(svd_Y_V,Ratio);
Ratio = SP(data * svd_Y_V.t(),pow(svd_Y_U * (svd_Y_V * svd_Y_V.t()),-1));
svd_Y_U = SP(svd_Y_U,Ratio);
// re-scale columns of svd_Y_U to unit amplitude
Ratio = pow(stdev(svd_Y_U),-1);
svd_Y_U = SP(svd_Y_U,ones(svd_Y_U.Nrows(),1)*Ratio);
Diff = data - svd_Y_U * svd_Y_V;
err_old = err;
err = Diff.SumSquare()/(data.Ncols()*data.Nrows());
message(" Error " << err << endl;);
}
}
write_res();
dbgmsg(" Leaving <do_work>");
return 0;
}
////////////////////////////////////////////////////////////////////////////
int main(int argc,char *argv[]){
Tracer tr("main");
OptionParser options(title, examples);
try{
// must include all wanted options here (the order determines how
// the help message is printed)
options.add(fnin);
options.add(fnout);
options.add(approach);
options.add(fndesign);
options.add(fnmask);
options.add(normdes);
options.add(perfvn);
options.add(perf_demean);
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
options.add(help);
options.add(verbose);
options.add(debug);
options.add(outres);
options.add(outdata);
options.add(outvnscales);
options.parse_command_line(argc, argv);
// line below stops the program if the help was requested or
// a compulsory option was not set
if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){
options.usage();
exit(EXIT_FAILURE);
}else{
// Call the local functions
return do_work(argc,argv);
}
}
catch(X_OptionError& e){
options.usage();
cerr << endl << e.what() << endl;
exit(EXIT_FAILURE);
}
catch(std::exception &e){
cerr << e.what() << endl;
}
}