Newer
Older
/* MELODIC - Multivariate exploratory linear optimized decomposition into
independent components
melreport.h - report generation
Christian F. Beckmann, FMRIB Image Analysis Group
/* CCOPYRIGHT */
#ifndef __MELODICREPORT_h
#define __MELODICREPORT_h
#include "newimage/newimageall.h"
#include "utils/log.h"
#include "melpca.h"
#include "meloptions.h"
#include "meldata.h"
#include "melgmix.h"
#include "melodic.h"
#include "newmatap.h"
#include "newmatio.h"
#include <time.h>
#include <strstream>
#include "libvis/miscplot.h"
#include "libvis/miscpic.h"
#include "utils/options.h"
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
using namespace Utilities;
using namespace NEWIMAGE;
using namespace MISCPLOT;
using namespace MISCPIC;
namespace Melodic{
class MelodicReport
{
public:
MelodicReport(MelodicData &pmelodat, MelodicOptions &popts, Log &plogger):
melodat(pmelodat),
opts(popts),
logger(plogger)
{
if( bool(opts.genreport.value()) ){
const time_t tmptime = time(NULL);
report.makeDir(logger.appendDir("report"),"00index.html");
report << "<HTML>" << endl << endl
<< "<TITLE>MELODIC Report</TITLE>"<< endl <<endl
<< "<BODY BACKGROUND=\"file:" << getenv("FSLDIR")
<< "/doc/images/fsl-bg.jpg\">" << endl
<< endl << "<hr><CENTER> " << endl
<< "<H1>MELODIC Report</H1>"
<< endl
<< report.getDir() << "/" << report.getLogFileName()
<< "<br>" << endl
<< ctime(&tmptime) << "<br>" << endl;
/* ifstream reptest(string("../report.log").c_str()); */
/* if(!reptest) */
/* report << "<A HREF=\"/" << logger.appendDir("report.log") */
/* << "\">report.log</A><br>" << endl; */
/* else */
/* report << "<A HREF=\"" << logger.appendDir("melodic.log") */
/* << "\">melodic.log</A><br>" << endl; */
/* reptest.close(); */
report << "</CENTER>" << endl << endl
<< "<hr><H2>Components:</H2> <p>" << endl << endl;
}
}
~MelodicReport(){
if( bool(opts.genreport.value()) ){
report << "<HR><FONT SIZE=1>This page produced automatically by "
<< "<A HREF=\"http://www.fmrib.ox.ac.uk/fsl/melodic/index.html\"> MELODIC </A>"
<< " - a part of <A HREF=\"http://www.fmrib.ox.ac.uk/fsl\">FSL - "
<< "FMRIB Software Library</A>.</FONT>" << endl
<< "</BODY></HTML>" << endl;
}
}
inline void analysistxt(){
if( bool(opts.genreport.value()) ){
report << "<hr><h2>Analysis methods</h2> <p>"<<endl;
report << "Analysis was carried out using MELODIC (Multivariate Exploratory Linear Decomposition into Independent Components) Version ln(11), part of FSL (FMRIB's Software Library, <A HREF=\"http://www.fmrib.ox.ac.uk/fsl/\">www.fmrib.ox.ac.uk/fsl</A>), an implementation for the estimation of a Probabilistic Independent Component Analysis model [Beckmann 2004]."<<endl;
report << "The following melodic pre-processing was applied to the input data file: "<< endl;
if(opts.use_mask.value())
report << " masking of non-brain voxels;";
report << " voxel-wise de-meaning of the data;" << endl;
if(opts.varnorm.value())
report << " normalisation of the voxel-wise variance; ";
report << "<br>"<<endl;
report << " Pre-processed data was whitened and projected into a "
<< melodat.get_mix().Ncols()<< "-dimensional subspace using ";
if(melodat.get_PPCA().Storage()>0){
report << "probabilistic Principal Component Analysis where the number of dimensions was estimated using ";
if(opts.pca_est.value() == string("lap"))
report << "the Laplace approximation to the Bayesian evidence of the model order [Minka 2000, Beckmann 2004]. " << endl;
else
if(opts.pca_est.value() == string("bic"))
report << "the <em> Bayesian Information Criterion</em> (BIC) [Kass 1993]. " << endl;
else
if(opts.pca_est.value() == string("mdl"))
report << "<em> Minimum Description Length</em> (MDL) [Rissanen 1978]. " << endl;
else
if(opts.pca_est.value() == string("aic"))
report << "the <em> Akaike Information Criterion</em> (AIC) [Akaike 1969]. " << endl;
else
report << "a committee of approximations to Bayesian the model order [Beckmann 2004]. " << endl;
}
else
report << "Principal Component Analysis. ";
report << " The whitened observations were decomposed into a set of time-courses and spatial maps by optimising for non-Gaussian spatial source distributions using a fixed-point iteration technique [Hyvärinen 1999]. " << endl;
report << "Estimated Component maps were divided by the standard deviation of the residual noise";
if(opts.perf_mm.value())
report << " and thresholded by fitting a mixture model to the histogram of intensity values [Beckmann 2004]. <p>" << endl;
else
report <<".<p>" << endl;
refstxt();
}
}
inline void refstxt(){
if( bool(opts.genreport.value()) ){
report << "<h3>References</h3> <p>"<<endl;
report << "[Hyvärinen 1999] A. Hyvärinen. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3):626-634, 1999.<br> " << endl;
report << "[Beckmann 2004] C.F. Beckmann and S.M. Smith. Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging 23(2):137-152 2004. <br>" << endl;
/* if(opts.perf_mm.value()){ */
/* report << "[Bullmore 1996] E. Bullmore <em>et. al.</em> Statistical methods of estimation and inference for functional MR image analysis. Magnetic Resonance in Medicine, 35(2):261-177, 1996. <br>" << endl; */
/* } */
if(melodat.get_PPCA().Storage()>0){
report << "[Everson 2000] R. Everson and S. Roberts. Inferring the eigenvalues of covariance matrices from limited, noisy data. IEEE Trans Signal Processing, 48(7):2083-2091, 2000<br>"<<endl;
report << "[Tipping 1999] M.E. Tipping and C.M.Bishop. Probabilistic Principal component analysis. J Royal Statistical Society B, 61(3), 1999. <br>" << endl;
/* report << "[Beckmann 2001] C.F. Beckmann, J.A. Noble and S.M. Smith. Investigating the intrinsic dimensionality of FMRI data for ICA. In Seventh Int. Conf. on Functional Mapping of the Human Brain, 2001. <br>" << endl;*/
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
if(opts.pca_est.value() == string("lap"))
report << "[Minka 2000] T. Minka. Automatic choice of dimensionality for PCA. Technical Report 514, MIT Media Lab Vision and Modeling Group, 2000. <BR>"<< endl;
else
if(opts.pca_est.value() == string("bic"))
report << "[Kass 1995] R.E. Kass and A. E. Raftery. Bayes factors. Journal of the American Statistical Association, 90:733-795, 1995 <br>" << endl;
else
if(opts.pca_est.value() == string("mdl"))
report << "[Rissanen 1978]. J. Rissanen. Modelling by shortest data description. Automatica, 14:465-471, 1978. <br>" << endl;
else
if(opts.pca_est.value() == string("aic"))
report << "[Akaike 1974]. H. Akaike. A new look at statistical model identification. IEEE Transactions on Automatic Control, 19:716-723, 1974. <br>" << endl;
else
report << "[Minka 2000]. T. Minka. Automatic choice of dimensionality for PCA. Technical Report 514, MIT Media Lab Vision and Modeling Group, 2000. <BR>" << endl;
}
}
}
inline void addtxt(string what){
if( bool(opts.genreport.value()) ){
report << what << endl;
}
}
inline void addpar(string what){
if( bool(opts.genreport.value()) ){
report << "<p>" << what << endl;
}
}
inline void addlink(string where, string what){
if( bool(opts.genreport.value()) ){
report << "<A HREF=\"" << where << "\"> " << what << "</A> ";
}
}
inline void addpic(string what, string link = ""){
if( bool(opts.genreport.value()) ){
if( link.length() > 0)
report << "<A HREF=\"" << link << "\"> ";
report << "<img BORDER=0 SRC=\"" << what<< ".png\"><p>";
if( link.length() > 0)
report << "</A> ";
}
}
inline string getDir(){
return report.getDir();
}
void IC_rep(MelGMix &mmodel, int cnum, int dim, Matrix ICstats);
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
void IC_simplerep(string prefix, int cnum, int dim);
void PPCA_rep();
private:
MelodicData &melodat;
MelodicOptions &opts;
Log &logger;
Log report;
Log IChtml;
Log IChtml2;
void IC_rep_det(MelGMix &mmodel, int cnum, int dim);
string int2str(int n)
{
ostrstream os;
// os.fill(' ');
// os.width(width);
os.setf(ios::internal, ios::adjustfield);
os << n << '\0';
return os.str();
}
string float2str(float f, int width, int prec, int scientif)
{
ostrstream os;
int redw = int(std::abs(std::log10(std::abs(f))))+1;
if(width>0)
os.width(width);
if(scientif>0)
os.setf(ios::scientific);
os.precision(redw+std::abs(prec));
os.setf(ios::internal, ios::adjustfield);
os << f << '\0';
return os.str();
}
};
}
#endif