Skip to content
Snippets Groups Projects
meldata.cc 38.16 KiB
/*  MELODIC - Multivariate exploratory linear optimized decomposition into
              independent components

    meldata.cc - data handler / container class

    Christian F. Beckmann, FMRIB Analysis Group

    Copyright (C) 1999-2013 University of Oxford */

/*  CCOPYRIGHT  */

#include <time.h>
#include <algorithm>
#include <random>

#include "armawrap/newmat.h"
#include "newimage/newimageall.h"
#include "utils/log.h"
#include "miscmaths/miscprob.h"

#include "meloptions.h"
#include "meldata.h"
#include "melodic.h"

#include "melhlprfns.h"

using namespace cifti;
using namespace NEWMAT;
using namespace Utilities;
using namespace NEWIMAGE;
using namespace MISCMATHS;
using namespace std;

namespace Melodic{
  // {{{ Setup


  ReturnMatrix MelodicData::process_file(string fname, int numfiles)
  {
	dbgmsg(string("START: process_file") << endl);

	Matrix tmpData;
    if ( !opts.readCIFTI.value() ) //Process NIFTI
      {
    	volume4D<float> RawData;

		memmsg(" before reading file "<< fname);

    	//read data
    	message("Reading data file " << fname << "  ... ");
    	read_volume4D(RawData,fname);
    	message(" done" << endl);
		memmsg(" after reading file "<< fname);

		del_vols(RawData,opts.dummy.value());

    	Mean += meanvol(RawData)/numfiles;

		//estimate smoothness
		memmsg(" before est smoothness ");
    	if((Resels == 0)&&(!opts.filtermode))
          Resels = est_resels(RawData,Mask);
		memmsg(" after smoothness ");

    	//reshape
		memmsg(" before reshape ");
    	tmpData = RawData.matrix(Mask);
		memmsg(" after reshape ");
      } else { //Read in Cifti
	  inputCifti.openFile(fname+".nii");
	  const vector<int64_t>& dims = inputCifti.getDimensions();
	  tmpData.ReSize(dims[0],dims[1]); //swapped compared to cifti
	  vector<float> scratchRow(dims[0]);//read/write a row at a time
	  for (int64_t row=0;row<dims[1];row++) {
	    inputCifti.getRow(scratchRow.data(),row);
	    for (int64_t col=0;col<dims[0];col++)
	      tmpData(col+1,row+1)=scratchRow[col];

	  }
	  Resels=1;
	}

    // If a time series model design was specified, check
    // that the data dimensions match the model dimensions
    if (Tdes.Storage() && (tmpData.Nrows() != Tdes.Nrows())) {

      cerr << "ERROR: " << fname << " " <<
        "- data dimensions (" << tmpData.Nrows() << ") "  <<
        "do not match model dimensions (" << Tdes.Nrows() << ")" << endl;
      exit(2);
    }

    //convert to percent BOLD signal change
    if(opts.pbsc.value()){
      message("  Converting data to percent BOLD signal change ...");
      Matrix meanimg = convert_to_pbsc(tmpData);
      meanR = meanimg.Row(1);
      message(" done" << endl);
    }
	else{
      if(opts.remove_meanvol.value())
		{
          message(string("  Removing mean image ..."));
          memmsg(" before remmean ");
          remmean(tmpData,meanR,1);
          memmsg(" after remmean ");
          message(" done" << endl);
		}
      else meanR=ones(1,tmpData.Ncols());
    }

	if(opts.remove_meantc.value()){
      remmean(tmpData,meanC,2);
	}

    //convert to power spectra
    if(opts.pspec.value()){
      message("  Converting data to powerspectra ...");
      tmpData = calc_FFT(tmpData);
      message(" done" << endl);
    }

    //switch dimension in case temporal ICA is required
    if(opts.temporal.value()){
      message(string("  Switching dimensions for temporal ICA") << endl);
      tmpData = tmpData.t();
      Matrix tmp;
      tmp = meanC;
      meanC = meanR.t();
      meanR = tmp.t();
      message("  Data size : " << Data.Nrows() << " x " << Data.Ncols() <<endl);
    }

    //variance - normalisation

    if(opts.varnorm.value()){
	  memmsg(" before VN ");
      message("  Normalising by voxel-wise variance ...");
      outMsize("stdDev",stdDev);
      //			if(stdDev.Storage()==0)
      stdDev = varnorm(tmpData,std::min(30,tmpData.Nrows()-1),
                       opts.vn_level.value(), opts.econ.value());
      //			else
      //				stdDev += varnorm(tmpData,std::min(30,tmpData.Nrows()-1),
      //					opts.vn_level.value(), opts.econ.value())/numfiles;
      stdDevi = pow(stdDev,-1);
	  memmsg(" in VN ");
      message(" done" << endl);
    }

	//convert to instacorrs
	if(opts.insta_fn.value()>""){
      Matrix vscales = pow(stdev(tmpData,1),-1);
      varnorm(tmpData,vscales);

      Matrix tmpTC = tmpData * insta_mask.t();
      varnorm(tmpTC,pow(stdev(tmpTC),-1));

      for(int ctr=1; ctr <=tmpData.Ncols();ctr++)
        tmpData.Column(ctr) = SP(tmpData.Column(ctr),tmpTC);
	}

	tmpData.Release();
	dbgmsg(string("END: process_file") << endl);
    return tmpData;
  }

  Matrix MelodicData::expand_mix()
  {
    Matrix out;
    out = expand_dimred(mixMatrix);
    return out;
  }

  Matrix MelodicData::expand_dimred(const Matrix& Mat)
  {
    int first, last;
    first = 1;
    last = DWM.at(0).Ncols();
    Matrix tmp = DWM.at(0) * Mat.Rows(first,last);
    for(unsigned int ctr = 1; ctr < DWM.size(); ctr++){
      first = last + 1;
      last += DWM.at(ctr).Ncols();
      tmp &= DWM.at(ctr) * Mat.Rows(first, last);
    }
    return tmp;
  }

  Matrix MelodicData::reduce_dimred(const Matrix& Mat)
  {
    int first, last;
    first = 1;
    last = WM.at(0).Ncols();
    Matrix tmp = WM.at(0) * Mat.Rows(first,last);
    for(unsigned int ctr = 1; ctr < WM.size(); ctr++){
      first = last + 1;
      last += WM.at(ctr).Ncols();
      tmp &= WM.at(ctr) * Mat.Rows(first, last);
    }
    return tmp;
  }

  void MelodicData::set_TSmode_depr()
  {
    Matrix tmp, tmpT, tmpS, tmpT2, tmpS2, tmpT3;

    tmp = expand_dimred(mixMatrix);
    tmpT = zeros(tmp.Nrows()/numfiles, tmp.Ncols());
    tmpS = ones(numfiles, tmp.Ncols());
    outMsize("tmp",tmp);
    outMsize("tmpT",tmpT);
    outMsize("tmpS",tmpS);

    dbgmsg(string("   approach ") << opts.approach.value() << endl);

    if(opts.approach.value()==string("tica")){
      message("Calculating T- and S-modes " << endl);
      explained_var = krfact(tmp,tmpT,tmpS);
      Tmodes.clear(); Smodes.clear();
      for(int ctr = 1; ctr <= tmp.Ncols(); ctr++){
        tmpT3 << reshape(tmp.Column(ctr),tmpT.Nrows(),numfiles);
        outMsize("tmpT3", tmpT3);
        tmpT2 << tmpT.Column(ctr);
        tmpS2 << tmpS.Column(ctr);
        tmpT3 << SP(tmpT3,pow(ones(tmpT3.Nrows(),1)*tmpS2.t(),-1));
        if(numfiles>1)
          tmpT2 |= tmpT3;
        if(mean(tmpS2,1).AsScalar()<0){
          tmpT2*=-1.0;
          tmpS2*=-1.0;
        }
        add_Tmodes(tmpT2);
        add_Smodes(tmpS2);
      }
    }
    else{
      Tmodes.clear();
      Smodes.clear();
      for(int ctr = 1; ctr <= tmp.Ncols(); ctr++){
        tmpT3 << tmp.Column(ctr);
        add_Tmodes(tmpT3);
      }
    }

    if(opts.approach.value()!=string("concat")){
      //add GLM OLS fit
      dbgmsg(string(" GLM fitting ") << endl);

      if(Tdes.Storage()){
        Matrix alltcs = Tmodes.at(0).Column(1);
        for(int ctr=1; ctr < (int)Tmodes.size();ctr++)
          alltcs|=Tmodes.at(ctr).Column(1);
        if((alltcs.Nrows()==Tdes.Nrows())&&(Tdes.Nrows()>Tdes.Ncols()))
          glmT.olsfit(alltcs,Tdes,Tcon);
      }
      if(Sdes.Storage()){
        Matrix alltcs = Smodes.at(0);
        for(int ctr=1; ctr < (int)Smodes.size();ctr++)
          alltcs|=Smodes.at(ctr);
        if((alltcs.Nrows()==Sdes.Nrows())&&(Sdes.Nrows()>Sdes.Ncols()&&alltcs.Nrows()>2))
          glmS.olsfit(alltcs,Sdes,Scon);
      }

    }
    //    else{
	//		dbgmsg(string(" Bypassing krfac ") << endl);
	//        add_Tmodes(tmp);
	//		add_Smodes(tmpS);
	//      }
  }

  void MelodicData::dual_regression()
  {
	dbgmsg(string("START: dual_regression") << endl);

	Tmodes.clear();
	Smodes.clear();

	bool tmpvarnorm = opts.varnorm.value();
	// Switch off variance normalisation
	opts.varnorm.set_T(false);

	Log drO;

	if(opts.dr_out.value())
      drO.makeDir(logger.appendDir("dr"),"dr.log");

	Matrix tmpcont = diag(ones(IC.Nrows(),1)), s1,s2, tmpData, alltcs;
	basicGLM tmpglm;
	for(int ctr = 0; ctr < numfiles; ctr++){
      tmpData = process_file(opts.inputfname.value().at(ctr), numfiles);
      //may want to remove the spatial means first
      tmpglm.olsfit(remmean(tmpData.t(),1),remmean(IC.t(),1),tmpcont);
      s1=tmpglm.get_beta().t();

      outMsize("s1",s1);
      outMsize("alltcs",alltcs);
      if(alltcs.Storage()==0)
        alltcs=s1;
      else
        alltcs&=s1;

      // output DR
      if(opts.dr_out.value()){

        dbgmsg(string("START: dual_regression output") << endl);
        write_ascii_matrix(drO.appendDir("dr_stage1_subject"+num2str(ctr,4)+".txt"),s1);
        //des_norm
        s1 =  SP(s1,ones(s1.Nrows(),1)*pow(stdev(s1,1),-1));
        tmpglm.olsfit(remmean(tmpData),remmean(s1,1),tmpcont);
        s2=tmpglm.get_beta();
        save4D(s2,string("dr/dr_stage2_subject"+num2str(ctr,4)));
        s2=tmpglm.get_z();
        save4D(s2,string("dr/dr_stage2_subject"+num2str(ctr,4)+"_Z"));
      }
    }

	for(int ctr = 1; ctr <= alltcs.Ncols(); ctr++){
      tmpcont << alltcs.Column(ctr);
      add_Tmodes(tmpcont);
	}

	for(int ctrC = 1; ctrC <=IC.Nrows(); ctrC++){
      Matrix tmpall = zeros(numfiles,IC.Ncols());
      string fnout = string("dr/dr_stage2_ic"+num2str(ctrC-1,4));
      for(int ctrS = 0; ctrS < numfiles; ctrS++){
        string fnin = logger.appendDir(string("dr/dr_stage2_subject"+num2str(ctrS,4)));
        dbgmsg(fnout << endl << fnin << endl);
        volume4D<float> vol;
        read_volumeROI(vol,fnin,0,0,0,ctrC-1,-1,-1,-1,ctrC-1);

        Matrix tmp2 = vol.matrix(Mask);
        tmpall.Row(ctrS+1) << vol.matrix(Mask);
      }
      save4D(tmpall,fnout);
	}

    opts.varnorm.set_T(tmpvarnorm);
	dbgmsg(string("END: dual_regression") << endl);
  }

  void MelodicData::set_TSmode()
  {
   	dbgmsg(string("START: set_TSmode")<< endl);
	if(opts.dr.value())
      dual_regression();
	else
      set_TSmode_depr();
	dbgmsg(string("END: set_TSmode")<< endl);
  }

  void MelodicData::setup_classic()
  {
    dbgmsg(string("START: setup_classic") << endl);
    Matrix alldat, tmpData;
    bool tmpvarnorm = opts.varnorm.value();

    if(numfiles > 1 && opts.joined_vn.value()){
      opts.varnorm.set_T(false);
    }
    alldat = process_file(opts.inputfname.value().at(0), numfiles) / numfiles;
    memmsg(" after process_file ");

    if(opts.pca_dim.value() > alldat.Nrows()-2){
      cerr << "ERROR:: too many components selected \n\n";
      exit(2);
    }

    for(int ctr = 1; ctr < numfiles; ctr++){
      tmpData = process_file(opts.inputfname.value().at(ctr), numfiles) / numfiles;
      if(tmpData.Ncols() == alldat.Ncols() && tmpData.Nrows() == alldat.Nrows())
        alldat = alldat + tmpData;
      else{
        if(opts.approach.value()==string("tica")){
          cerr << "ERROR:: data dimensions do not match, TICA not possible \n\n";
          exit(2);
        }

        if(tmpData.Ncols() == alldat.Ncols()){
          int mindim = min(alldat.Nrows(),tmpData.Nrows());
          alldat = alldat.Rows(1,mindim);
          tmpData = tmpData.Rows(1,mindim);
          alldat += tmpData;
        }
        else
          message("Data dimensions do not match - ignoring "+opts.inputfname.value().at(ctr) << endl);
      }
    }

    //update mask
    if(opts.update_mask.value()){
      message("Excluding voxels with constant value ...");
      update_mask(Mask, alldat);
      message(" done" << endl);
    }

    if((numfiles > 1 ) && opts.joined_vn.value() && tmpvarnorm){
      //variance - normalisation
      message(endl<<"Normalising jointly by voxel-wise variance ...");
      stdDev = varnorm(alldat,alldat.Nrows(),opts.vn_level.value(),opts.econ.value());
      stdDevi = pow(stdDev,-1);
      message(" done" << endl);
    }

    if(numfiles>1)
      message(endl << "Initial data size : "<<alldat.Nrows()<<" x "<<alldat.Ncols()<<endl<<endl);

    if(opts.debug.value())
      save4D(alldat,"alldat");
    //estimate model order
    Matrix tmpPPCA;
    RowVector AdjEV, PercEV;
    Matrix tmpE;
	SymmetricMatrix Corr;
    int order;

    order = ppca_dim(remmean(alldat,2), RXweight, tmpPPCA, AdjEV, PercEV, Corr, pcaE, pcaD, Resels, opts.pca_est.value());
    if (opts.paradigmfname.value().length()>0)
      order += param.Ncols();

    if(opts.pca_dim.value() == 0){
      opts.pca_dim.set_T(order);
      PPCA=tmpPPCA;
    }
    if(opts.pca_dim.value() < 0){
      opts.pca_dim.set_T(min(order,-1*opts.pca_dim.value()));
      PPCA=tmpPPCA;
    }
    order = opts.pca_dim.value();
    dbgmsg(endl << "Model order : "<<order<<endl);

    if (opts.paradigmfname.value().length()>0){
      Matrix tmpPscales;
      tmpPscales = param.t() * alldat;
      paramS = stdev(tmpPscales.t());

      calc_white(pcaE, pcaD, order, param, paramS, whiteMatrix, dewhiteMatrix);
    }else
      calc_white(pcaE, pcaD, order, whiteMatrix, dewhiteMatrix);

    if(opts.debug.value()){
      outMsize("pcaE",pcaE); saveascii(pcaE,"pcaE");
      outMsize("pcaD",pcaD); saveascii(pcaD,"pcaD");
      outMsize("AdjEV",AdjEV); saveascii(AdjEV,"AdjEV");
      outMsize("PercEV",PercEV); saveascii(PercEV,"PercEV");
      outMsize("tmpPPCA",tmpPPCA); saveascii(tmpPPCA,"tmpPPCA");
      outMsize("whiteMatrix",whiteMatrix); saveascii(whiteMatrix,"whiteMatrix");
      outMsize("dewhiteMatrix",dewhiteMatrix); saveascii(dewhiteMatrix,"dewhiteMatrix");
    }

    EV = AdjEV;
    EVP = PercEV;

    if(numfiles == 1){
      Data = alldat;
      Matrix tmp = IdentityMatrix(Data.Nrows());
      DWM.push_back(tmp);
      WM.push_back(tmp);
    }
    else {

      dbgmsg("Multi-Subject ICA");
      //stdDev.CleanUp();
      for(int ctr = 0; ctr < numfiles; ctr++){
        tmpData = process_file(opts.inputfname.value().at(ctr), numfiles);

        if(opts.joined_vn.value() && tmpvarnorm){
          dbgmsg("tmpData normalisation"<< endl);
          dbgmsg("stdDev "  << stdDev(1,2)<< endl);
          dbgmsg("tmpData " << tmpData.SubMatrix(1,1,1,2)<< endl);
          SP3(tmpData,pow(stdDev,-1));
        }
        //  whiten (separate / joint)
        Matrix newWM,newDWM;
        if(!opts.joined_whiten.value()){
          message("  Individual whitening in a " << order << " dimensional subspace " << endl);
          std_pca(tmpData, RXweight, Corr, pcaE, pcaD, opts.econ.value());
          calc_white(pcaE, pcaD, order, newWM, newDWM);
        }else{
          if(!opts.dr_pca.value()){
            std_pca(whiteMatrix*tmpData, RXweight, Corr, pcaE, pcaD, opts.econ.value());
            calc_white(pcaE, pcaD, order, newWM, newDWM);
            newDWM=(dewhiteMatrix*newDWM);
            newWM=(newWM*whiteMatrix);
          }
          else{
            if(opts.debug.value())
              dbgmsg(" --mod_pca ");
            Matrix tmp1, tmp2;
            tmp1 = whiteMatrix * alldat;
            remmean(tmp1,2);
            tmp1 *= tmpData.t();
            tmp2 = MISCMATHS::pinv(tmp1.t()).t();
            std_pca(tmp1 * tmpData, RXweight, Corr, pcaE, pcaD, opts.econ.value());
            calc_white(pcaE, pcaD, order, newWM, newDWM);
            newDWM=(tmp2*newDWM);
            newWM=(newWM * tmp1);
          }
        }
        DWM.push_back(newDWM);
        WM.push_back(newWM);
        tmpData = newWM * tmpData;

        //concatenate Data
        if(Data.Storage() == 0)
          Data = tmpData;
        else
          Data &= tmpData;
      }
    }
    opts.varnorm.set_T(tmpvarnorm);
    dbgmsg(string("END: setup_classic") << endl);

  }

  void MelodicData::setup_migp()
  {
    dbgmsg(string("START: setup_migp") << endl);

	std::vector<int> myctr;
	for (int i=0; i< numfiles ; ++i) myctr.push_back(i);

	if(opts.migp_shuffle.value()){
      message("Randomising input file order" << endl);
      std::shuffle ( myctr.begin(), myctr.end(), this->rng);
	}

	Matrix tmpData;
	bool tmpvarnorm = opts.varnorm.value();

	if(numfiles > 1 && opts.joined_vn.value()){
      opts.varnorm.set_T(false);
	}

	for(int ctr = 0; ctr < numfiles; ctr++){
      tmpData = process_file(opts.inputfname.value().at(myctr.at(ctr)), numfiles) / numfiles;

      if (opts.migpN.value()==0){
        opts.migpN.set_T(2*tmpData.Nrows()-1);
      }
      if(opts.debug.value())
        save4D(tmpData,string("preproc_dat") + num2str(ctr+1));

      if(Data.Storage()==0)
        Data = tmpData;
      else
        Data &= tmpData;

      outMsize("Data", Data);
      //reduce dim down to manageable level
      if(Data.Nrows() > opts.migp_factor.value()*opts.migpN.value() || ctr==numfiles-1){
        message("  Reducing data matrix to a  " << opt.migpN.value() << " dimensional subspace " << endl);
        Matrix pcaE;
        SymmetricMatrix Corr;
        RowVector pcaD;
        std_pca(Data, RXweight, Corr, pcaE, pcaD, opts.econ.value());
        pcaE = pcaE.Columns(pcaE.Ncols()-opts.migpN.value()+1,pcaE.Ncols());
        Data = pcaE.t() * Data;
      }
      outMsize("Data", Data);

    }

  	//update mask
    if(opts.update_mask.value()){
      message(endl<< "Excluding voxels with constant value ...");
      update_mask(Mask, Data);
      message(" done" << endl);
    }

	Matrix tmp = IdentityMatrix(Data.Nrows());
	DWM.push_back(tmp);
	WM.push_back(tmp);
   	opts.varnorm.set_T(tmpvarnorm);

	if(opts.varnorm2.value()){
	  message("  Normalising by voxel-wise variance ...");
      stdDev = varnorm(Data,std::min(30,Data.Nrows()-1),
                       opts.vn_level.value(), opts.econ.value());
	  message(" done" << endl);
	}

    dbgmsg(string("END: setup_migp") << endl);
  }

  void MelodicData::setup()
  {
	dbgmsg(string("START: setup") << endl);

	numfiles = (int)opts.inputfname.value().size();
	setup_misc();
	if(opts.debug.value())
      memmsg(" after setup_misc ");

	if(opts.filtermode){ // basic setup for filtering only
      Data = process_file(opts.inputfname.value().at(0));
	}
	else{
	  if(numfiles==1) {
	    opts.approach.set_T("symm");
	    if(opts.deflation.value())
	      opts.approach.set_T("defl");
	    opts.migp.set_T(false);
	  }
	  if (opts.approach.value()==string("tica"))
	    opts.migp.set_T(false);
	  if( opts.approach.value()==string("concat") && opts.migp.value() )
	    setup_migp();
	  else
	    setup_classic();
    }

    message(endl << "  Data size : "<<Data.Nrows()<<" x "<<Data.Ncols()<<endl<<endl);
	outMsize("stdDev",stdDev);
	//meanC=mean(Data,2);
	if(opts.debug.value())
      save4D(Data,"concat_data");
    //save the mean & mask
	if ( !opts.readCIFTI.value() ) {
	  save_volume(Mask,logger.appendDir("mask"));
	  save_volume(Mean,logger.appendDir("mean"));
	}
	dbgmsg(string("END: setup") << endl);
  } // void setup()

  void MelodicData::setup_misc()
  {
    dbgmsg(string("START: setup_misc") << endl);
    if (!opts.readCIFTI.value()) {
      //initialize Mean
      read_volumeROI(Mean,opts.inputfname.value().at(0),-1,-1,-1,0,-1,-1,-1,0);

      //create mask
      create_mask(Mask);

      //setup background image
      if(opts.bgimage.value()>""){
		read_volume(background,opts.bgimage.value());
    	if(!samesize(Mean,background)){
          cerr << "ERROR:: background image and data have different dimensions  \n\n";
          exit(2);
    	}
      }else{
		background = Mean;
      }

      if(!samesize(Mean,Mask,3)){
        cerr << "ERROR:: mask and data have different dimensions  \n\n";
        exit(2);
      }

      //reset mean
      Mean *= 0;

      //set up weighting
      if(opts.segment.value().length()>0){
        create_RXweight();
      }

      //set up instacorr mask image
      if(opts.insta_fn.value()>""){
		dbgmsg(string(" Setting up instacorr mask") << endl);
		volume4D<float> tmp_im;
		read_volume4D(tmp_im,opts.insta_fn.value());

		if(!samesize(Mean,tmp_im[0])){
          cerr << "ERROR:: instacorr mask and data have different voxel dimensions  \n\n";
          exit(2);
		}
		insta_mask = tmp_im.matrix(Mask);
      }
    }
    //seed the random number generators
    double tmptime = time(NULL);
    if ( opts.seed.value() != -1 ) {
      tmptime = opts.seed.value();
    }
    this->rng.seed((unsigned int) tmptime);
    srand(         (unsigned int) tmptime);

	if(opts.paradigmfname.value().length()>0){
      message("  Use columns in " << opts.paradigmfname.value()
              << " for PCA initialisation" <<endl);
      param = read_ascii_matrix(opts.paradigmfname.value());

      Matrix tmpPU, tmpPV;
      DiagonalMatrix tmpPD;
      SVD(param, tmpPD, tmpPU, tmpPV);
      param = tmpPU;

      opts.pca_dim.set_T(std::max(opts.pca_dim.value(), param.Ncols()+3));
      if(opts.debug.value()){
        outMsize("Paradigm",param); saveascii(param,"param");
      }
      //opts.guessfname.set_T(opts.paradigmfname.value());
	}

	//read in post-proc design matrices etc
	if(opts.fn_Tdesign.value().length()>0)
      Tdes = read_ascii_matrix(opts.fn_Tdesign.value());
	if(opts.fn_Sdesign.value().length()>0)
      Sdes = read_ascii_matrix(opts.fn_Sdesign.value());
	if(opts.fn_Tcon.value().length()>0)
      Tcon = read_ascii_matrix(opts.fn_Tcon.value());
	if(opts.fn_Scon.value().length()>0)
      Scon = read_ascii_matrix(opts.fn_Scon.value());
	if(opts.fn_TconF.value().length()>0)
      TconF = read_ascii_matrix(opts.fn_TconF.value());
	if(opts.fn_SconF.value().length()>0)
      SconF = read_ascii_matrix(opts.fn_SconF.value());

    // Check that the number of input
    // files matches the session design
    if (Sdes.Storage()) {
      if (Sdes.Nrows() != numfiles) {
        cerr << "ERROR: Number of input files (" << numfiles << ") " <<
          "does not match subject/session design (" << Sdes.Nrows() << ")" << endl;
        exit(2);
      }
    }

    // Or create a default session design
    // if one was not specified
    else if(numfiles>1){
      Sdes = ones(numfiles,1);
      if(Scon.Storage() == 0){
        Scon = ones(1,1);
        Scon &= -1*Scon;
      }
	}
	remmean(Tdes);

	dbgmsg(string("END: setup_misc") << endl);

  }

  void MelodicData::save()
  {

    //check for temporal ICA
    if(opts.temporal.value()){
      message(string("temporal ICA: transform back the data ... "));
      Matrix tmpIC = mixMatrix.t();
      mixMatrix=IC.t();
      IC=tmpIC;

      unmixMatrix=pinv(mixMatrix);
      Data = Data.t();
      tmpIC = meanC;
      meanC = meanR.t();
      meanR = tmpIC.t();
      //  whiteMatrix = whiteMatrix.t;
      //  dewhiteMatrix = dewhiteMatrix.t();
      message(string("done") << endl);
      opts.temporal.set_T(false); // Do not switch again!
    }

    message(endl << "Writing results to : " << endl);

    //Output IC
    if((IC.Storage()>0)&&(opts.output_origIC.value())&&(after_mm==false))
      save4D(IC,opts.outputfname.value() + "_oIC");

    //Output IC -- adjusted for noise
    if(IC.Storage()>0){
      volume4D<float> tempVol;

      //Matrix ICadjust;
      if(after_mm){
        save4D(IC,opts.outputfname.value() + "_IC");
        // ICadjust = IC;
      }
      else{

        Matrix resids = stdev(Data - mixMatrix * IC);
        for(int ctr=1;ctr<=resids.Ncols();ctr++)
          if(resids(1,ctr) < 0.05)
            resids(1,ctr)=1;
        //			stdNoisei = pow(stdev(Data - mixMatrix * IC)*
		//				std::sqrt((float)(Data.Nrows()-1))/
		//				std::sqrt((float)(Data.Nrows()-IC.Nrows())),-1);
        stdNoisei = pow(resids*
						std::sqrt((float)(Data.Nrows()-1))/
						std::sqrt((float)(Data.Nrows()-IC.Nrows())),-1);

        ColumnVector diagvals;
        diagvals=pow(diag(unmixMatrix*unmixMatrix.t()),-0.5);

        save4D(SP(IC,diagvals*stdNoisei),opts.outputfname.value() + "_IC");
      }

      if(opts.output_origIC.value())
        save4D(stdNoisei,string("Noise__inv"));
    }

    //Output T- & S-modes

    save_Tmodes();
    save_Smodes();

    //Output mixMatrix
    if(mixMatrix.Storage()>0){
      saveascii(expand_mix(), opts.outputfname.value() + "_mix");
      mixFFT=calc_FFT(expand_mix(), opts.logPower.value());
      saveascii(mixFFT,opts.outputfname.value() + "_FTmix");
    }

    //Output PPCA
    if(PPCA.Storage()>0)
      saveascii(PPCA, opts.outputfname.value() + "_PPCA");

    //Output ICstats
    if(ICstats.Storage()>0)
      saveascii(ICstats,opts.outputfname.value() + "_ICstats");

    //Output unmixMatrix
    if(opts.output_unmix.value() && unmixMatrix.Storage()>0)
      saveascii(unmixMatrix,opts.outputfname.value() + "_unmix");

    //Output Mask
    message("  "<< logger.appendDir("mask") <<endl);

    //Output mean
    if(opts.output_mean.value() && meanC.Storage()>0 && meanR.Storage()>0){
      saveascii(meanR,opts.outputfname.value() + "_meanR");
      saveascii(meanC,opts.outputfname.value() + "_meanC");
    }

    //Output white
    if(opts.output_white.value() && whiteMatrix.Storage()>0&&
       dewhiteMatrix.Storage()>0){
      saveascii(whiteMatrix,opts.outputfname.value() + "_white");
      saveascii(dewhiteMatrix,opts.outputfname.value() + "_dewhite");
      Matrix tmp;
      tmp=calc_FFT(dewhiteMatrix, opts.logPower.value());
      saveascii(tmp,opts.outputfname.value() + "_FTdewhite");
    }
    //Output PCA
    if(opts.output_pca.value() && pcaD.Storage()>0&&pcaE.Storage()>0){
      saveascii(pcaE,opts.outputfname.value() + "_pcaE");
      saveascii((Matrix) diag(pcaD),opts.outputfname.value() + "_pcaD");

      Matrix PCAmaps;
      if(whiteMatrix.Ncols()==Data.Ncols())
        PCAmaps = dewhiteMatrix.t();
      else
        PCAmaps = whiteMatrix * Data;

      save4D(PCAmaps,opts.outputfname.value() + "_pca");
    }

    message("...done" << endl);
  } //void save()

  int MelodicData::remove_components()
  {
    message("Reading " << opts.filtermix.value() << endl)
      mixMatrix = read_ascii_matrix(opts.filtermix.value());
    if (mixMatrix.Storage()<=0) {
      cerr <<" Please specify the mixing matrix correctly" << endl;
      exit(2);
    }

    unmixMatrix = pinv(mixMatrix);
    IC = unmixMatrix * Data;

    string tmpstr;
    tmpstr = opts.filter.value();

    Matrix noiseMix;
    Matrix noiseIC;

    int ctr=0;
    char *p;
    char t[1024];
    const char *discard = ", [];{(})abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ~!@#$%^&*_-=+|\':><./?";

    message("Filtering the data...");
    strcpy(t, tmpstr.c_str());
    p=strtok(t,discard);
    ctr = atoi(p);
    if(ctr>0 && ctr<=mixMatrix.Ncols()){
      message(" "<< ctr );
      noiseMix = mixMatrix.Column(ctr);
      noiseIC  = IC.Row(ctr).t();
    }
    else{
      cerr << endl<< "component number "<<ctr<<" does not exist" << endl;
    }

    do{
      p=strtok(NULL,discard);
      if(p){
        ctr = atoi(p);

        if(ctr>0 && ctr<=mixMatrix.Ncols()){
          message(" "<<ctr);
          noiseMix |= mixMatrix.Column(ctr);
          noiseIC  |= IC.Row(ctr).t();
        }
        else{
          cerr << endl<< "component number "<<ctr<<" does not exist" << endl;
        }
      }
    }while(p);
    message(endl);
    Matrix newData;

    outMsize("DATA",Data);
    outMsize("IC",IC);
    outMsize("noiseIC",noiseIC);
    outMsize("noiseMix",noiseMix);
    outMsize("meanR",meanR);
    outMsize("meanC",meanC);

    newData = Data - noiseMix * noiseIC.t();

    if(meanR.Storage()>0)
      newData = newData + ones(newData.Nrows(),1)*meanR;

    volume4D<float> tmp;
    read_volume4D(tmp,opts.inputfname.value().at(0));
    tmp.setmatrix(newData,Mask);
    save_volume4D(tmp,logger.appendDir(opts.outputfname.value() + "_ICAfiltered"));

    return 0;
  } // int remove_components()

  void MelodicData::create_RXweight()
  {
    message("Reading the weights for the covariance R_X from file "<< opts.segment.value() << endl);

    volume4D<float> tmpRX;
    read_volume4D(tmpRX,opts.segment.value());
    RXweight = tmpRX.matrix(Mask);
  }

  void MelodicData::est_smoothness()
  {
    if(Resels == 0){
      string SM_path = opts.binpath + "smoothest";
      string Mask_fname = logger.appendDir("mask");

      if(opts.segment.value().length()>0){
        Mask_fname =  opts.segment.value();
      }

      // Setup external call to smoothest:
      char callSMOOTHESTstr[1000];
      ostrstream osc(callSMOOTHESTstr,1000);
      osc  << SM_path << " -d " << data_dim()
           << " -r " << opts.inputfname.value().at(0) << " -m "
           << Mask_fname << " > " << logger.appendDir("smoothest") << '\0';

      message("  Calling Smoothest: " << callSMOOTHESTstr << endl);
      system(callSMOOTHESTstr);

      //read back the results
      ifstream in;
      string str;
      Resels = 1.0;

      in.open(logger.appendDir("smoothest").c_str(), ios::in);
      if(in.good()){
        for(int ctr=1; ctr<7; ctr++)
          in >> str;
        in.close();
        if(str!="nan")
          Resels = atof(str.c_str());
      }
    }
  }

  unsigned long MelodicData::standardise(volume<float>& mask, volume4D<float>& R)
  {
    unsigned long count = 0;
    int M=R.tsize();

    for (int z=mask.minz(); z<=mask.maxz(); z++) {
      for (int y=mask.miny(); y<=mask.maxy(); y++) {
        for (int x=mask.minx(); x<=mask.maxx(); x++) {
          if( mask(x,y,z) > 0.5) {
            count ++;
            if( M > 2 ) {
              // For each voxel
              //    calculate mean and standard deviation...
              double Sx = 0.0, SSx = 0.0;
              for ( int t = 0; t < M; t++ ) {
                float R_it = R(x,y,z,t);
                Sx += R_it;
                SSx += (R_it)*(R_it);
              }

              float mean = Sx / M;
              float sdsq = (SSx - ((Sx)*(Sx) / M)) / (M - 1) ;

              if (sdsq<=0) {
                // trap for differences between mask and invalid data
                mask(x,y,z)=0;
                count--;
              } else {
                //    ... and use them to standardise to N(0, 1).
                for ( unsigned short t = 0; t < M; t++ ) {
                  R(x,y,z,t) = (R(x,y,z,t) - mean) / sqrt(sdsq);
                }
              }
            }
          }
        }
      }
    }
    return count;
  }

  float MelodicData::est_resels(volume4D<float> R, volume<float> mask)
  {
    message("  Estimating data smoothness ... ");
    unsigned long mask_volume = standardise(mask, R);

    int dof = R.tsize();
    unsigned long N = mask_volume;

    // MJ additions to make it cope with 2D images
    bool usez = true;
    if (R.zsize() <= 1) { usez = false; }

    enum {X = 0, Y, Z};
    double SSminus[3] = {0, 0, 0}, S2[3] = {0, 0, 0};

    int zstart=1;
    if (!usez) zstart=0;
    for ( unsigned short z = zstart; z < R.zsize() ; z++ )
      for ( unsigned short y = 1; y < R.ysize() ; y++ )
        for ( unsigned short x = 1; x < R.xsize() ; x++ )
          // Sum over N
          if( (mask(x, y, z)>0.5) &&
              (mask(x-1, y, z)>0.5) &&
              (mask(x, y-1, z)>0.5) &&
              ( (!usez) || (mask(x, y, z-1)>0.5) ) ) {

            N++;

            for ( unsigned short t = 0; t < R.tsize(); t++ ) {
              // Sum over M
              SSminus[X] += R(x, y, z, t) * R(x-1, y, z, t);
              SSminus[Y] += R(x, y, z, t) * R(x, y-1, z, t);
              if (usez) SSminus[Z] += R(x, y, z, t) * R(x, y, z-1, t);

              S2[X] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) +
                              R(x-1, y, z, t)*R(x-1, y, z, t));
              S2[Y] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) +
                              R(x, y-1, z, t)*R(x, y-1, z, t));
              if (usez) S2[Z] += 0.5 * (R(x, y, z, t)*R(x, y, z, t) +
                                        R(x, y, z-1, t)*R(x, y, z-1, t));
            }
          }

    double norm = 1.0/(double) N;
    double v = dof;	// v - degrees of freedom (nu)
    if(R.tsize() > 1) {
      norm = (v - 2) / ((v - 1) * N * R.tsize());
    }

    // for extreme smoothness
    if (SSminus[X]>=0.99999999*S2[X])
      SSminus[X]=0.99999*S2[X];
    if (SSminus[Y]>=0.99999999*S2[Y])
      SSminus[Y]=0.99999*S2[Y];
    if (usez)
      if (SSminus[Z]>=0.99999999*S2[Z])
        SSminus[Z]=0.99999*S2[Z];
    // Convert to sigma squared
    double sigmasq[3] = {0,0,0};
    sigmasq[X] = -1.0 / (4 * log(fabs(SSminus[X]/S2[X])));
    sigmasq[Y] = -1.0 / (4 * log(fabs(SSminus[Y]/S2[Y])));
    if (usez) { sigmasq[Z] = -1.0 / (4 * log(fabs(SSminus[Z]/S2[Z]))); }

    // Convert to full width half maximum
    double FWHM[3] = {0,0,0};
    FWHM[X] = sqrt(8 * log(2) * sigmasq[X]);
    FWHM[Y] = sqrt(8 * log(2) * sigmasq[Y]);
    if (usez) { FWHM[Z] = sqrt(8 * log(2) * sigmasq[Z]); }
    double resels = FWHM[X] * FWHM[Y];
    if (usez) resels *= FWHM[Z];

    message(" done " <<endl);
    return resels;
  }

  void MelodicData::create_mask(volume<float>& theMask)
  {
    if(opts.use_mask.value() && opts.maskfname.value().size()>0){   // mask provided
      read_volume(theMask,opts.maskfname.value());
      message("Mask provided : " << opts.maskfname.value()<<endl<<endl);
    }
    else{
      if(opts.perf_bet.value() && opts.use_mask.value()){ //use BET
        message("Create mask ... ");
        //save first image
        tmpnam(Mean_fname); // generate a tmp name
        save_volume(Mean,Mean_fname);

        // set up all strings
        string BET_outputfname = string(Mean_fname)+"_brain";

        string BET_path = opts.binpath + "bet";
        string BET_optarg = "-m -f 0.4"; // see man bet
        string Mask_fname = BET_outputfname+"_mask";

        // Setup external call to BET:

		//		char callBETstr[1000];
        //			ostrstream betosc(callBETstr,1000);
        //				betosc  << BET_path << " " << Mean_fname << " "
        //	     		<< BET_outputfname << " " << BET_optarg << " > /dev/null " << '\0';

        //        message("  Calling BET: " << callBETstr << endl);
        //				system(callBETstr);

        string tmpstr = BET_path + string(" ") +
          Mean_fname + string(" ") + BET_outputfname + string(" ") +
          BET_optarg + string(" > /dev/null ");
        system(tmpstr.c_str());

        // read back the Mask file
        read_volume(theMask,Mask_fname);

        // clean /tmp
        char callRMstr[1000];
        ostrstream osc(callRMstr,1000);
        osc  << "rm " << string(Mean_fname) <<"*  " << '\0';
        system(callRMstr);

        message("done" << endl);
      }
      else{
        if(opts.use_mask.value()){   //just threshold the Mean
          message("Create mask ... ");
          float Mmin, Mmax, Mtmp;
          Mmin = Mean.min(); Mmax = Mean.max();
          theMask = binarise(Mean,Mmin + opts.threshold.value()*
                             (Mmax-Mmin),Mmax);
          Mtmp = Mmin + opts.threshold.value()* (Mmax-Mmin);
          message("done" << endl);
        }
        else{ //well, don't threshold then
          theMask = Mean;
          theMask = 1.0;
        }
      }
    }
    if(opts.remove_endslices.value()){
      // just in case mc introduced something nasty
      message("  Deleting end slices" << endl);
      for(int ctr1=theMask.miny(); ctr1<=theMask.maxy(); ctr1++){
        for(int ctr2=theMask.minx(); ctr2<=theMask.maxx(); ctr2++){
          theMask(ctr2,ctr1,Mask.minz()) = 0.0;
          theMask(ctr2,ctr1,Mask.maxz()) = 0.0;
        }
      }
    }
  } //void create_mask()

  void MelodicData::sort()
  {
    int numComp = mixMatrix.Ncols(), numVox = IC.Ncols(),
      numTime = mixMatrix.Nrows(), i,j;

	//flip IC maps to be positive (on max)
	//flip Subject/Session modes to be positive (on average)
	//flip time courses accordingly

    for(int ctr_i = 1; ctr_i <= numComp; ctr_i++)
      if(IC.Row(ctr_i).MaximumAbsoluteValue()>IC.Row(ctr_i).Maximum()){
        flipres(ctr_i);
	  }
    message("Sorting IC maps" << endl);
    Matrix tmpscales, tmpICrow, tmpMIXcol;
	if(numfiles > 1 && opts.approach.value()==string("tica")){
      set_TSmode();
      Matrix allmodes = Smodes.at(0);
      for(int ctr = 1; ctr < (int)Smodes.size();++ctr)
        allmodes |= Smodes.at(ctr);
      tmpscales = median(allmodes).t();
	} else {
      // re-order wrt standard deviation of IC maps
      tmpscales = stdev(IC,2);
	}

    ICstats = tmpscales;

    double max_val, min_val = tmpscales.Minimum()-1;

    for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){
      max_val = tmpscales.Maximum2(i,j);
      ICstats(ctr_i,1)=max_val;

      tmpICrow = IC.Row(ctr_i);
      tmpMIXcol = mixMatrix.Column(ctr_i);

      IC.SubMatrix(ctr_i,ctr_i,1,numVox) = IC.SubMatrix(i,i,1,numVox);
      mixMatrix.SubMatrix(1,numTime,ctr_i,ctr_i) =
        mixMatrix.SubMatrix(1,numTime,i,i);

      IC.SubMatrix(i,i,1,numVox) = tmpICrow.SubMatrix(1,1,1,numVox);
      mixMatrix.SubMatrix(1,numTime,i,i) = tmpMIXcol.SubMatrix(1,numTime,1,1);

      tmpscales(i,1)=tmpscales(ctr_i,1);
      tmpscales(ctr_i,1)=min_val;
    }

    ICstats /= ICstats.Column(1).Sum();
    ICstats *= 100;

    if(EVP.Storage()>0){
      tmpscales = ICstats.Column(1).AsMatrix(ICstats.Nrows(),1) * EVP(1,numComp);
      ICstats |= tmpscales;
    }

    if(Data.Storage()>0&&stdDev.Storage()>0){

      Matrix copeP(tmpscales), copeN(tmpscales);
      Matrix max_ICs(tmpscales), min_ICs(tmpscales);

      for(int ctr_i = 1; ctr_i <= numComp; ctr_i++){
        int i,j;
        max_ICs(ctr_i,1) = IC.Row(ctr_i).Maximum2(i,j);
        copeP(ctr_i,1) = std::abs((pinv(mixMatrix)*
                                   Data.Column(j)).Row(ctr_i).AsScalar()*stdDev(1,j)*100*
                                  (mixMatrix.Column(ctr_i).Maximum()-
                                   mixMatrix.Column(ctr_i).Minimum())/meanR(1,j));

        min_ICs(ctr_i,1) = IC.Row(ctr_i).Minimum2(i,j);
        copeN(ctr_i,1) = -1.0*std::abs((pinv(mixMatrix)*
                                        Data.Column(j)).Row(ctr_i).AsScalar()*stdDev(1,j)*100*
                                       (mixMatrix.Column(ctr_i).Maximum()-
                                        mixMatrix.Column(ctr_i).Minimum())/meanR(1,j));
      }
      ICstats |= copeP;
      ICstats |= copeN;
    }

    mixFFT=calc_FFT(expand_mix(), opts.logPower.value());
    unmixMatrix = pinv(mixMatrix);
  }

  void MelodicData::status(const string &txt)
  {
    cout << "MelodicData Object " << txt << endl;
    if(Data.Storage()>0){cout << "Data: " << Data.Nrows() <<"x" << Data.Ncols() << endl;}else{cout << "Data empty " <<endl;}
    if(pcaE.Storage()>0){cout << "pcaE: " << pcaE.Nrows() <<"x" << pcaE.Ncols() << endl;}else{cout << "pcaE empty " <<endl;}
    if(pcaD.Storage()>0){cout << "pcaD: " << pcaD.Nrows() <<"x" << pcaD.Ncols() << endl;}else{cout << "pcaD empty " <<endl;}
    if(whiteMatrix.Storage()>0){cout << "white: " << whiteMatrix.Nrows() <<"x" << whiteMatrix.Ncols() << endl;}else{cout << "white empty " <<endl;}
    if(dewhiteMatrix.Storage()>0){cout << "dewhite: " << dewhiteMatrix.Nrows() <<"x" << dewhiteMatrix.Ncols() << endl;}else{cout << "dewhite empty " <<endl;}
    if(mixMatrix.Storage()>0){cout << "mix: " << mixMatrix.Nrows() <<"x" << mixMatrix.Ncols() << endl;}else{cout << "mix empty " <<endl;}
    if(unmixMatrix.Storage()>0){cout << "unmix: " << unmixMatrix.Nrows() <<"x" << unmixMatrix.Ncols() << endl;}else{cout << "unmix empty " <<endl;}
    if(IC.Storage()>0){cout << "IC: " << IC.Nrows() <<"x" << IC.Ncols() << endl;}else{cout << "IC empty " <<endl;}

  } //void status()

}