-
Matthew Webster authoredMatthew Webster authored
fsl_glm.cc 11.64 KiB
/* fsl_glm -
Christian F. Beckmann, FMRIB Image Analysis Group
Copyright (C) 2006-2008 University of Oxford */
/* CCOPYRIGHT */
#include "libvis/miscplot.h"
#include "miscmaths/miscmaths.h"
#include "miscmaths/miscprob.h"
#include "utils/options.h"
#include <vector>
#include "newimage/newimageall.h"
#include "melhlprfns.h"
using namespace MISCPLOT;
using namespace MISCMATHS;
using namespace Utilities;
using namespace std;
// The two strings below specify the title and example usage that is
// printed out as the help or usage message
string title=string("fsl_glm (Version 1.1)")+
string("\nCopyright(c) 2004-2009, University of Oxford (Christian F. Beckmann)\n")+
string(" \n Simple GLM usign ordinary least-squares (OLS) regression on\n")+
string(" time courses and/or 3D/4D imges against time courses \n")+
string(" or 3D/4D images");
string examples="fsl_glm -i <input> -d <design> -o <output> [options]";
//Command line Options {
Option<string> fnin(string("-i,--in"), string(""),
string(" input file name (text matrix or 3D/4D image file)"),
true, requires_argument);
Option<string> fnout(string("-o,--out"), string(""),
string("output file name for GLM parameter estimates (GLM betas)"),
false, requires_argument);
Option<string> fndesign(string("-d,--design"), string(""),
string("file name of the GLM design matrix (time courses or spatial maps)"),
false, requires_argument);
Option<string> fnmask(string("-m,--mask"), string(""),
string("mask image file name if input is image"),
false, requires_argument);
Option<string> fncontrasts(string("-c,--contrasts"), string(""),
string("matrix of t-statistics contrasts"),
false, requires_argument);
Option<string> fnftest(string("-f,--ftests"), string(""),
string("matrix of F-tests on contrasts"),
false, requires_argument,false);
Option<int> dofset(string("--dof"),-1,
string(" set degrees-of-freedom explicitly"),
false, requires_argument);
Option<bool> normdes(string("--des_norm"),FALSE,
string("switch on normalisation of the design matrix columns to unit std. deviation"),
false, no_argument);
Option<bool> normdat(string("--dat_norm"),FALSE,
string("switch on normalisation of the data time series to unit std. deviation"),
false, no_argument);
Option<bool> perfvn(string("--vn"),FALSE,
string(" perform MELODIC variance-normalisation on data"),
false, no_argument);
Option<bool> perf_demean(string("--demean"),FALSE,
string("switch on de-meaning of design and data"),
false, no_argument);
Option<int> help(string("-h,--help"), 0,
string("display this help text"),
false,no_argument);
Option<bool> debug(string("--debug"), FALSE,
string("display debug information"),
false,no_argument,false);
// Output options
Option<string> outcope(string("--out_cope"),string(""),
string("output file name for COPEs (either as text file or image)"),
false, requires_argument);
Option<string> outz(string("--out_z"),string(""),
string(" output file name for Z-stats (either as text file or image)"),
false, requires_argument);
Option<string> outt(string("--out_t"),string(""),
string(" output file name for t-stats (either as text file or image)"),
false, requires_argument);
Option<string> outp(string("--out_p"),string(""),
string(" output file name for p-values of Z-stats (either as text file or image)"),
false, requires_argument);
Option<string> outf(string("--out_f"),string(""),
string(" output file name for F-value of full model fit"),
false, requires_argument);
Option<string> outpf(string("--out_pf"),string(""),
string("output file name for p-value for full model fit"),
false, requires_argument);
Option<string> outres(string("--out_res"),string(""),
string("output file name for residuals"),
false, requires_argument);
Option<string> outvarcb(string("--out_varcb"),string(""),
string("output file name for variance of COPEs"),
false, requires_argument);
Option<string> outsigsq(string("--out_sigsq"),string(""),
string("output file name for residual noise variance sigma-square"),
false, requires_argument);
Option<string> outdata(string("--out_data"),string(""),
string("output file name for pre-processed data"),
false, requires_argument);
Option<string> outvnscales(string("--out_vnscales"),string(""),
string("output file name for scaling factors for variance normalisation"),
false, requires_argument);
Option<vector<string> > textConfounds(string("--vxt"), vector<string>(),
string("\tlist of text files containing text matrix confounds. caution BETA option."),
false, requires_argument);
Option<vector<string> > voxelwiseConfounds(string("--vxf"), vector<string>(),
string("\tlist of 4D images containing voxelwise confounds. caution BETA option."),
false, requires_argument);
/*
}
*/
//Globals
Melodic::basicGLM glm;
int voxels = 0;
Matrix data;
Matrix design;
Matrix contrasts;
Matrix fcontrasts;
Matrix meanR;
RowVector vnscales;
volume<float> mask;
////////////////////////////////////////////////////////////////////////////
// Local functions
void save4D(Matrix what, string fname){
if(what.Ncols()==data.Ncols()||what.Nrows()==data.Nrows()){
volume4D<float> tempVol;
if(what.Nrows()>what.Ncols())
tempVol.setmatrix(what.t(),mask);
else
tempVol.setmatrix(what,mask);
save_volume4D(tempVol,fname);
}
}
bool isimage(Matrix what){
if((voxels > 0)&&(what.Ncols()==voxels || what.Nrows()==voxels))
return TRUE;
else
return FALSE;
}
void saveit(Matrix what, string fname){
if(isimage(what))
save4D(what,fname);
else if(fsl_imageexists(fndesign.value()))
write_ascii_matrix(what.t(),fname);
else
write_ascii_matrix(what,fname);
}
int setup(int &dof){
if(fsl_imageexists(fnin.value())){//read data
//input is 3D/4D vol
volume4D<float> tmpdata;
read_volume4D(tmpdata,fnin.value());
// create mask
if(fnmask.value()>""){
if(debug.value())
cout << "Reading mask file " << fnmask.value() << endl;
read_volume(mask,fnmask.value());
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: Mask image does not match input image" << endl;
return 1;
};
}else{
if(debug.value())
cout << "Creating mask image" << endl;
mask=tmpdata[0]*0.0+1.0;
data=tmpdata.matrix(mask);
Melodic::update_mask(mask,data);
}
data = tmpdata.matrix(mask);
voxels = data.Ncols();
if(perfvn.value()){
if(debug.value())
cout << "Perform MELODIC variance normalisation (and demeaning)" << endl;
data = remmean(data,1);
vnscales = Melodic::varnorm(data);
}
}
else
data = read_ascii_matrix(fnin.value());
if(fsl_imageexists(fndesign.value())){//read design
if(debug.value())
cout << "Reading design file "<< fndesign.value()<< endl;
volume4D<float> tmpdata;
read_volume4D(tmpdata,fndesign.value());
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: GLM design does not match input image in size" << endl;
return 1;
}
if(debug.value())
cout << "Transposing data" << endl;
design = tmpdata.matrix(mask).t();
data = data.t();
}else{
design = read_ascii_matrix(fndesign.value());
}
dof=(int)ols_dof(design);
Matrix baseConfounds;
if ( textConfounds.set() ) {
baseConfounds=read_ascii_matrix( textConfounds.value().at(0) );
for(unsigned int i=1; i< textConfounds.value().size(); i++)
baseConfounds|=read_ascii_matrix( textConfounds.value().at(i) );
dof-=textConfounds.value().size();
if ( !voxelwiseConfounds.set() )
data=(IdentityMatrix(baseConfounds.Nrows())-baseConfounds*pinv(baseConfounds))*data;
}
if ( voxelwiseConfounds.set() ) {
vector<Matrix> confounds;
confounds.resize(voxelwiseConfounds.value().size());
volume4D<float> input;
for(unsigned int i=0; i< confounds.size(); i++) {
read_volume4D(input,voxelwiseConfounds.value().at(i));
if ( mask.nvoxels() )
confounds.at(i)=input.matrix(mask);
else
confounds.at(i)=input.matrix();
}
for(int voxel=1;voxel<=data.Ncols();voxel++) {
Matrix confound(confounds.at(0).Column(voxel) );
for(unsigned int i=1; i< confounds.size(); i++)
confound|=confounds.at(i).Column(voxel);
if ( textConfounds.set() )
confound=baseConfounds | confound;
data.Column(voxel)=(IdentityMatrix(confound.Nrows())-confound*pinv(confound))*data.Column(voxel);
}
dof-=confounds.size();
}
if(perf_demean.value()){
if(debug.value())
cout << "De-meaning the data matrix" << endl;
data = remmean(data,1);
dof-=1;
}
if(normdat.value()){
if(debug.value())
cout << "Normalising data matrix to unit std-deviation" << endl;
data = SP(data,ones(data.Nrows(),1)*pow(stdev(data,1),-1));
}
meanR=mean(data,1);
if(perf_demean.value()){
if(debug.value())
cout << "De-meaning design matrix" << endl;
design = remmean(design,1);
}
if(normdes.value()){
if(debug.value())
cout << "Normalising design matrix to unit std-deviation" << endl;
design = SP(design,ones(design.Nrows(),1)*pow(stdev(design,1),-1));
}
if(fncontrasts.value()>""){//read contrast
contrasts = read_ascii_matrix(fncontrasts.value());
if(!(contrasts.Ncols()==design.Ncols())){
cerr << "ERROR: contrast matrix GLM design does not match GLM design" << endl;
return 1;
}
}else{
contrasts = IdentityMatrix(design.Ncols());
contrasts &= -1.0 * contrasts;
}
return 0;
}
void write_res(){
if(fnout.value()>"")
saveit(glm.get_beta(),fnout.value());
if(outcope.value()>"")
saveit(glm.get_cbeta(),outcope.value());
if(outz.value()>"")
saveit(glm.get_z(),outz.value());
if(outt.value()>"")
saveit(glm.get_t(),outt.value());
if(outp.value()>"")
saveit(glm.get_p(),outp.value());
if(outf.value()>"")
saveit(glm.get_f_fmf(),outf.value());
if(outpf.value()>"")
saveit(glm.get_pf_fmf(),outpf.value());
if(outres.value()>"")
saveit(glm.get_residu(),outres.value());
if(outvarcb.value()>"")
saveit(glm.get_varcb(),outvarcb.value());
if(outsigsq.value()>"")
saveit(glm.get_sigsq(),outsigsq.value());
if(outdata.value()>"")
saveit(data,outdata.value());
if(outvnscales.value()>"")
saveit(vnscales,outvnscales.value());
}
int do_work(int argc, char* argv[]) {
int dof(-1);
if(setup(dof))
exit(1);
glm.olsfit(data,design,contrasts,dof);
write_res();
return 0;
}
////////////////////////////////////////////////////////////////////////////
int main(int argc,char *argv[]){
Tracer tr("main");
OptionParser options(title, examples);
try{
// must include all wanted options here (the order determines how
// the help message is printed)
options.add(fnin);
options.add(fnout);
options.add(fndesign);
options.add(fncontrasts);
options.add(fnmask);
options.add(fnftest);
options.add(dofset);
options.add(normdes);
options.add(normdat);
options.add(perfvn);
options.add(perf_demean);
options.add(help);
options.add(debug);
options.add(outcope);
options.add(outz);
options.add(outt);
options.add(outp);
options.add(outf);
options.add(outpf);
options.add(outres);
options.add(outvarcb);
options.add(outsigsq);
options.add(outdata);
options.add(outvnscales);
options.add(textConfounds);
options.add(voxelwiseConfounds);
options.parse_command_line(argc, argv);
// line below stops the program if the help was requested or
// a compulsory option was not set
if ( (help.value()) || (!options.check_compulsory_arguments(true)) ){
options.usage();
exit(EXIT_FAILURE);
}else{
// Call the local functions
return do_work(argc,argv);
}
}catch(X_OptionError& e) {
options.usage();
cerr << endl << e.what() << endl;
exit(EXIT_FAILURE);
}catch(std::exception &e) {
cerr << e.what() << endl;
}
}