Skip to content
Snippets Groups Projects
Commit 607cafee authored by Matthew Webster's avatar Matthew Webster
Browse files

test

parent 5d7f2f33
No related branches found
No related tags found
No related merge requests found
......@@ -24,9 +24,7 @@ using namespace std;
string title=string("fsl_glm (Version 1.1)")+
string("\nCopyright(c) 2004-2009, University of Oxford (Christian F. Beckmann)\n")+
string(" \n Simple GLM usign ordinary least-squares (OLS) regression on\n")+
string(" time courses and/or 3D/4D imges against time courses \n")+
string(" or 3D/4D images");
string(" \n Simple GLM allowing temporal or spatial regression on either text data or images\n");
string examples="fsl_glm -i <input> -d <design> -o <output> [options]";
//Command line Options {
......@@ -37,7 +35,7 @@ using namespace std;
string("output file name for GLM parameter estimates (GLM betas)"),
false, requires_argument);
Option<string> fndesign(string("-d,--design"), string(""),
string("file name of the GLM design matrix (time courses or spatial maps)"),
string("file name of the GLM design matrix (text time courses for temporal regression or an image file for spatial regression )"),
false, requires_argument);
Option<string> fnmask(string("-m,--mask"), string(""),
string("mask image file name if input is image"),
......@@ -167,7 +165,7 @@ int setup(int &dof){
if(!samesize(tmpdata[0],mask)){
cerr << "ERROR: Mask image does not match input image" << endl;
return 1;
};
};
}else{
if(debug.value())
cout << "Creating mask image" << endl;
......@@ -186,7 +184,7 @@ int setup(int &dof){
}
}
else
data = read_ascii_matrix(fnin.value());
data = read_ascii_matrix(fnin.value());
if(fsl_imageexists(fndesign.value())){//read design
if(debug.value())
......@@ -205,8 +203,17 @@ int setup(int &dof){
design = read_ascii_matrix(fndesign.value());
}
dof=(int)ols_dof(design);
cerr << data << endl << design << endl;
if (perf_demean.value() ) {
if(debug.value())
cout << "De-meaning the data matrix" << endl;
data = remmean(data,1);
}
dof=ols_dof(design);
Matrix baseConfounds;
if ( textConfounds.set() ) {
baseConfounds=read_ascii_matrix( textConfounds.value().at(0) );
for(unsigned int i=1; i< textConfounds.value().size(); i++)
......@@ -238,14 +245,6 @@ int setup(int &dof){
dof-=confounds.size();
}
if(perf_demean.value()){
if(debug.value())
cout << "De-meaning the data matrix" << endl;
data = remmean(data,1);
dof-=1;
}
if(normdat.value()){
if(debug.value())
cout << "Normalising data matrix to unit std-deviation" << endl;
......@@ -253,11 +252,17 @@ int setup(int &dof){
}
meanR=mean(data,1);
if(perf_demean.value()){
if(debug.value())
cout << "De-meaning design matrix" << endl;
design = remmean(design,1);
dof-=1;
}
cerr << data << endl << design << endl;
if(normdes.value()){
if(debug.value())
cout << "Normalising design matrix to unit std-deviation" << endl;
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment