Newer
Older
// splinterpolator.h
//
// Jesper Andersson, FMRIB Image Analysis Group
//
// Copyright (C) 2008 University of Oxford
//
// CCOPYRIGHT
//
#ifndef splinterpolator_h
#define splinterpolator_h
#include <vector>
#include <string>
#include <cmath>

Jesper Andersson
committed
#include <thread>

Jesper Andersson
committed
#include <iomanip>
#include "armawrap/newmat.h"
#include "utils/threading.h"
#include "miscmaths/miscmaths.h"
namespace SPLINTERPOLATOR {
enum ExtrapolationType {Zeros, Constant, Mirror, Periodic};
class SplinterpolatorException: public std::exception
{
public:
SplinterpolatorException(const std::string& msg) noexcept : m_msg(std::string("Splinterpolator::") + msg) {}
~SplinterpolatorException() noexcept {}
virtual const char *what() const noexcept { return(m_msg.c_str()); }
private:
std::string m_msg;
};
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//
// Class Splinterpolator:
//
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
template<class T>
class Splinterpolator
{
public:
// Constructors
Splinterpolator()
: _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0), _nthr(1) {}
Splinterpolator(const T *data_or_coefs,
const std::vector<unsigned int>& dim,
const std::vector<ExtrapolationType>& et,
unsigned int order=3,
bool copy_low_order=true,
Utilities::NoOfThreads nthr=Utilities::NoOfThreads(1),
double prec=1e-8,
bool data_are_coefs=false)
: _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0), _nthr(nthr._n)

Jesper Andersson
committed
{
common_construction(data_or_coefs,dim,order,prec,et,copy_low_order,data_are_coefs);

Jesper Andersson
committed
}
Splinterpolator(const T *data_or_coefs,
const std::vector<unsigned int>& dim,
ExtrapolationType et=Zeros,
unsigned int order=3,
bool copy_low_order=true,
Utilities::NoOfThreads nthr=Utilities::NoOfThreads(1),
double prec=1e-8,
bool data_are_coefs=false)
: _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0), _nthr(nthr._n)
{
std::vector<ExtrapolationType> ett(dim.size(),et);
common_construction(data_or_coefs,dim,order,prec,ett,copy_low_order,data_are_coefs);
// Copy construction. May be removed in future
Splinterpolator(const Splinterpolator<T>& src)
: _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0) { assign(src); }
~Splinterpolator() { if(_own_coef) delete [] _coef; }
Splinterpolator& operator=(const Splinterpolator& src)
{ if(_own_coef) delete [] _coef; assign(src); return(*this); }
// Copy the spline coefficients into dest.
void Copy(std::vector<T>& dest)
{
unsigned int N = 1;
for (auto d : _dim) {
N *= d;
}
dest.resize(N);
auto coefs = coef_ptr();
for (unsigned int i = 0; i < N; i++) {
dest[i] = coefs[i];
}
}
// Set new data in Splinterpolator.
void Set(const T *data_or_coefs,
const std::vector<unsigned int>& dim,
const std::vector<ExtrapolationType>& et,
unsigned int order=3,
bool copy_low_order=true,
double prec=1e-8,
bool data_are_coefs=false)
if (_own_coef) delete [] _coef;
common_construction(data_or_coefs,dim,order,prec,et,copy_low_order,data_are_coefs);
void Set(const T *data_or_coefs,
const std::vector<unsigned int>& dim,
ExtrapolationType et,
unsigned int order=3,
bool copy_low_order=true,
double prec=1e-8,
bool data_are_coefs=false)
{
std::vector<ExtrapolationType> vet(dim.size(),Zeros);
Set(data_or_coefs,dim,vet,order,copy_low_order,prec,data_are_coefs);
}
// Return interpolated value
T operator()(const std::vector<float>& coord) const;
T operator()(double x, double y=0, double z=0, double t=0) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (_ndim>4 || (t && _ndim<4) || (z && _ndim<3) || (y && _ndim<2)) throw SplinterpolatorException("operator(): input has wrong dimensionality");
double coord[5] = {x,y,z,t,0.0};
return(static_cast<T>(value_at(coord)));
// Return interpolated value along with first derivative in one direction (useful for distortion correction)
T operator()(const std::vector<float>& coord, unsigned int dd, T *dval) const;
T operator()(double x, double y, double z, unsigned int dd, T *dval) const;
T operator()(double x, double y, unsigned int dd, T *dval) const { return((*this)(x,y,0.0,dd,dval)); }
T operator()(double x, T *dval) const { return((*this)(x,0.0,0.0,0,dval)); }
// Return interpolated value along with selected derivatives
T ValAndDerivs(const std::vector<float>& coord, const std::vector<unsigned int>& deriv, std::vector<T>& rderiv) const;
T ValAndDerivs(const std::vector<float>& coord, std::vector<T>& rderiv) const
{
std::vector<unsigned int> deriv(_ndim,1);
return(ValAndDerivs(coord,deriv,rderiv));
}
T ValAndDerivs(double x, double y, double z, std::vector<T>& rderiv) const;
// Return continous derivative at voxel centres (only works for order>1)
T Deriv(const std::vector<unsigned int>& indx, unsigned int ddir) const;
T Deriv1(const std::vector<unsigned int>& indx) const {return(Deriv(indx,0));}
T Deriv2(const std::vector<unsigned int>& indx) const {return(Deriv(indx,1));}
T Deriv3(const std::vector<unsigned int>& indx) const {return(Deriv(indx,2));}
T Deriv4(const std::vector<unsigned int>& indx) const {return(Deriv(indx,3));}
T Deriv5(const std::vector<unsigned int>& indx) const {return(Deriv(indx,4));}
T DerivXYZ(unsigned int i, unsigned int j, unsigned int k, unsigned int dd) const;
T DerivX(unsigned int i, unsigned int j, unsigned int k) const {return(DerivXYZ(i,j,k,0));}
T DerivY(unsigned int i, unsigned int j, unsigned int k) const {return(DerivXYZ(i,j,k,1));}
T DerivZ(unsigned int i, unsigned int j, unsigned int k) const {return(DerivXYZ(i,j,k,2));}
void Grad3D(unsigned int i, unsigned int j, unsigned int k, T *xg, T *yg, T *zg) const;
void Grad(const std::vector<unsigned int>& indx, std::vector<T>& grad) const;
// Return continous addition (since previous voxel) of integral at voxel centres
T IntX() const;
T IntY() const;
T IntZ() const;
//
// The "useful" functionality pretty much ends here.
// Remaining functions are mainly for debugging/diagnostics.
//
unsigned int NDim() const { return(_ndim); }
unsigned int Order() const { return(_order); }
ExtrapolationType Extrapolation(unsigned int dim) const
{
if (dim >= _ndim) throw SplinterpolatorException("Extrapolation: Invalid dimension");
return(_et[dim]);
const std::vector<unsigned int>& Size() const { return(_dim); }
unsigned int Size(unsigned int dim) const { if (dim > 4) return(0); else return(_dim[dim]);}
T Coef(unsigned int x, unsigned int y=0, unsigned int z=0) const
{
std::vector<unsigned int> indx(3,0);
indx[0] = x; indx[1] = y; indx[2] = z;
return(Coef(indx));
}
T Coef(std::vector<unsigned int> indx) const;
NEWMAT::ReturnMatrix CoefAsNewmatMatrix() const;
NEWMAT::ReturnMatrix KernelAsNewmatMatrix(double sp=0.1, unsigned int deriv=0) const;
//
// Here we declare nested helper-class SplineColumn
//
class SplineColumn
{
public:
// Constructor
SplineColumn(unsigned int sz, unsigned int step) : _sz(sz), _step(step) { _col = new double[_sz]; }
// Destructor
~SplineColumn() { delete [] _col; }
// Extract a column from a volume
void Get(const T *dp)
{
for (unsigned int i=0; i<_sz; i++, dp+=_step) _col[i] = static_cast<double>(*dp);
}
// Insert column into volume
void Set(T *dp) const
if (test == 1) { // If T is not float or double
for (unsigned int i=0; i<_sz; i++, dp+=_step) *dp = static_cast<T>(_col[i] + 0.5); // Round to nearest integer
}
else {
for (unsigned int i=0; i<_sz; i++, dp+=_step) *dp = static_cast<T>(_col[i]);
}
}
// Deconvolve column
void Deconv(unsigned int order, ExtrapolationType et, double prec);
private:
unsigned int _sz;
unsigned int _step;
double *_col;
unsigned int get_poles(unsigned int order, double *z, unsigned int *sf) const;
double init_bwd_sweep(double z, double lv, ExtrapolationType et, double prec) const;
double init_fwd_sweep(double z, ExtrapolationType et, double prec) const;
SplineColumn(const SplineColumn& sc); // Don't allow copy-construction
SplineColumn& operator=(const SplineColumn& sc); // Dont allow assignment
};
//
// Here ends nested helper-class SplineColumn
//
private:
bool _valid; // Decides if neccessary information has been set or not
bool _own_coef; // Decides if we "own" (have allocated) _coef
T *_coef; // Volume of spline coefficients
const T *_cptr; // Pointer to constant data. Used instead of _coef when we don't copy the data
unsigned int _order; // Order of splines
unsigned int _ndim; // # of non-singleton dimensions

Jesper Andersson
committed
unsigned int _nthr; // Number of threads used for the deconvolution
double _prec; // Precision when dealing with edges
std::vector<unsigned int> _dim; // Dimensions of data
std::vector<ExtrapolationType> _et; // How to do extrapolation
//
// Private helper-functions
//
void common_construction(const T *data_or_coefs,
const std::vector<unsigned int>& dim,
unsigned int order,
double prec,
const std::vector<ExtrapolationType>& et,
bool copy,
bool data_are_coefs);
void assign(const Splinterpolator<T>& src);
bool calc_coef(const T *data_or_coefs, bool copy, bool data_are_coefs);
void deconv_along(unsigned int dim);
void deconv_along_mt_helper(unsigned int dim, unsigned int mdim, unsigned int mstep, unsigned int offset, unsigned int step,
const std::vector<unsigned int>& rdim, const std::vector<unsigned int>& rstep);
T coef(int *indx) const;
const T* coef_ptr() const {if (_own_coef) return(_coef); else return(_cptr); }
unsigned int indx2indx(int indx, unsigned int d) const;
unsigned int indx2linear(int k, int l, int m) const;
unsigned int add2linear(unsigned int lin, int j) const;
double value_at(const double *coord) const;
double value_and_derivatives_at(const double *coord, const unsigned int *deriv, double *dval) const;
void derivatives_at_i(const unsigned int *indx, const unsigned int *deriv, double *dval) const;
unsigned int get_start_indicies(const double *coord, int *sinds) const;
unsigned int get_start_indicies_at_i(const unsigned int *indx, int *sinds) const;
unsigned int get_wgts(const double *coord, const int *sinds, double **wgts) const;
unsigned int get_wgts_at_i(const unsigned int *indx, const int *sinds, double **wgts) const;
unsigned int get_dwgts(const double *coord, const int *sinds, const unsigned int *deriv, double **dwgts) const;
unsigned int get_dwgts_at_i(const unsigned int *indx, const int *sinds, const unsigned int *deriv, double **dwgts) const;
double get_wgt(double x) const;
double get_wgt_at_i(int i) const;
double get_dwgt(double x) const;
double get_dwgt_at_i(int i) const;
void get_dwgt1(const double * const *wgts, const double * const *dwgts, const unsigned int *dd, unsigned int nd,
unsigned int k, unsigned int l, unsigned int m, double wgt1, double *dwgt1) const;
std::pair<double,double> range() const;
bool should_be_zero(const double *coord) const;
unsigned int n_nonzero(const unsigned int *vec) const;
bool odd(unsigned int i) const {return(static_cast<bool>(i%2));}
bool even(unsigned int i) const {return(!odd(i));}
//
// Disallowed member functions
//
// Splinterpolator(const Splinterpolator& s); // Don't allow copy-construction
// Splinterpolator& operator=(const Splinterpolator& s); // Don't allow assignment
/////////////////////////////////////////////////////////////////////
//
// Here starts public member functions for Splinterpolator
//
/////////////////////////////////////////////////////////////////////
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value at location coord.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::operator()(const std::vector<float>& coord) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (coord.size() != _ndim) throw SplinterpolatorException("operator(): coord has wrong length");
double dcoord[5] = {0.0,0.0,0.0,0.0,0.0};
for (unsigned int i=0; i<coord.size(); i++) dcoord[i] = coord[i];
return(static_cast<T>(value_at(dcoord)));
}
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and a single derivative at location coord.
// The derivative should be specified as the # of the dimension
// (starting at zero) that you want it along.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::operator()(const std::vector<float>& coord, unsigned int dd, T *dval) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (coord.size() != _ndim) throw SplinterpolatorException("operator(): coord has wrong length");
if (dd > (_ndim-1)) throw SplinterpolatorException("operator(): derivative specified for invalid direction");
double dcoord[5] = {0.0,0.0,0.0,0.0,0.0};
for (unsigned int i=0; i<coord.size(); i++) dcoord[i] = coord[i];
unsigned int deriv[5] = {0,0,0,0,0};
deriv[dd] = 1;
double ddval = 0.0;
T rval;
rval = static_cast<T>(value_and_derivatives_at(dcoord,deriv,&ddval));
*dval = static_cast<T>(ddval);
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and a single derivative at location
// given by x, y and . The derivative should be specified as the #
// of the dimension (starting at zero) that you want it along.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::operator()(double x, double y, double z, unsigned int dd, T *dval) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (_ndim>3 || (z && _ndim<3) || (y && _ndim<2)) throw SplinterpolatorException("operator(): input has wrong dimensionality");
if (dd > (_ndim-1)) throw SplinterpolatorException("operator(): derivative specified for invalid direction");
double coord[5] = {x,y,z,0.0,0.0};
unsigned int deriv[5] = {0,0,0,0,0};
deriv[dd] = 1;
double ddval = 0.0;
T rval;
rval = static_cast<T>(value_and_derivatives_at(coord,deriv,&ddval));
*dval = static_cast<T>(ddval);
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and selected (by deriv) derivatives
// at location given by coord. The interpolated value is the return
// value and the derivatives are returned in rderiv. The input
// deriv should be an _ndim long vector where a 1 indicates that
// the derivative is required in that direction and a zero that it
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::ValAndDerivs(const std::vector<float>& coord, const std::vector<unsigned int>& deriv, std::vector<T>& rderiv) const
{
if (!_valid) throw SplinterpolatorException("ValAndDerivs: Cannot interpolate un-initialized object");
if (coord.size() != _ndim || deriv.size() != _ndim) throw SplinterpolatorException("ValAndDerivs: input has wrong dimensionality");
double lcoord[5] = {0.0,0.0,0.0,0.0,0.0};
unsigned int lderiv[5] = {0,0,0,0,0};
unsigned int nd = 0;
for (unsigned int i=0; i<coord.size(); i++) { lcoord[i] = coord[i]; nd += (lderiv[i]=(deriv[i])?1:0); }
if (rderiv.size()!=nd) SplinterpolatorException("ValAndDerivs: mismatch between deriv and rderiv");
double dval[5];
T rval = static_cast<T>(value_and_derivatives_at(lcoord,lderiv,dval));
for (unsigned int i=0; i<nd; i++) rderiv[i] = static_cast<T>(dval[i]);
return(rval);
}
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and derivatives in the x, y and z
// directions at a location given by x, y and z. The interpolated
// value is the return value and the derivatives are returned in rderiv.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::ValAndDerivs(double x, double y, double z, std::vector<T>& rderiv) const
{
if (!_valid) throw SplinterpolatorException("ValAndDerivs: Cannot interpolate un-initialized object");
if (_ndim != 3 || rderiv.size() != _ndim) throw SplinterpolatorException("ValAndDerivs: input has wrong dimensionality");
double coord[5] = {x,y,z,0.0,0.0};
unsigned int deriv[5] = {1,1,1,0,0};
double dval[3];
T rval = static_cast<T>(value_and_derivatives_at(coord,deriv,dval));
for (unsigned int i=0; i<3; i++) rderiv[i] = static_cast<T>(dval[i]);
return(rval);
}
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
/////////////////////////////////////////////////////////////////////
//
// Routine that returns a 3D gradient at an integer location.
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// Routine that returns a single derivative at an integer location.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::Deriv(const std::vector<unsigned int>& indx, unsigned int dd) const
{
if (!_valid) throw SplinterpolatorException("Deriv: Cannot take derivative of un-initialized object");
if (indx.size() != _ndim) SplinterpolatorException("Deriv: Input indx of wrong dimension");
if (dd > (_ndim-1)) throw SplinterpolatorException("Deriv: derivative specified for invalid direction");
double dval;
unsigned int lindx[5] = {0,0,0,0,0};
unsigned int deriv[5] = {0,0,0,0,0};
for (unsigned int i=0; i<_ndim; i++) lindx[i]=indx[i];
deriv[dd] = 1;
derivatives_at_i(lindx,deriv,&dval);
return(static_cast<T>(dval));
}
template<class T>
T Splinterpolator<T>::DerivXYZ(unsigned int i, unsigned int j, unsigned int k, unsigned int dd) const
{
if (!_valid) throw SplinterpolatorException("DerivXYZ: Cannot take derivative of un-initialized object");
if (_ndim!=3 || dd>2) throw SplinterpolatorException("DerivXYZ: Input has wrong dimensionality");
double dval;
unsigned int lindx[5] = {i,j,k,0,0};
unsigned int deriv[5] = {0,0,0,0,0};
deriv[dd] = 1;
derivatives_at_i(lindx,deriv,&dval);
return(static_cast<T>(dval));
}
template<class T>
void Splinterpolator<T>::Grad3D(unsigned int i, unsigned int j, unsigned int k, T *xg, T *yg, T *zg) const
{
if (!_valid) throw SplinterpolatorException("Grad3D: Cannot take derivative of un-initialized object");
if (_ndim != 3) SplinterpolatorException("Grad3D: Input of wrong dimension");
unsigned int lindx[5] = {i,j,k,0,0};
unsigned int deriv[5] = {1,1,1,0,0};
double dval[5] = {0.0,0.0,0.0,0.0,0.0};
derivatives_at_i(lindx,deriv,dval);
*xg=static_cast<T>(dval[0]); *yg=static_cast<T>(dval[1]); *zg=static_cast<T>(dval[2]);
}
template<class T>
void Splinterpolator<T>::Grad(const std::vector<unsigned int>& indx, std::vector<T>& grad) const
{
if (!_valid) throw SplinterpolatorException("Grad: Cannot take derivative of un-initialized object");
if (indx.size() != _ndim || grad.size() != _ndim) SplinterpolatorException("Grad: Input indx or grad of wrong dimension");
unsigned int lindx[5] = {0,0,0,0,0};
unsigned int deriv[5] = {0,0,0,0,0};
double dval[5] = {0.0,0.0,0.0,0.0,0.0};
for (unsigned int i=0; i<_ndim; i++) { lindx[i]=indx[i]; deriv[i]=1; }
derivatives_at_i(lindx,deriv,dval);
for (unsigned int i=0; i<_ndim; i++) grad[i] = static_cast<T>(dval[i]);
return;
}
/////////////////////////////////////////////////////////////////////
//
// Returns the value of the coefficient given by indx (zero-offset)
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::Coef(std::vector<unsigned int> indx) const
{
if (!_valid) throw SplinterpolatorException("Coef: Cannot get coefficients for un-initialized object");
if (!indx.size()) throw SplinterpolatorException("Coef: indx has zeros dimensions");
if (indx.size() > 5) throw SplinterpolatorException("Coef: indx has more than 5 dimensions");
for (unsigned int i=0; i<indx.size(); i++) if (indx[i] >= _dim[i]) throw SplinterpolatorException("Coef: indx out of range");
unsigned int lindx=indx[indx.size()-1];
for (int i=indx.size()-2; i>=0; i--) lindx = _dim[i]*lindx + indx[i];
}
/////////////////////////////////////////////////////////////////////
//
// Returns the values of all coefficients as a Newmat matrix. If
// _ndim==1 it will return a row-vector, if _ndim==2 it will return
// a matrix, if _ndim==3 it will return a tiled matrix where the n
// first rows (where n is the number of rows in one slice) pertain to
// the first slice, the next n rows to the second slice, etc. And
// correspondingly for 4- and 5-D.
//
/////////////////////////////////////////////////////////////////////
template<class T>
NEWMAT::ReturnMatrix Splinterpolator<T>::CoefAsNewmatMatrix() const
{
if (!_valid) throw SplinterpolatorException("CoefAsNewmatMatrix: Cannot get coefficients for un-initialized object");
NEWMAT::Matrix mat(_dim[1]*_dim[2]*_dim[3]*_dim[4],_dim[0]);
std::vector<unsigned int> cindx(5,0);
unsigned int r=0;
for (cindx[4]=0; cindx[4]<_dim[4]; cindx[4]++) {
for (cindx[3]=0; cindx[3]<_dim[3]; cindx[3]++) {
for (cindx[2]=0; cindx[2]<_dim[2]; cindx[2]++) {
for (cindx[1]=0; cindx[1]<_dim[1]; cindx[1]++, r++) {
for (cindx[0]=0; cindx[0]<_dim[0]; cindx[0]++) {
mat.element(r,cindx[0]) = Coef(cindx);
}
}
}
}
}
mat.Release();
return(mat);
}
/////////////////////////////////////////////////////////////////////
//
// Return the kernel matrix to verify its correctness.
//
/////////////////////////////////////////////////////////////////////
template<class T>
NEWMAT::ReturnMatrix Splinterpolator<T>::KernelAsNewmatMatrix(double sp, // Distance (in ksp) between points
unsigned int deriv) const // Derivative (only 0/1 implemented).
if (!_valid) throw SplinterpolatorException("KernelAsNewmatMatrix: Cannot get kernel for un-initialized object");
if (deriv > 1) throw SplinterpolatorException("KernelAsNewmatMatrix: only 1st derivatives implemented");
std::pair<double,double> rng = range();
unsigned int i=0;
for (double x=rng.first; x<=rng.second; x+=sp, i++) ; // Intentional
NEWMAT::Matrix kernel(i,2);
for (double x=rng.first, i=0; x<=rng.second; x+=sp, i++) {
kernel.element(i,0) = x;
kernel.element(i,1) = (deriv) ? get_dwgt(x) : get_wgt(x);
}
kernel.Release();
return(kernel);
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
}
/////////////////////////////////////////////////////////////////////
//
// Here starts public member functions for SplineColumn
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// This function implements the forward and backwards sweep
// as defined by equation 2.5 in Unsers paper:
//
// B-spline signal processing. II. Efficiency design and applications
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::SplineColumn::Deconv(unsigned int order, ExtrapolationType et, double prec)
{
double z[3] = {0.0, 0.0, 0.0}; // Poles
unsigned int np = 0; // # of poles
unsigned int sf; // Scale-factor
np = get_poles(order,z,&sf);
for (unsigned int p=0; p<np; p++) {
_col[0] = init_fwd_sweep(z[p],et,prec);
double lv = _col[_sz-1];
// Forward sweep
double *ptr=&_col[1];
for (unsigned int i=1; i<_sz; i++, ptr++) *ptr += z[p] * *(ptr-1);
_col[_sz-1] = init_bwd_sweep(z[p],lv,et,prec);
// Backward sweep
ptr = &_col[_sz-2];
for (int i=_sz-2; i>=0; i--, ptr--) *ptr = z[p]*(*(ptr+1) - *ptr);
}
double *ptr=_col;
for (unsigned int i=0; i<_sz; i++, ptr++) *ptr *= sf;
}
/////////////////////////////////////////////////////////////////////
//
// Here starts private member functions for Splinterpolator
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// Returns the interpolated value at location given by coord.
// coord must be a pointer to an array of indicies with _ndim
// values.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::value_at(const double *coord) const
{
if (should_be_zero(coord)) return(0.0);
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
int inds[5];
unsigned int ni = 0;
ni = get_start_indicies(coord,inds);
get_wgts(coord,inds,wgts);
double val=0.0;
for (int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
for (int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
double wgt2 = wgt1*wgts[1][j];
for (int i=0; i<static_cast<int>(ni); i++) {
int cindx[] = {inds[0]+i,inds[1]+j,inds[2]+k,inds[3]+l,inds[4]+m};
val += coef(cindx)*wgts[0][i]*wgt2;
}
}
}
}
}
return(val);
}
*/
template<class T>
double Splinterpolator<T>::value_at(const double *coord) const
{
if (should_be_zero(coord)) return(0.0);
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
int inds[5];
unsigned int ni = 0;
const T *cptr = coef_ptr();
ni = get_start_indicies(coord,inds);
for (unsigned int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (unsigned int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (unsigned int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
unsigned int linear1 = indx2linear(inds[2]+k,inds[3]+l,inds[4]+m);
for (unsigned int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
double wgt2 = wgt1*wgts[1][j];
int linear2 = add2linear(linear1,inds[1]+j);
double *iiwgt=iwgt;
for (unsigned int i=0; i<ni; i++, iiwgt++) {
val += cptr[linear2+indx2indx(inds[0]+i,0)]*(*iiwgt)*wgt2;
}
}
}
}
}
return(val);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the interpolated value and selected derivatives at a
// location given by coord. coord must be a pointer to an array
// of voxel indicies with _ndim values. deriv must be a pointer
// to an _ndim long array of 0/1 specifying if the derivative is
// requested in that direction or not.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::value_and_derivatives_at(const double *coord,
const unsigned int *deriv,
double *dval)
if (should_be_zero(coord)) { memset(dval,0,n_nonzero(deriv)*sizeof(double)); return(0.0); }
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
double diwgt[8], djwgt[8], dkwgt[8], dlwgt[8], dmwgt[8];
double *dwgts[] = {diwgt, djwgt, dkwgt, dlwgt, dmwgt};
double dwgt1[5];
double dwgt2[5];
int inds[5];
unsigned int dd[5];
unsigned int nd = 0;
unsigned int ni = 0;
const T *cptr = coef_ptr();
ni = get_start_indicies(coord,inds);
get_wgts(coord,inds,wgts);
get_dwgts(coord,inds,deriv,dwgts);
for (unsigned int i=0; i<_ndim; i++) if (deriv[i]) { dd[nd] = i; dval[nd++] = 0.0; }
double val=0.0;
for (unsigned int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (unsigned int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (unsigned int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
get_dwgt1(wgts,dwgts,dd,nd,k,l,m,wgt1,dwgt1);
unsigned int linear1 = indx2linear(inds[2]+k,inds[3]+l,inds[4]+m);
for (unsigned int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
double wgt2 = wgt1*wgts[1][j];
for (unsigned int d=0; d<nd; d++) dwgt2[d] = (dd[d]==1) ? dwgt1[d]*dwgts[1][j] : dwgt1[d]*wgts[1][j];
int linear2 = add2linear(linear1,inds[1]+j);
double *iiwgt=iwgt;
for (unsigned int i=0; i<ni; i++, iiwgt++) {
double c = cptr[linear2+indx2indx(inds[0]+i,0)];
val += c*(*iiwgt)*wgt2;
for (unsigned int d=0; d<nd; d++) {
double add = (dd[d]==0) ? c*diwgt[i]*dwgt2[d] : c*(*iiwgt)*dwgt2[d];
dval[d] += add;
}
}
}
}
}
return(val);
}
template <class T>
void Splinterpolator<T>::derivatives_at_i(const unsigned int *indx,
const unsigned int *deriv,
const
{
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
double diwgt[8], djwgt[8], dkwgt[8], dlwgt[8], dmwgt[8];
double *dwgts[] = {diwgt, djwgt, dkwgt, dlwgt, dmwgt};
double dwgt1[5];
double dwgt2[5];
int inds[5];
unsigned int dd[5];
unsigned int nd = 0;
unsigned int ni = 0;
const T *cptr = coef_ptr();
ni = get_start_indicies_at_i(indx,inds);
get_wgts_at_i(indx,inds,wgts);
get_dwgts_at_i(indx,inds,deriv,dwgts);
for (unsigned int i=0; i<_ndim; i++) if (deriv[i]) { dd[nd] = i; dval[nd++] = 0.0; }
// double val=0.0;
for (unsigned int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (unsigned int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (unsigned int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
get_dwgt1(wgts,dwgts,dd,nd,k,l,m,wgt1,dwgt1);
unsigned int linear1 = indx2linear(inds[2]+k,inds[3]+l,inds[4]+m);
for (unsigned int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
// double wgt2 = wgt1*wgts[1][j];
for (unsigned int d=0; d<nd; d++) dwgt2[d] = (dd[d]==1) ? dwgt1[d]*dwgts[1][j] : dwgt1[d]*wgts[1][j];
int linear2 = add2linear(linear1,inds[1]+j);
double *iiwgt=iwgt;
for (unsigned int i=0; i<ni; i++, iiwgt++) {
double c = cptr[linear2+indx2indx(inds[0]+i,0)];
// val += c*(*iiwgt)*wgt2;
for (unsigned int d=0; d<nd; d++) {
double add = (dd[d]==0) ? c*diwgt[i]*dwgt2[d] : c*(*iiwgt)*dwgt2[d];
dval[d] += add;
}
}
}
}
}
// return(val);
return;
}
/////////////////////////////////////////////////////////////////////
//
// Returns (in sinds) the indicies of the first coefficient in all
// _ndim directions with a non-zero weight for the location given
// by coord. The caller is responsible for coord and sinds being
// valid pointers to arrays of 5 values.
// The return-value gives the total # of non-zero weights.
//
/////////////////////////////////////////////////////////////////////
template<class T>
unsigned int Splinterpolator<T>::get_start_indicies(const double *coord, int *sinds) const
{
unsigned int ni = _order+1;

Paul McCarthy
committed
for (unsigned int i=0; i<_ndim; i++) {
if (odd(ni)) {
sinds[i] = std::floor(coord[i] + 0.5) - ni/2;
}
else {
sinds[i] = std::ceil(coord[i]) - ni/2;
}

Paul McCarthy
committed
for (unsigned int i=_ndim; i<5; i++) sinds[i] = 0;
return(ni);
}
// Does the same thing, but for integer (spot on voxel centre) index
template<class T>
unsigned int Splinterpolator<T>::get_start_indicies_at_i(const unsigned int *indx, int *sinds) const
{
unsigned int ni = (odd(_order)) ? _order : _order+1;
for (unsigned int i=0; i<_ndim; i++) {
sinds[i] = indx[i] - (_order/2);
}
for (unsigned int i=_ndim; i<5; i++) sinds[i] = 0;
return(ni);
}
/////////////////////////////////////////////////////////////////////
//
// Returns (in wgts) the weights for the coefficients given by sinds
// for the location given by coord.
//
/////////////////////////////////////////////////////////////////////
template<class T>
unsigned int Splinterpolator<T>::get_wgts(const double *coord, const int *sinds, double **wgts) const
{
unsigned int ni = _order+1;
for (unsigned int dim=0; dim<_ndim; dim++) {
for (unsigned int i=0; i<ni; i++) {

Jesper Andersson
committed
wgts[dim][i] = get_wgt(coord[dim]-(sinds[dim]+int(i)));
}
}
for (unsigned int dim=_ndim; dim<5; dim++) wgts[dim][0] = 1.0;
return(ni);
}
// Same for integer (spot on voxel centre) index
template<class T>
unsigned int Splinterpolator<T>::get_wgts_at_i(const unsigned int *indx, const int *sinds, double **wgts) const
{
unsigned int ni = (odd(_order)) ? _order : _order+1;
for (unsigned int dim=0; dim<_ndim; dim++) {
for (unsigned int i=0; i<ni; i++) {

Jesper Andersson
committed
wgts[dim][i] = get_wgt_at_i(indx[dim]-(sinds[dim]+int(i)));
}
}
for (unsigned int dim=_ndim; dim<5; dim++) wgts[dim][0] = 1.0;
return(ni);
}
template<class T>
unsigned int Splinterpolator<T>::get_dwgts(const double *coord, const int *sinds, const unsigned int *deriv, double **dwgts) const
{
unsigned int ni = _order+1;
for (unsigned int dim=0; dim<_ndim; dim++) {
if (deriv[dim]) {
switch (_order) {
case 0:
throw SplinterpolatorException("get_dwgts: invalid order spline");
case 1:
dwgts[dim][0] = -1; dwgts[dim][1] = 1; // Not correct on original gridpoints
break;
case 2: case 3: case 4: case 5: case 6: case 7:
for (unsigned int i=0; i<ni; i++) {

Jesper Andersson
committed
dwgts[dim][i] = get_dwgt(coord[dim]-(sinds[dim]+int(i)));
}
break;
default:
throw SplinterpolatorException("get_dwgts: invalid order spline");
}
}
}
return(ni);
}
// Same for integer (spot on voxel centre) index
template<class T>
unsigned int Splinterpolator<T>::get_dwgts_at_i(const unsigned int *indx, const int *sinds, const unsigned int *deriv, double **dwgts) const
{
unsigned int ni = (odd(_order)) ? _order : _order+1;
for (unsigned int dim=0; dim<_ndim; dim++) {
if (deriv[dim]) {
switch (_order) {
case 0: case 1:
throw SplinterpolatorException("get_dwgts_at_i: invalid order spline");
case 2: case 3: case 4: case 5: case 6: case 7:
for (unsigned int i=0; i<ni; i++) {

Jesper Andersson
committed
dwgts[dim][i] = get_dwgt_at_i(indx[dim]-(sinds[dim]+int(i)));
}
break;
default:
throw SplinterpolatorException("get_dwgts_at_i: invalid order spline");
}
}
}
return(ni);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the weight for a spline at integer index i, where i is
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
// relative to the centre index of the spline.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::get_wgt_at_i(int i) const
{
double val = 0.0;
int ai = std::abs(i);
switch (_order) {
case 0: case 1:
val = (ai) ? 1.0 : 0.0;
break;
case 2:
if (!ai) val = 0.75;
else if (ai==1) val = 0.125;
break;
case 3:
if (!ai) val = 0.666666666666667;
else if (ai==1) val = 0.166666666666667;
break;
case 4:
if (!ai) val = 0.598958333333333;
else if (ai==1) val = 0.197916666666667;
else if (ai==2) val = 0.002604166666667;
break;
case 5:
if (!ai) val = 0.55;
else if (ai==1) val = 0.216666666666667;
else if (ai==2) val = 0.008333333333333;
break;
case 6:
if (!ai) val = 0.511024305555556;
else if (ai==1) val = 0.228797743055556;
else if (ai==2) val = 0.015668402777779;
else if (ai==3) val = 8.680555555555556e-05;
break;
case 7:
if (!ai) val = 0.479365079365079;
else if (ai==1) val = 0.236309523809524;
else if (ai==2) val = 0.023809523809524;
else if (ai==3) val = 1.984126984126984e-04;
break;
default:
throw SplinterpolatorException("get_wgt_at_i: invalid order spline");
}
}
/////////////////////////////////////////////////////////////////////
//
// Returns the weight for the first derivative of a spline at integer
// index i, where i is relative to the centre index of the spline.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::get_dwgt_at_i(int i) const
{
double val = 0.0;
int ai = std::abs(i);
int sign = (ai) ? i/ai : 1;
switch (_order) {
case 0: case 1:
throw SplinterpolatorException("get_dwgt: invalid order spline");