Newer
Older
/* kernel.cc
Mark Jenkinson, FMRIB Image Analysis Group
Copyright (C) 2001 University of Oxford */
/* CCOPYRIGHT */
Mark Jenkinson
committed
#include "miscmaths.h"
namespace MISCMATHS {
set<kernelstorage*, kernelstorage::comparer> kernel::existingkernels;
//////// Support function /////////
float kernelval(float x, int w, const ColumnVector& kernel)
{
// linearly interpolates to get the kernel at the point (x)
// given the half-width w
if (fabs(x)>w) return 0.0;
float halfnk = (kernel.Nrows()-1.0)/2.0;
float dn = x/w*halfnk + halfnk + 1.0;
int n = (int) floor(dn);
dn -= n;
if (n>(kernel.Nrows()-1)) return 0.0;
if (n<1) return 0.0;
return kernel(n)*(1.0-dn) + kernel(n+1)*dn;
}
Mark Jenkinson
committed
inline bool in_bounds(const ColumnVector& data, int index)
{ return ( (index>=1) && (index<=data.Nrows())); }
Mark Jenkinson
committed
inline bool in_bounds(const ColumnVector& data, float index)
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
{ return ( ((int)floor(index)>=1) && ((int)ceil(index)<=data.Nrows())); }
float sincfn(float x)
{
if (fabs(x)<1e-7) { return 1.0-fabs(x); }
float y=M_PI*x;
return sin(y)/y;
}
float hanning(float x, int w)
{ // w is half-width
if (fabs(x)>w)
return 0.0;
else
return (0.5 + 0.5 *cos(M_PI*x/w));
}
float blackman(float x, int w)
{ // w is half-width
if (fabs(x)>w)
return 0.0;
else
return (0.42 + 0.5 *cos(M_PI*x/w) + 0.08*cos(2.0*M_PI*x/w));
}
float rectangular(float x, int w)
{ // w is half-width
if (fabs(x)>w)
return 0.0;
else
return 1.0;
}
ColumnVector sinckernel1D(const string& sincwindowtype, int w, int n)
{ // w is full-width
int nstore = n;
if (nstore<1) nstore=1;
ColumnVector ker(nstore);
int hw = (w-1)/2; // convert to half-width
// set x between +/- width
float halfnk = (nstore-1.0)/2.0;
Mark Jenkinson
committed
for (int n=1; n<=nstore; n++) {
float x=(n-halfnk-1)/halfnk*hw;
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
if ( (sincwindowtype=="hanning") || (sincwindowtype=="h") ) {
ker(n) = sincfn(x)*hanning(x,hw);
} else if ( (sincwindowtype=="blackman") || (sincwindowtype=="b") ) {
ker(n) = sincfn(x)*blackman(x,hw);
} else if ( (sincwindowtype=="rectangular") || (sincwindowtype=="r") ) {
ker(n) = sincfn(x)*rectangular(x,hw);
} else {
cerr << "ERROR: Unrecognised sinc window type - using Blackman" << endl;
ker = sinckernel1D("b",w,nstore);
return ker;
}
}
return ker;
}
kernel sinckernel(const string& sincwindowtype, int w, int nstore)
{
kernel sinck;
sinck = sinckernel(sincwindowtype,w,w,w,nstore);
return sinck;
}
kernel sinckernel(const string& sincwindowtype,
int wx, int wy, int wz, int nstore)
{ // widths are full-widths
kernel sinckern;
if (nstore<1) nstore=1;
// convert all widths to half-widths
int hwx = (wx-1)/2;
int hwy = (wy-1)/2;
int hwz = (wz-1)/2;
ColumnVector kx, ky, kz;
// calculate kernels
kx = sinckernel1D(sincwindowtype,wx,nstore);
ky = sinckernel1D(sincwindowtype,wy,nstore);
kz = sinckernel1D(sincwindowtype,wz,nstore);
sinckern.setkernel(kx,ky,kz,hwx,hwy,hwz);
return sinckern;
}
// dummy fn for now
Mark Jenkinson
committed
float extrapolate_1d(const ColumnVector& data, const int index)
{
float extrapval;
if (in_bounds(data, index))
extrapval = data(index);
else if (in_bounds(data, index-1))
extrapval = data(data.Nrows());
else if (in_bounds(data, index+1))
extrapval = data(1);
else
extrapval = mean(data).AsScalar();
return extrapval;
}
// basic trilinear call
Mark Jenkinson
committed
float interpolate_1d(const ColumnVector& data, const float index)
{
float interpval;
int low_bound = (int)floor(index);
int high_bound = (int)ceil(index);
if (in_bounds(data, index))
interpval = data(low_bound) + (index - low_bound)*(data(high_bound) - data(low_bound));
else
interpval = extrapolate_1d(data, round(index));
return interpval;
}
//////// Spline Support /////////
Mark Jenkinson
committed
float hermiteinterpolation_1d(const ColumnVector& data, int p1, int p4, float t)
{
// Q(t) = (2t^3 - 3t^2 + 1)P_1 + (-2t^3 + 3t^2)P_4 + (t^3 - 2t^2 + t)R_1 + (t^3 - t^2)R_4
// inputs: points P_1, P_4; tangents R_1, R_4; interpolation index t;
if (!in_bounds(data,p1) || !in_bounds(data,p4)) {
cerr << "Hermite Interpolation - ERROR: One or more indicies lie outside the data range. Returning ZERO" << endl;
retval = 0.0;
} else if ((t < 0) || (t > 1)) {
cerr << "Hermite Interpolation - ERROR: Interpolation index must lie between 0 and 1. Returning ZERO" << endl;
retval = 0.0;
/* } else if (t == 0.0) {
retval = data(p1);
} else if (t == 1.0) {
retval = data(p4);
*/
} else {
r1 = 0.5 * (extrapolate_1d(data, p1) - extrapolate_1d(data, p1 - 1)) + 0.5 * (extrapolate_1d(data, p1 + 1) - extrapolate_1d(data, p1));// tangent @ P_1
r4 = 0.5 * (extrapolate_1d(data, p4) - extrapolate_1d(data, p4 - 1)) + 0.5 * (extrapolate_1d(data, p4 + 1) - extrapolate_1d(data, p4));// tangent @ P_4
float t2 = t*t; float t3 = t2*t;
retval = (2*t3 - 3*t2 + 1)*data(p1) + (-2*t3 + 3*t2)*data(p4) + (t3 - 2*t2 + t)*r1 + (t3 - t2)*r4;
}
// cerr << "p1, p4, t, r1, r4 = " << p1 << ", " << p4 << ", " << t << ", " << r1 << ", " << r4 << endl;
return retval;
}
//////// Kernel Interpolation Call /////////
Mark Jenkinson
committed
float kernelinterpolation_1d(const ColumnVector& data, float index, const ColumnVector& userkernel, int width)
{
int widthx = (width - 1)/2;
// kernel half-width (i.e. range is +/- w)
int ix0;
ix0 = (int) floor(index);
int wx(widthx);
vector<float> storex(2*wx+1);
for (int d=-wx; d<=wx; d++)
storex[d+wx] = kernelval((index-ix0+d),wx,userkernel);
float convsum=0.0, interpval=0.0, kersum=0.0;
int xj;
for (int x1=ix0-wx; x1<=ix0+wx; x1++) {
if (in_bounds(data, x1)) {
xj=ix0-x1+wx;
float kerfac = storex[xj];
convsum += data(x1) * kerfac;
kersum += kerfac;
}
}
if ( (fabs(kersum)>1e-9) ) {
interpval = convsum / kersum;
} else {
interpval = (float) extrapolate_1d(data, ix0);
}
return interpval;
}
////// Kernel wrappers //////
Mark Jenkinson
committed
float kernelinterpolation_1d(const ColumnVector& data, float index)
{
ColumnVector userkernel = sinckernel1D("hanning", 7, 1201);
return kernelinterpolation_1d(data, index, userkernel, 7);
}
float kernelinterpolation_1d(RowVector data, float index)
{
ColumnVector userkernel = sinckernel1D("hanning", 7, 1201);
return kernelinterpolation_1d(data.t(), index, userkernel, 7);
}
}