Skip to content
Snippets Groups Projects
miscmaths.cc 37.8 KiB
Newer Older
Christian Beckmann's avatar
Christian Beckmann committed
/*  miscmaths.cc

    Mark Jenkinson & Mark Woolrich & Christian Beckmann, FMRIB Image Analysis Group

    Copyright (C) 1999-2000 University of Oxford  */

/*  CCOPYRIGHT  */

// Miscellaneous maths functions

#include "miscmaths.h"
#include "stdlib.h"

using namespace std;

namespace MISCMATHS {

  // The following lines are ignored by the current SGI compiler
  //  (version egcs-2.91.57)
  // A temporary fix of including the std:: in front of all abs() etc
  //  has been done for now
  using std::abs;
  using std::sqrt;
  using std::exp;
  using std::log;
  //  using std::pow;
  using std::atan2;

  // General string/IO functions

  bool isnum(const string& str)
  {
    // assumes that initial whitespace has been removed
    if (isdigit(str[0])) return true;
    if ( (str[0]=='-') || (str[0]=='+') || (str[0]=='.') )  return true;
    return false;
  }
    
  string skip_alpha(ifstream& fs) 
  {
    string cline;
    while (!fs.eof()) {
      getline(fs,cline);
      cline += " "; // force extra entry in parsing
      istrstream ss(cline.c_str());
      string cc="";
      ss >> cc;
      if (isnum(cc)) {
	fs.seekg(-((int)cline.size()),ios::cur);
	return cline;
      }
    }
    return "";
  }

  ReturnMatrix read_ascii_matrix(int nrows, int ncols, const string& filename)
  {
    return read_ascii_matrix(filename,nrows,ncols);
  }


  ReturnMatrix read_ascii_matrix(const string& filename, int nrows, int ncols)
  {
    Matrix mat(nrows,ncols);
    mat = 0.0;
  
    if ( filename.size()<1 ) return mat;
    ifstream fs(filename.c_str());
    if (!fs) { 
      cerr << "Could not open matrix file " << filename << endl;
      return mat;
    }
    mat = read_ascii_matrix(fs,nrows,ncols);
    fs.close();
    mat.Release();
    return mat;
  }

  ReturnMatrix read_ascii_matrix(int nrows, int ncols, ifstream& fs)
  {
    return read_ascii_matrix(fs, nrows, ncols);
  }

  ReturnMatrix read_ascii_matrix(ifstream& fs, int nrows, int ncols)
  {
    Matrix mat(nrows,ncols);
    mat = 0.0;
    string ss="";
  
    ss = skip_alpha(fs);
    for (int r=1; r<=nrows; r++) {
      for (int c=1; c<=ncols; c++) {
	if (!fs.eof()) {
	  fs >> ss;
	  while ( !isnum(ss) && !fs.eof() ) {
	    fs >> ss;
	  }
Christian Beckmann's avatar
Christian Beckmann committed
	}
      }
    }
    mat.Release();
    return mat;
  }

  
  ReturnMatrix read_ascii_matrix(const string& filename)
  {
    Matrix mat;
    if ( filename.size()<1 ) return mat;
    ifstream fs(filename.c_str());
    if (!fs) { 
      cerr << "Could not open matrix file " << filename << endl;
      mat.Release();
      return mat;
    }
    mat = read_ascii_matrix(fs);
    fs.close();
    mat.Release();
    return mat;
  }


  ReturnMatrix read_ascii_matrix(ifstream& fs)
  {
    Matrix mat;

    int rcount=0, cmax=0;
    double val;
    string cline;
    // skip initial non-numeric lines
    //  and count the number of columns in the first numeric line
    cline = skip_alpha(fs);
    cline += " ";
    {
      istrstream ss(cline.c_str());
      string cc="";
      while (!ss.eof()) {
	cmax++;
	ss >> cc;
      }
    }
    cmax--;
    RowVector newrow(cmax);

    while (!fs.eof()) {
      getline(fs,cline);
      cline += " "; // force extra entry in parsing
      istrstream ss(cline.c_str());
      string cc="";
      ss >> cc;
      if (!isnum(cc)) break;  // stop processing when non-numeric line found
      rcount++;  // add new row to matrix
      newrow = 0.0;
      int ccount = 1;
      do {
	val = atof(cc.c_str());
	if (ccount<=cmax)  newrow(ccount++) = val;
	ss >> cc;
      } while (!ss.eof());
  
      if (rcount>1) mat = mat & newrow;
      else mat = newrow;
    }
    
    mat.Release();
    return mat;
  }

#define BINFLAG 42

  ReturnMatrix read_binary_matrix(const string& filename)
  {
    Matrix mat;
    if ( filename.size()<1 ) return mat;
    ifstream fs(filename.c_str(), ios::in | ios::binary);
    if (!fs) { 
      cerr << "Could not open matrix file " << filename << endl;
      return mat;
    }
    mat = read_binary_matrix(fs);
    fs.close();
    mat.Release();
    return mat;
  }


  ReturnMatrix read_binary_matrix(ifstream& fs)
  {
    long int testval;
    // test for byte swapping
    fs.read((char*)&testval,sizeof(testval));
    if (testval!=BINFLAG) {
      cerr << "Different endian format - byte swapping not currently implemented" << endl;
      Matrix mres;
      mres.Release();
      return mres;
    }

    // read matrix dimensions (num rows x num cols)
Christian Beckmann's avatar
Christian Beckmann committed
    long int ival,nx,ny;
    fs.read((char*)&ival,sizeof(ival));
    nx = ival;
    fs.read((char*)&ival,sizeof(ival));
    ny = ival;

    // set up and read matrix (rows fast, cols slow)
    Real val;
    Matrix mres(nx,ny);
    for (int y=1; y<=ny; y++) {
      for (int x=1; x<=nx; x++) {
	fs.read((char*)&val,sizeof(val));
	mres(x,y)=val;
      }
    }
    
    mres.Release();
    return mres;
  }


  // WRITE FUNCTIONS //


  int write_ascii_matrix(const string& filename, const Matrix& mat, 
			 int precision)
  {
    return write_ascii_matrix(mat, filename, precision);
  }

  int write_ascii_matrix(const Matrix& mat, const string& filename, 
			 int precision)
  {
    Tracer tr("write_ascii_matrix");
    if ( (filename.size()<1) ) return -1;
    ofstream fs(filename.c_str());
    if (!fs) { 
      cerr << "Could not open file " << filename << " for writing" << endl;
      return -1;
    }
    int retval = write_ascii_matrix(mat,fs,precision);
    fs.close();
    return retval;
  }

  int write_ascii_matrix(ofstream& fs, const Matrix& mat, 
			 int precision)
  {
    return write_ascii_matrix(mat, fs, precision);
  }
  
  int write_ascii_matrix(const Matrix& mat, ofstream& fs, int precision)
  {
    for (int i=1; i<=mat.Nrows(); i++) {
      for (int j=1; j<=mat.Ncols(); j++) {
	if (precision>0)  { 
	  fs.setf(ios::scientific | ios::showpos); 
	  fs.precision(precision+7);  
	  fs.precision(precision); } 
	fs << mat(i,j) << "  ";
      }
      fs << endl;
    }
    return 0;
  }
  
  int write_vest(string p_fname, const Matrix& x, int precision)
     { return write_vest(x,p_fname,precision); } 

  int write_vest(const Matrix& x, string p_fname, int precision)
  {
    ofstream out;
    out.open(p_fname.c_str(), ios::out);
    
    if(!out)
      {
	cerr << "Unable to open " << p_fname << endl;
	return -1;
      }

    out << "! VEST-Waveform File" << endl;
    out << "/NumWaves\t" << x.Ncols() << endl;
    out << "/NumPoints\t" << x.Nrows() << endl;
    out << "/Skip" << endl;
    out << endl << "/Matrix" << endl;

    int retval = write_ascii_matrix(x, out, precision);

    out.close();

    return retval;
  }


  int write_binary_matrix(const Matrix& mat, const string& filename)
  {
    Tracer tr("write_binary_matrix");
    if ( (filename.size()<1) ) return -1;
    ofstream fs(filename.c_str(), ios::out | ios::binary);
    if (!fs) { 
      cerr << "Could not open file " << filename << " for writing" << endl;
      return -1;
    }
    int retval = write_binary_matrix(mat,fs);
    fs.close();
    return retval;
  }


  int write_binary_matrix(const Matrix& mat, ofstream& fs)
  {
    long int ival, nx, ny;

    ival = BINFLAG;
    fs.write((char*)&ival,sizeof(ival));
    ival = mat.Nrows();
    fs.write((char*)&ival,sizeof(ival));
    ival = mat.Ncols();
    fs.write((char*)&ival,sizeof(ival));

    nx = mat.Nrows();
    ny = mat.Ncols();

    Real val;
    for (int y=1; y<=ny; y++) {
      for (int x=1; x<=nx; x++) {
	val = mat(x,y);
	fs.write((char*)&val,sizeof(val));
      }
    }

    return 0;
  }


  // General mathematical functions

  int round(int x) { return x; }

  int round(float x) 
    { 
      if (x>0.0) return ((int) (x+0.5));
      else       return ((int) (x-0.5));
    }

   int round(double x) 
   { 
     if (x>0.0) return ((int) (x+0.5));
     else       return ((int) (x-0.5));
   }
   

  int sign(int x) { return (x / abs(x)); }

  int sign(float x) { return (int) (x / abs(x)); }

  int sign(double x) { return (int) (x / abs(x)); }

  int periodicclamp(int x, int x1, int x2)
   {
     if (x2<x1) return periodicclamp(x,x2,x1);
     int d = x2-x1+1;
     int xp = x-x1;
     if (xp>=0) {
       return (xp % d) + x1;
     } else {
       xp = xp + d + std::abs(xp/d)*d;
       assert(xp>0);
       return periodicclamp(xp + d + std::abs(xp/d)*d,x1,x2);
     }
   }

  ColumnVector cross(const ColumnVector& a, const ColumnVector& b)
    {
      Tracer tr("cross");
      ColumnVector ans(3);
      ans(1) = a(2)*b(3) - a(3)*b(2);
      ans(2) = a(3)*b(1) - a(1)*b(3);
      ans(3) = a(1)*b(2) - a(2)*b(1);
      return ans;
    }


  ColumnVector cross(const Real *a, const Real *b)
    {
      Tracer tr("cross");
      ColumnVector a1(3), b1(3);
      a1 << a;
      b1 << b;
      return cross(a1,b1);
    }


  double norm2(const ColumnVector& x)
    {
      return std::sqrt(x.SumSquare());
    }


  int Identity(Matrix& m)
    {
      Tracer tr("Identity");
      m=0.0;
      for (int j=1; j<=m.Nrows(); j++)
	m(j,j)=1.0;
      return 0;
    }

  ReturnMatrix Identity(int num)
    {
      Tracer tr("Identity");
      Matrix eye(num,num);
      Identity(eye);
      eye.Release();
      return eye;
    }


  int diag(Matrix& m, const float diagvals[])
    {
      Tracer tr("diag");
      m=0.0;
      for (int j=1; j<=m.Nrows(); j++)
	m(j,j)=diagvals[j-1];
      return 0;
    }


Mark Woolrich's avatar
Mark Woolrich committed
  int diag(DiagonalMatrix& m, const ColumnVector& diagvals)
    {
      Tracer tr("diag");

      m.ReSize(diagvals.Nrows());
      m=0.0;
      for (int j=1; j<=diagvals.Nrows(); j++)
	m(j)=diagvals(j);
      return 0;
    }

Christian Beckmann's avatar
Christian Beckmann committed
  int diag(Matrix& m, const ColumnVector& diagvals)
    {
      Tracer tr("diag");
Mark Woolrich's avatar
Mark Woolrich committed
      
      m.ReSize(diagvals.Nrows(),diagvals.Nrows());
Christian Beckmann's avatar
Christian Beckmann committed
      m=0.0;
Mark Woolrich's avatar
Mark Woolrich committed
      for (int j=1; j<=diagvals.Nrows(); j++)
Christian Beckmann's avatar
Christian Beckmann committed
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	m(j,j)=diagvals(j);
      return 0;
    }

  ReturnMatrix diag(const Matrix& Mat)
    {
      Tracer tr("diag");
      if(Mat.Ncols()==1){
	Matrix retmat(Mat.Nrows(),Mat.Nrows());
	diag(retmat,Mat);
	retmat.Release();
	return retmat;}
      else{
	int mindim = Min(Mat.Ncols(),Mat.Nrows());
	Matrix retmat(mindim,1);
	for(int ctr=1; ctr<=mindim;ctr++){
	  retmat(ctr,1)=Mat(ctr,ctr);
	}
	retmat.Release();
	return retmat;
      }
    }

  ReturnMatrix pinv(const Matrix& mat)
    {
      // calculates the psuedo-inverse using SVD
      Tracer tr("pinv");
      DiagonalMatrix D;
      Matrix U, V;
      SVD(mat,D,U,V);
      float tol;
      tol = MaximumAbsoluteValue(D) * Max(mat.Nrows(),mat.Ncols()) * 1e-16;
      for (int n=1; n<=D.Nrows(); n++) {
	if (fabs(D(n,n))>tol)  D(n,n) = 1.0/D(n,n);
      }
      Matrix pinv = V * D * U.t();
      pinv.Release();
      return pinv;
    }


  ReturnMatrix sqrtaff(const Matrix& mat)
    {
      Tracer tr("sqrtaff");
      Matrix matnew(4,4), rot(4,4), id4(4,4);
      Identity(rot);
      Identity(id4);
      ColumnVector params(12), centre(3), trans(4);
      centre = 0.0;
      // Quaternion decomposition -> params(1..3) = sin(theta/2)*(unit_axis_vec)
      // Want a new quaternion : q = sin(theta/4)*(unit_axis_vec)
      // Therefore factor of conversion is: factor = sin(theta/4)/sin(theta/2)
      //      = 1/(2  * cos(theta/4))   which is calculated below
      //  NB: t = theta/2
      decompose_aff(params,mat,centre,rotmat2quat);
      double sint;
      sint = std::sqrt(params(1)*params(1) + params(2)*params(2) + 
		  params(3)*params(3));
      double t = asin(sint);
      double factor = 1.0/(2.0*cos(0.5*t));
      params(1) = factor * params(1);
      params(2) = factor * params(2);
      params(3) = factor * params(3);
      params(7) = std::sqrt(params(7));
      params(8) = std::sqrt(params(8));
      params(9) = std::sqrt(params(9));
      params(10) = 0.5*params(10);
      params(11) = 0.5*params(11);
      params(12) = 0.5*params(12);

      construct_rotmat_quat(params,3,rot,centre);
      rot(1,4) = 0.0;
      rot(2,4) = 0.0;
      rot(3,4) = 0.0;
      
      Matrix scale(4,4);
      Identity(scale);
      scale(1,1)=params(7);
      scale(2,2)=params(8);
      scale(3,3)=params(9);

      Matrix skew(4,4);
      Identity(skew);
      skew(1,2)=params(10);
      skew(1,3)=params(11);
      skew(2,3)=params(12);

      trans(1) = params(4);
      trans(2) = params(5);
      trans(3) = params(6);
      trans(4) = 1.0;

      // The translation, being independent of the 3x3 submatrix, is
      //  calculated so that it will be equal for each of the two 
      //  halves of the approximate square root 
      //  (i.e. matnew and mat*matnew.i() have exactly the same translation)
      ColumnVector th(4);
      th = (mat*scale.i()*skew.i()*rot.i() + id4).SubMatrix(1,3,1,3).i() 
	* trans.SubMatrix(1,3,1,1);

      matnew = rot*skew*scale;
      matnew(1,4) = th(1);
      matnew(2,4) = th(2);
      matnew(3,4) = th(3);

      matnew.Release();
      return matnew;
    }


  //------------------------------------------------------------------------//

  // Handy MATLAB-like functions
  
  void reshape(Matrix& r, const Matrix& m, int nrows, int ncols)
    {
      Tracer tr("reshape");
      if (nrows*ncols != m.Nrows() * m.Ncols() ) {
	cerr << "WARNING: cannot reshape " << m.Nrows() << "x"
	     << m.Ncols() << " matrix into " << nrows << "x" 
	     << ncols << endl;
	cerr << " Returning original matrix instead" << endl;
	r = m;
	return;
      }
      r.ReSize(nrows,ncols);
      int rr = 1, rc = 1;
      for (int mc=1; mc<=m.Ncols(); mc++) {
	for (int mr=1; mr<=m.Nrows(); mr++) {
	  r(rr,rc) = m(mr,mc);
	  rr++;
	  if (rr>nrows) {
	    rc++;
	    rr=1;
	  }
	}
      }
    }

  ReturnMatrix reshape(const Matrix& m, int nrows, int ncols)
    {
      Tracer tr("reshape");
     
      Matrix r; 
      
      reshape(r,m,nrows,ncols);

      r.Release();
      return r;
    }

  //------------------------------------------------------------------------//


  // Spatial transformation functions (rotations and affine transforms)


  int construct_rotmat_euler(const ColumnVector& params, int n, Matrix& aff,
			     const ColumnVector& centre)
    {
      Tracer tr("construct_rotmat_euler");
      ColumnVector angl(3);
      Matrix newaff(4,4);
      Identity(aff);

      if (n<=0) return 0;
      // order of parameters is 3 rotation + 3 translation
      // angles are in radians 
      //  order of parameters is (Rx,Ry,Rz) and R = Rx.Ry.Rz
      angl=0.0;
      angl(1)=params(1);
      make_rot(angl,centre,newaff);
      aff = aff * newaff;
      if (n==1) return 0;

      angl=0.0;
      angl(2)=params(2);
      make_rot(angl,centre,newaff);
      aff = aff * newaff; 
      if (n==2) return 0;

      angl=0.0;
      angl(3)=params(3);
      make_rot(angl,centre,newaff);
      aff = aff * newaff;
      if (n==3) return 0;

      aff(1,4)+=params(4);
      if (n==4) return 0;
      aff(2,4)+=params(5);
      if (n==5) return 0;
      aff(3,4)+=params(6);
      if (n==6) return 0;

      return 1;
    }  

  int construct_rotmat_euler(const ColumnVector& params, int n, Matrix& aff)
    {
      Tracer tr("construct_rotmat_euler");
      ColumnVector centre(3);
      centre = 0.0;
      return construct_rotmat_euler(params,n,aff,centre);
    }


  int construct_rotmat_quat(const ColumnVector& params, int n, Matrix& aff,
			    const ColumnVector& centre)
    {
      Tracer tr("construct_rotmat_quat");
      Identity(aff);

      if (n<=0) return 0;
      // order of parameters is 3 rotation (last 3 quaternion components) 
      //  + 3 translation

      if ((n>=1) && (n<3)) { cerr<<"Can only do 3 or more, not "<< n <<endl; }
      float w, w2 = 1.0 - Sqr(params(1)) - Sqr(params(2)) - Sqr(params(3));
      if (w2 < 0.0) {
	cerr << "Parameters do not form a valid axis - greater than unity\n";
	return -1;
      }
      w = std::sqrt(w2);
      float x=params(1), y=params(2), z=params(3);
      aff(1,1) = 1 - 2*y*y - 2*z*z;
      aff(2,2) = 1 - 2*x*x - 2*z*z;
      aff(3,3) = 1 - 2*x*x - 2*y*y;
      aff(1,2) = 2*x*y - 2*w*z;
      aff(2,1) = 2*x*y + 2*w*z;
      aff(1,3) = 2*x*z + 2*w*y;
      aff(3,1) = 2*x*z - 2*w*y;
      aff(2,3) = 2*y*z - 2*w*x;
      aff(3,2) = 2*y*z + 2*w*x;

      // Given Rotation matrix R:  x' = Rx + (I-R)*centre
      ColumnVector trans(3);
      trans = aff.SubMatrix(1,3,1,3)*centre;
      aff.SubMatrix(1,3,4,4) = centre - trans;

      aff(1,4) += params(4);
      if (n==4) return 0;
      aff(2,4) += params(5);
      if (n==5) return 0;
      aff(3,4) += params(6);
      if (n==6) return 0;

      return 1;
    }  

  int construct_rotmat_quat(const ColumnVector& params, int n, Matrix& aff)
    {
      Tracer tr("construct_rotmat_quat");
      ColumnVector centre(3);
      centre = 0.0;
      return construct_rotmat_quat(params,n,aff,centre);
    }

  int make_rot(const ColumnVector& angl, const ColumnVector& centre, 
	       Matrix& rot)
    {
      // Matrix rot must be 4x4; angl and orig must be length 3
      Tracer tr("make_rot");
      Identity(rot);  // default return value
      float theta;
      theta = norm2(angl);
      if (theta<1e-8) {  // avoid round-off errors and return Identity
	return 0;
      }
      ColumnVector axis = angl/theta;
      ColumnVector x1(3), x2(3), x3(3);
      x1 = axis;
      x2(1) = -axis(2);  x2(2) = axis(1);  x2(3) = 0.0;
      if (norm2(x2)<=0.0) {
	x2(1) = 1.0;  x2(2) = 0.0;  x2(3) = 0.0;
      }
      x2 = x2/norm2(x2);
      x3 = cross(x1,x2);
      x3 = x3/norm2(x3);

      Matrix basischange(3,3);
      basischange.SubMatrix(1,3,1,1) = x2;
      basischange.SubMatrix(1,3,2,2) = x3;
      basischange.SubMatrix(1,3,3,3) = x1;

      Matrix rotcore(3,3);
      Identity(rotcore);
      rotcore(1,1)=cos(theta);
      rotcore(2,2)=cos(theta);
      rotcore(1,2)=sin(theta);
      rotcore(2,1)=-sin(theta);

      rot.SubMatrix(1,3,1,3) = basischange * rotcore * basischange.t();
  
      Matrix ident3(3,3);
      Identity(ident3);
      ColumnVector trans(3);
      trans = (ident3 - rot.SubMatrix(1,3,1,3))*centre;
      rot.SubMatrix(1,3,4,4)=trans;
      return 0;
    }


  int getrotaxis(ColumnVector& axis, const Matrix& rotmat)
    {
      Tracer tr("getrotaxis");
      Matrix residuals(3,3);
      residuals = rotmat*rotmat.t() - Identity(3);
      if (residuals.SumSquare() > 1e-4)
	{ cerr << "Failed orthogonality check!" << endl;  return -1; }
      Matrix u(3,3), v(3,3);
      DiagonalMatrix d(3);
      SVD(rotmat-Identity(3),d,u,v);
      // return column of V corresponding to minimum value of |S|
      for (int i=1; i<=3; i++) {
	if (fabs(d(i))<1e-4)  axis = v.SubMatrix(1,3,i,i);
      }
      return 0;
    }  
  

  int rotmat2euler(ColumnVector& angles, const Matrix& rotmat)
    {
      // uses the convention that R = Rx.Ry.Rz
      Tracer tr("rotmat2euler");
      float cz, sz, cy, sy, cx, sx;
      cy = std::sqrt(Sqr(rotmat(1,1)) + Sqr(rotmat(1,2)));
      if (cy < 1e-4) {
	//cerr << "Cos y is too small - Gimbal lock condition..." << endl;
	cx = rotmat(2,2);
	sx = -rotmat(3,2);
	sy = -rotmat(1,3);
	angles(1) = atan2(sx,cx);
	angles(2) = atan2(sy,(float)0.0);
	angles(3) = 0.0;
      } else {
	// choose by convention that cy > 0
	// get the same rotation if: sy stays same & all other values swap sign
	cz = rotmat(1,1)/cy;
	sz = rotmat(1,2)/cy;
	cx = rotmat(3,3)/cy;
	sx = rotmat(2,3)/cy;
	sy = -rotmat(1,3);
	//atan2(sin,cos)  (defined as atan2(y,x))
	angles(1) = atan2(sx,cx);
	angles(2) = atan2(sy,cy);
	angles(3) = atan2(sz,cz);
      }
      return 0;
    }


  int rotmat2quat(ColumnVector& quaternion, const Matrix& rotmat)
    {
      Tracer tr("rotmat2quat");

      float trace = rotmat.SubMatrix(1,3,1,3).Trace();
	
      if (trace > 0) {
	float w = std::sqrt((trace + 1.0)/4.0);
	quaternion(1) = (rotmat(3,2) - rotmat(2,3))/(4.0*w);
	quaternion(2) = (rotmat(1,3) - rotmat(3,1))/(4.0*w);
	quaternion(3) = (rotmat(2,1) - rotmat(1,2))/(4.0*w);
      } else if ((rotmat(1,1) > rotmat(2,2)) && (rotmat(1,1) > rotmat(3,3))) {
	// first col case
	float s = std::sqrt(1.0 + rotmat(1,1) - rotmat(2,2) - rotmat(3,3)) * 2.0;
	quaternion(1) = 0.5 / s;
	quaternion(2) = (-rotmat(1,2) - rotmat(1,2)) / s;
	quaternion(3) = (-rotmat(1,3) - rotmat(3,1)) / s;
      } else if ((rotmat(2,2) > rotmat(1,1)) && (rotmat(2,2) > rotmat(3,3))) {
	// 2nd col case
	float s = std::sqrt(1.0 + rotmat(2,2) - rotmat(1,1) - rotmat(3,3)) * 2.0;
	quaternion(1) = (-rotmat(1,2) - rotmat(2,1)) / s;
	quaternion(2) = 0.5 / s;
	quaternion(3) = (-rotmat(2,3) - rotmat(3,2)) / s;
      } else if ((rotmat(3,3) > rotmat(1,1)) && (rotmat(3,3) > rotmat(2,2))) {
	// 3rd col case
	float s = std::sqrt(1.0 + rotmat(3,3) - rotmat(1,1) - rotmat(2,2)) * 2.0;
	quaternion(1) = (-rotmat(1,3) - rotmat(3,1)) / s;
	quaternion(2) = (-rotmat(2,3) - rotmat(3,2)) / s;
	quaternion(3) = 0.5 / s;
      }
      return 0;
    }


  int decompose_aff(ColumnVector& params, const Matrix& affmat, 
		    const ColumnVector& centre,
		    int (*rotmat2params)(ColumnVector& , const Matrix& ))
    {
      // decomposes using the convention: mat = rotmat * skew * scale
      // order of parameters is 3 rotation + 3 translation + 3 scales + 3 skews
      // angles are in radians
      Tracer tr("decompose_aff");
      if (params. Nrows() < 12)
	params.ReSize(12);
      if (rotmat2params==0)  
	{ 
	  cerr << "No rotmat2params function specified" << endl;  
	  return -1; 
	}
      ColumnVector x(3), y(3), z(3);
      Matrix aff3(3,3);
      aff3 = affmat.SubMatrix(1,3,1,3);
      x = affmat.SubMatrix(1,3,1,1);
      y = affmat.SubMatrix(1,3,2,2);
      z = affmat.SubMatrix(1,3,3,3);
      float sx, sy, sz, a, b, c;
      sx = norm2(x);
      sy = std::sqrt( dot(y,y) - (Sqr(dot(x,y)) / Sqr(sx)) );
      a = dot(x,y)/(sx*sy);
      ColumnVector x0(3), y0(3);
      x0 = x/sx;
      y0 = y/sy - a*x0;
      sz = std::sqrt(dot(z,z) - Sqr(dot(x0,z)) - Sqr(dot(y0,z)));
      b = dot(x0,z)/sz;
      c = dot(y0,z)/sz;
      params(7) = sx;  params(8) = sy;  params(9) = sz;
      Matrix scales(3,3);
      float diagvals[] = {sx,sy,sz};
      diag(scales,diagvals);
      Real skewvals[] = {1,a,b,0 , 0,1,c,0 , 0,0,1,0 , 0,0,0,1}; 
      Matrix skew(4,4);
      skew  << skewvals;
      params(10) = a;  params(11) = b;  params(12) = c;
      Matrix rotmat(3,3);
      rotmat = aff3 * scales.i() * (skew.SubMatrix(1,3,1,3)).i();
      ColumnVector transl(3);
      //transl = affmat.SubMatrix(1,3,4,4);
      //transl = transl - (Identity(3) - rotmat)*centre;
      transl = affmat.SubMatrix(1,3,1,3)*centre + affmat.SubMatrix(1,3,4,4)
	         - centre;
      for (int i=1; i<=3; i++)  { params(i+3) = transl(i); }
      ColumnVector rotparams(3);
      (*rotmat2params)(rotparams,rotmat);
      for (int i=1; i<=3; i++)  { params(i) = rotparams(i); }
      return 0;
    }

  int decompose_aff(ColumnVector& params, const Matrix& affmat, 
		    int (*rotmat2params)(ColumnVector& , const Matrix& ))
    {
      Tracer tr("decompose_aff");
      ColumnVector centre(3);
      centre = 0.0;
      return decompose_aff(params,affmat,centre,rotmat2params);
    }



  int compose_aff(const ColumnVector& params, int n, const ColumnVector& centre,
		  Matrix& aff, 
		  int (*params2rotmat)(const ColumnVector& , int , Matrix& ,
			     const ColumnVector& ) )
    {
      Tracer tr("compose_aff");
      if (n<=0) return 0;
      // order of parameters is 3 rotation + 3 translation + 3 scales + 3 skews
      // angles are in radians

      (*params2rotmat)(params,n,aff,centre);
  
      if (n<=6)  return 0;
  
      Matrix scale(4,4);
      Identity(scale);
      if (n>=7) {
	scale(1,1)=params(7);
	if (n>=8) scale(2,2)=params(8);
	else      scale(2,2)=params(7);
	if (n>=9) scale(3,3)=params(9);
	else      scale(3,3)=params(7);
      }
      // fix the translation so that the centre is not moved
      ColumnVector strans(3);
      strans = centre - scale.SubMatrix(1,3,1,3)*centre;
      scale.SubMatrix(1,3,4,4) = strans;

      Matrix skew(4,4);
      Identity(skew);
      if (n>=10) {
	if (n>=10) skew(1,2)=params(10);
	if (n>=11) skew(1,3)=params(11);
	if (n>=12) skew(2,3)=params(12);
      }
      // fix the translation so that the centre is not moved
      ColumnVector ktrans(3);
      ktrans = centre - skew.SubMatrix(1,3,1,3)*centre;
      skew.SubMatrix(1,3,4,4) = ktrans;

      aff = aff * skew * scale;

      return 0;
    }


float rms_deviation(const Matrix& affmat1, const Matrix& affmat2, 
		    const ColumnVector& centre, const float rmax) 
{
  Tracer trcr("rms_deviation");
  Matrix isodiff(4,4);
  try {
    isodiff = affmat1*affmat2.i() - Identity(4);
  } catch(...) {
    cerr << "RMS_DEVIATION ERROR:: Could not invert matrix" << endl;  
    exit(-5); 
  }
  Matrix adiff(3,3);
  adiff = isodiff.SubMatrix(1,3,1,3);
  ColumnVector tr(3);
  tr = isodiff.SubMatrix(1,3,4,4) + adiff*centre;
  float rms = std::sqrt( (tr.t() * tr).AsScalar() + 
		    (rmax*rmax/5.0)*Trace(adiff.t()*adiff) );
  return rms;
}


float rms_deviation(const Matrix& affmat1, const Matrix& affmat2, 
		    const float rmax) 
{
  ColumnVector centre(3);
  centre = 0;
  return rms_deviation(affmat1,affmat2,centre,rmax);
}


// Added by MWW

//  int getdiag(ColumnVector& diagvals, const Matrix& m)
//  {
//    Tracer ts("MiscMaths::diag"); 
      
//    int num = m.Nrows();
//    diagvals.ReSize(num);
//    for (int j=1; j<=num; j++)
//      diagvals(j)=m(j,j);
//    return 0;
//  }

// float var(const ColumnVector& x)
// {     
//   float m = mean(x);
//   float ssq = (x-m).SumSquare()/(x.Nrows()-1);
      
//   return ssq;
// }

// float mean(const ColumnVector& x)
// {    
//   float m = x.Sum()/x.Nrows();
//   return m;
// }

float median(const ColumnVector& x)
{     
  ColumnVector y = x;
  SortAscending(y);
  float m = y((int)(y.Nrows()/2));
      
  return m;
}

// Added by CFB   --- Matlab style Matrix functions
 
ReturnMatrix ones(const int dim1, const int dim2)
{ 
  int tdim = dim2;
  if(tdim<0){tdim=dim1;}
  Matrix res(dim1,tdim); res = 1.0;
  res.Release();
  return res;
}

ReturnMatrix zeros(const int dim1, const int dim2)
{ 
  int tdim = dim2;
  if(tdim<0){tdim=dim1;}
  Matrix res(dim1,tdim); res = 0.0;
  res.Release();
  return res;
}

ReturnMatrix repmat(const Matrix &mat, const int rows, const int cols)
{
  Matrix res = mat;
  for(int ctr = 1; ctr < cols; ctr++){res |= mat;}
  Matrix tmpres = res;
  for(int ctr = 1; ctr < rows; ctr++){res &= tmpres;}
  res.Release();
  return res;
}

ReturnMatrix dist2(const Matrix &mat1, const Matrix &mat2)
{
  Matrix res(mat1.Ncols(),mat2.Ncols());
  for(int ctr1 = 1; ctr1 <= mat1.Ncols(); ctr1++)
    for(int ctr2 =1; ctr2 <= mat2.Ncols(); ctr2++)
      {
	ColumnVector tmp;
	tmp=mat1.Column(ctr1)-mat2.Column(ctr2);
	res(ctr1,ctr2) = std::sqrt(tmp.SumSquare());
      }
  res.Release();
  return res;
}

ReturnMatrix abs(const Matrix& mat)
{
  Matrix res = mat;
  for (int mc=1; mc<=mat.Ncols(); mc++) {
    for (int mr=1; mr<=mat.Nrows(); mr++) {
      res(mr,mc)=std::abs(res(mr,mc));
    }
  }
  res.Release();
  return res;
}

ReturnMatrix sqrt(const Matrix& mat)
{
  Matrix res = mat;
  bool neg_flag = false;
  for (int mc=1; mc<=mat.Ncols(); mc++) {
    for (int mr=1; mr<=mat.Nrows(); mr++) {
      if(res(mr,mc)<0){ neg_flag = true; }
      res(mr,mc)=std::sqrt(std::abs(res(mr,mc)));
    }
  }
  if(neg_flag){
    //cerr << " Matrix contained negative elements" << endl;
    //cerr << " return sqrt(abs(X)) instead" << endl;
  }
  res.Release();
  return res;
}

ReturnMatrix log(const Matrix& mat)
{
  Matrix res = mat;
  bool neg_flag = false;
  for (int mc=1; mc<=mat.Ncols(); mc++) {
    for (int mr=1; mr<=mat.Nrows(); mr++) {
      if(res(mr,mc)<0){ neg_flag = true; }
      res(mr,mc)=std::log(std::abs(res(mr,mc)));
    }
  }
  if(neg_flag){
    //  cerr << " Matrix contained negative elements" << endl;
    //  cerr << " return log(abs(X)) instead" << endl;
  }
  res.Release();
  return res; 
}

ReturnMatrix exp(const Matrix& mat)
{
  Matrix res = mat;
  for (int mc=1; mc<=mat.Ncols(); mc++) {
    for (int mr=1; mr<=mat.Nrows(); mr++) {
      res(mr,mc)=std::exp(res(mr,mc));
    }
  }
  res.Release();
  return res;
}

ReturnMatrix tanh(const Matrix& mat)
{
  Matrix res = mat;
  for (int mc=1; mc<=mat.Ncols(); mc++) {
    for (int mr=1; mr<=mat.Nrows(); mr++) {
      res(mr,mc)=std::tanh(res(mr,mc));
    }
  }
  res.Release();
  return res;
}

ReturnMatrix pow(const Matrix& mat, const double exp)
{
  Matrix res = mat;
  for (int mc=1; mc<=mat.Ncols(); mc++) {
    for (int mr=1; mr<=mat.Nrows(); mr++) {
      res(mr,mc)=std::pow(res(mr,mc),exp);
    }
  }
  res.Release();
  return res;
}

ReturnMatrix max(const Matrix& mat)
{
  Matrix res;
  if(mat.Nrows()>1){
    res=zeros(1,mat.Ncols());
    res=mat.Row(1);
    for(int mc=1; mc<=mat.Ncols();mc++){
      for(int mr=2; mr<=mat.Nrows();mr++){
	if(mat(mr,mc)>res(1,mc)){res(1,mc)=mat(mr,mc);}
      }
    }
  }
  else{
    res=zeros(1);
    res=mat(1,1);
    for(int mc=2; mc<=mat.Ncols(); mc++){
      if(mat(1,mc)>res(1,1)){res(1,1)=mat(1,mc);}
    }
  }
  res.Release();
  return res;
}

ReturnMatrix max(const Matrix& mat,ColumnVector& index)
{
  index.ReSize(mat.Nrows());
  index=1;
  Matrix res;
  if(mat.Nrows()>1){
    res=zeros(1,mat.Ncols());
    res=mat.Row(1);
    for(int mc=1; mc<=mat.Ncols();mc++){
      for(int mr=2; mr<=mat.Nrows();mr++){
	if(mat(mr,mc)>res(1,mc))
	  {
	    res(1,mc)=mat(mr,mc);
	    index(mr)=mc;
	  }
      }
    }
  }
  else{
    res=zeros(1);
    res=mat(1,1);
    for(int mc=2; mc<=mat.Ncols(); mc++){
      if(mat(1,mc)>res(1,1))
	{
	  res(1,1)=mat(1,mc);
	  index(1)=mc;
	}
    }
  }
  res.Release();
  return res;
}

ReturnMatrix min(const Matrix& mat)
{
  Matrix res;
  if(mat.Nrows()>1){
    res=zeros(1,mat.Ncols());
    res=mat.Row(1);
    for(int mc=1; mc<=mat.Ncols();mc++){
      for(int mr=2; mr<=mat.Nrows();mr++){
	if(mat(mr,mc)<res(1,mc)){res(1,mc)=mat(mr,mc);}
      }
    }
  }
  else{
    res=zeros(1);
    res=mat(1,1);
    for(int mc=2; mc<=mat.Ncols(); mc++){
      if(mat(1,mc)<res(1,1)){res(1,1)=mat(1,mc);}
    }
  }
  res.Release();
  return res;
}
  

ReturnMatrix sum(const Matrix& mat, const int dim)
{
  Matrix tmp;

  if (dim == 1) {tmp=mat;}
  else {tmp=mat.t();}
  Matrix res(1,tmp.Ncols());
  res = 0.0;  
  for (int mc=1; mc<=tmp.Ncols(); mc++) {
    for (int mr=1; mr<=tmp.Nrows(); mr++) {
      res(1,mc) += tmp(mr,mc);
    }
  }
  if (!(dim == 1)) {res=res.t();}
  res.Release();
  return res;
}

ReturnMatrix mean(const Matrix& mat, const int dim)
{
  Matrix tmp;
  if (dim == 1) {tmp=mat;}
  else {tmp=mat.t();}

  int N = tmp.Nrows();

  Matrix res(1,tmp.Ncols());
  res = 0.0;  
  for (int mc=1; mc<=tmp.Ncols(); mc++) {
    for (int mr=1; mr<=tmp.Nrows(); mr++) {
      res(1,mc) += tmp(mr,mc)/N;
    }
  }
  if (!(dim == 1)) {res=res.t();}

Christian Beckmann's avatar
Christian Beckmann committed
  res.Release();
  return res;
}

ReturnMatrix var(const Matrix& mat, const int dim)
{
  Matrix tmp;
  if (dim == 1) {tmp=mat;}
  else {tmp=mat.t();}
  int N = tmp.Nrows();
  Matrix res(1,tmp.Ncols());
  res = 0.0;

  if(N>1){    
    tmp -= ones(tmp.Nrows(),1)*mean(tmp,1);   
    for (int mc=1; mc<=tmp.Ncols(); mc++) 
      for (int mr=1; mr<=tmp.Nrows(); mr++) 
        res(1,mc) += tmp(mr,mc) / (N-1) * tmp(mr,mc);
  }

  if (!(dim == 1)) {res=res.t();}
Christian Beckmann's avatar
Christian Beckmann committed
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
  res.Release();
  return res;
}

ReturnMatrix stdev(const Matrix& mat, const int dim)
{
  return sqrt(var(mat,dim));
}

ReturnMatrix gt(const Matrix& mat1,const Matrix& mat2)
{
  int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
  int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
  Matrix res(ctrrow,ctrcol);
  res=0.0;

  for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
    for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
      if( mat1(ctr1,ctr2) > mat2(ctr1,ctr2)){
	res(ctr1,ctr2) = 1.0;
      }
    }
  }

  res.Release();
  return res;
}


ReturnMatrix lt(const Matrix& mat1,const Matrix& mat2)
{
  int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
  int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
  Matrix res(ctrrow,ctrcol);
  res=0.0;

  for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
    for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
      if( mat1(ctr1,ctr2) < mat2(ctr1,ctr2)){
	res(ctr1,ctr2) = 1.0;
      }
    }
  }

  res.Release();
  return res;
}


ReturnMatrix geqt(const Matrix& mat1,const Matrix& mat2) 
{
  int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
  int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
  Matrix res(ctrrow,ctrcol);
  res=0.0;

  for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
    for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
      if( mat1(ctr1,ctr2) >= mat2(ctr1,ctr2)){
	res(ctr1,ctr2) = 1.0;
      }
    }
  }

  res.Release();
  return res;
}


ReturnMatrix leqt(const Matrix& mat1,const Matrix& mat2) 
{
  int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
  int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
  Matrix res(ctrrow,ctrcol);
  res=0.0;

  for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
    for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
      if( mat1(ctr1,ctr2) <= mat2(ctr1,ctr2)){
	res(ctr1,ctr2) = 1.0;
      }
    }
  }

  res.Release();
  return res;
}


ReturnMatrix eq(const Matrix& mat1,const Matrix& mat2)
{
  int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
  int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
  Matrix res(ctrrow,ctrcol);
  res=0.0;

  for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
    for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
      if( mat1(ctr1,ctr2) == mat2(ctr1,ctr2)){
	res(ctr1,ctr2) = 1.0;
      }
    }
  }

  res.Release();
  return res;
}


ReturnMatrix neq(const Matrix& mat1,const Matrix& mat2) 
{
  int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
  int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
  Matrix res(ctrrow,ctrcol);
  res=0.0;

  for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
    for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
      if( mat1(ctr1,ctr2) != mat2(ctr1,ctr2)){
	res(ctr1,ctr2) = 1.0;
      }
    }
  }

  res.Release();
  return res;
}




ReturnMatrix remmean(const Matrix& mat, const int dim)
{ 
  Matrix res;
  if (dim == 1) {res=mat;}
  else {res=mat.t();}

  Matrix Mean;
  Mean = mean(res);

  for (int ctr = 1; ctr <= res.Nrows(); ctr++) {
    for (int ctr2 =1; ctr2 <= res.Ncols(); ctr2++) {
      res(ctr,ctr2)-=Mean(1,ctr2);
    }
  }
  if (dim != 1) {res=res.t();}
  res.Release();
  return res;
}


void remmean(const Matrix& mat, Matrix& demeanedmat, Matrix& Mean,  const int dim)
{ 
  if (dim == 1) {demeanedmat=mat;}
  else {demeanedmat=mat.t();}

  Mean = mean(demeanedmat);

  for (int ctr = 1; ctr <= demeanedmat.Nrows(); ctr++) {
    for (int ctr2 =1; ctr2 <= demeanedmat.Ncols(); ctr2++) {
      demeanedmat(ctr,ctr2)-=Mean(1,ctr2);
    }
  }
  if (dim != 1){demeanedmat = demeanedmat.t();Mean = Mean.t();}
}

ReturnMatrix cov(const Matrix& mat, const int norm)
{ 
  SymmetricMatrix res;
  Matrix tmp;
  int N;
  tmp=remmean(mat);
  if (norm == 1) {N = mat.Nrows();}
  else {N = mat.Nrows()-1;}  
  res << tmp.t()*tmp;
  res = res/N;

  res.Release();
  return res; 
}

ReturnMatrix corrcoef(const Matrix& mat, const int norm)
{ 
  SymmetricMatrix res;
  SymmetricMatrix C;
  C = cov(mat,norm);
  Matrix D;
  D=diag(C);
  D=pow(sqrt(D*D.t()),-1);
  res << SP(C,D);
  res.Release();
  return res; 
}

void symm_orth(Matrix &Mat)
{
  SymmetricMatrix Metric;
  Metric << Mat.t()*Mat;
  Metric = Metric.i();
  Matrix tmpE;
  DiagonalMatrix tmpD;
  EigenValues(Metric,tmpD,tmpE);
  Mat = Mat * tmpE * sqrt(abs(tmpD)) * tmpE.t();
}

void powerspectrum(const Matrix &Mat1, Matrix &Result, bool useLog)
  //calculates the powerspectrum for every column of Mat1
{
  Matrix res;
  for(int ctr=1; ctr <= Mat1.Ncols(); ctr++)
    {
      ColumnVector tmpCol;
      tmpCol=Mat1.Column(ctr);
      ColumnVector FtmpCol_real;
      ColumnVector FtmpCol_imag;
      ColumnVector tmpPow;
      
      RealFFT(tmpCol,FtmpCol_real,FtmpCol_imag);
      tmpPow = pow(FtmpCol_real,2)+pow(FtmpCol_imag,2);
      tmpPow = tmpPow.Rows(2,tmpPow.Nrows());
      if(useLog){tmpPow = log(tmpPow);}
      if(res.Storage()==0){res= tmpPow;}else{res|=tmpPow;}
    }
    Result=res;
}


int nextpow2(int n)
{
  return (int)pow(2,ceil(log(float(n))/log(float(2))));
}

void xcorr(const Matrix& p_ts, Matrix& ret, int lag, int p_zeropad)
{
  Tracer tr("MISCMATHS::xcorr");

  int sizeTS = p_ts.Nrows();
  int numTS = p_ts.Ncols();
  
  if(p_zeropad == 0)
    p_zeropad = sizeTS;
  if(lag == 0)
    lag = sizeTS;

  ColumnVector x(p_zeropad);
  x = 0;
  ColumnVector fft_real;
  ColumnVector fft_im;
  ColumnVector dummy(p_zeropad);
  ColumnVector dummy2;
  dummy = 0;
  ColumnVector realifft(p_zeropad);
  ret.ReSize(lag,numTS);
  ret = 0;

  for(int i = 1; i <= numTS; i++)
    {
      x.Rows(1,sizeTS) = p_ts.Column(i);
      FFT(x, dummy, fft_real, fft_im);
      
      for(int j = 1; j <= p_zeropad; j++)
	{
	  // (x+iy)(x-iy) = x^2 + y^2
	  fft_real(j) = fft_real(j)*fft_real(j) + fft_im(j)*fft_im(j);
	  fft_im(j) = 0;
	}
      
      FFTI(fft_real, fft_im, realifft, dummy2);
      
      float varx = var(x.Rows(1,sizeTS)).AsScalar();
      ret.Column(i) = realifft.Rows(1,lag);
      
      for(int j = 1; j <= lag-1; j++)
	{
	  // Correction to make autocorr unbiased and normalised
	  ret(j,i) = ret(j,i)/((sizeTS-j)*varx);
	}  
    }
}

ReturnMatrix xcorr(const Matrix& p_ts, int lag, int p_zeropad )
{
  Matrix r;
  
  xcorr(p_ts,r,lag,p_zeropad);
  r.Release();
  return r;
}

void detrend(Matrix& p_ts, int p_level)
{
  Tracer trace("MISCMATHS::detrend");

  int sizeTS = p_ts.Nrows();     

  // p_ts = b*a + e (OLS regression)
  // e is detrended data
  Matrix a(sizeTS, p_level+1);  

  // Create a
  for(int t = 1; t <= sizeTS; t++)
    {
      for(int l = 0; l <= p_level; l++)
	a(t,l+1) = pow((float)t/sizeTS,l);
    }
          
  // Form residual forming matrix R:
  Matrix R = Identity(sizeTS)-a*pinv(a);

  for(int t = 1; t <= sizeTS; t++)
    {
      p_ts.Column(t) = R*p_ts.Column(t);
    }      
}



ReturnMatrix read_vest(string p_fname)
{
  ifstream in;
  in.open(p_fname.c_str(), ios::in);
  
  if(!in)
    {
      //cerr << "Unable to open " << p_fname << endl;
      throw Exception("Unable to open vest file");
    }
  
  int numWaves = 0;
  int numPoints = 0;
  
  string str;
  
  while(true)
    {
      if(!in.good())
	{
	  cerr << p_fname << "is not a valid vest file"  << endl;
	  throw Exception("Not a valid vest file");
	}
      in >> str;
      if(str == "/Matrix")
	break;
      else if(str == "/NumWaves")
	{
	  in >> numWaves;
	}
      else if(str == "/NumPoints" || str == "/NumContrasts")
	{
	  in >> numPoints;
	}
    }
  
  Matrix p_mat(numPoints, numWaves);
  
  for(int i = 1; i <= numPoints; i++)
    {
      for(int j = 1; j <= numWaves; j++)    
	{
	  in >> p_mat(i,j);
	}
    }
  
  in.close();

  p_mat.Release();
  return p_mat;
}

}