Newer
Older
/* miscprob.cc
Christian Beckmann & Mark Woolrich, FMRIB Image Analysis Group
Copyright (C) 1999-2000 University of Oxford */
/* CCOPYRIGHT */
// Miscellaneous maths functions that rely on libprob
#include "miscprob.h"
#include "stdlib.h"
using namespace NEWMAT;
namespace MISCMATHS {
ReturnMatrix unifrnd(const int dim1, const int dim2, const float start, const float end)
{
int tdim = dim2;
double tmpD=1.0;
if(tdim<0){tdim=dim1;}
Matrix res(dim1,tdim);
for (int mc=1; mc<=res.Ncols(); mc++) {
for (int mr=1; mr<=res.Nrows(); mr++) {
tmpD = (rand()+1)/double(RAND_MAX+2.0);
res(mr,mc)=(tmpD)*(end-start)+start;
//drand(&tmpD);
//res(mr,mc)=(tmpD-1)*(end-start)+start;
}
}
res.Release();
return res;
}
ReturnMatrix normrnd(const int dim1, const int dim2, const float mu, const float sigma)
{
int tdim = dim2;
double tmpD=1.0;
if(tdim<0){tdim=dim1;}
Matrix res(dim1,tdim);
for (int mc=1; mc<=res.Ncols(); mc++) {
for (int mr=1; mr<=res.Nrows(); mr++) {
tmpD = (rand()+1)/double(RAND_MAX+2.0);
res(mr,mc)=ndtri(tmpD)*sigma+mu ;
//drand(&tmpD);
//res(mr,mc)=ndtri(tmpD-1)*sigma+mu ;
}
}
res.Release();
return res;
}
ReturnMatrix normpdf(const RowVector& vals, const float mu, const float var)
{
RowVector res(vals);
for (int mc=1; mc<=res.Ncols(); mc++){
res(mc) = std::exp(-0.5*(std::pow(vals(mc)-mu,2)/var))*std::pow(2*M_PI*var,-0.5);
float normpdf(const ColumnVector& vals, const ColumnVector& mu, const SymmetricMatrix& sigma)
{
float res;
LogAndSign ld=(2*M_PI*sigma).LogDeterminant();
res = std::exp(-0.5*(
((vals-mu).t()*sigma.i()*(vals-mu)).AsScalar()
+ld.LogValue()
));
return res;
}
ReturnMatrix normpdf(const Matrix& vals, const ColumnVector& mu, const SymmetricMatrix& sigma)
{
RowVector res(vals);
LogAndSign ld = (2*M_PI*sigma).LogDeterminant();
Matrix isigma = sigma.i();
for (int mc=1; mc<=res.Ncols(); mc++){
res(mc) = std::exp( -0.5*(
((vals.Column(mc)-mu).t()*isigma*(vals.Column(mc)-mu)).AsScalar()
+ld.LogValue()
));
}
res.Release();
return res;
}
ReturnMatrix normcdf(const RowVector& vals, const float mu, const float var)
{
RowVector res(vals);
RowVector tmp;
tmp = (vals-mu)/std::sqrt(var);
for (int mc=1; mc<=res.Ncols(); mc++){
res(mc) = ndtr(tmp(mc));
}
res.Release();
return res;
}
ReturnMatrix gammacdf(const RowVector& vals, const float mu, const float var)
if((mu>0)&&(var>0)){
float b = std::pow(mu,2)/var;
float a = mu/var;
for (int mc=1; mc<=res.Ncols(); mc++){
if(vals(mc)>0)
res(mc) = gdtr(a,b,vals(mc));
}
}
res.Release();
return res;
}
ReturnMatrix gammapdf(const RowVector& vals, const float mu, const float var)
if((mu>0)&&(var>0.00001)){
float a = std::pow(mu,2)/var;
float b = mu/var;
float c = lgam(a);
if(std::abs(c) < 150){
for (int mc=1; mc<=res.Ncols(); mc++){
if(vals(mc)>0.000001){
res(mc) = std::exp(a*std::log(b) +
(a-1) * std::log(vals(mc))
- b*vals(mc) - c);
}
}
}
}
res.Release();
return res;
}
ReturnMatrix normpdf(const RowVector& vals, const RowVector& mu, const RowVector& var)
{
Matrix res(mu.Ncols(),vals.Ncols());
for (int mc=1; mc<=res.Ncols(); mc++){
for (int mr=1; mr<=res.Nrows(); mr++){
res(mr,mc) = std::exp(-0.5*(std::pow(vals(mc)-mu(mr),2)/var(mr)))*std::pow(2*M_PI*var(mr),-0.5);
}
}
res.Release();
return res;
}
ReturnMatrix mvnrnd(const RowVector& mu, const SymmetricMatrix& covar, int nsamp)
{
// Matrix eig_vec;
// DiagonalMatrix eig_val;
// EigenValues(covar,eig_val,eig_vec);
// Matrix ret = ones(nsamp, 1)*mu + dnormrandm(nsamp,mu.Ncols())*sqrt(eig_val)*eig_vec.t();
Mvnormrandm mvn(mu, covar);
return mvn.next(nsamp);
}
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// Saad: Wishart and inverseWishart Random Generator
ReturnMatrix wishrnd(const SymmetricMatrix& sigma,const int dof){
// compute cholesky factor for sigma
LowerTriangularMatrix L = Cholesky(sigma);
// for small degrees of freedom, use the definition
int n = sigma.Nrows();
Matrix X;
if(dof <= 81+n ){
X.ReSize(dof,n);
X = normrnd(dof,n) * L.t();
}
// otherwise, use Smith & Hocking procedure
else{
X.ReSize(n,n);
Matrix A(n,n);
for(int i=1;i<=n;i++){
Gamma G((dof-i+1)/2);
G.Set(rand()/float(RAND_MAX));
for(int j=1;j<=n;j++){
if (i>j) { A(i,j) = 0; }
else if(i<j) { A(i,j) = normrnd(1,1).AsScalar(); }
else { A(i,j) = std::sqrt(2*G.Next()); }
}
}
X = A * L.t();
}
SymmetricMatrix res(n);
res << X.t() * X;
res.Release();
return res;
}
ReturnMatrix iwishrnd(const SymmetricMatrix& sigma,const int dof){
// assumes inv-Wishart(sigma.i(),dof)
SymmetricMatrix res;
res = wishrnd(sigma,dof);
res = res.i();
res.Release();
return res;
}
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
ReturnMatrix perms(const int n){
if(n<=1){
Matrix P(1,1);
P << n;
P.Release();
return P;
}
Matrix Q = perms(n-1); // recursive calls
int m = Q.Nrows();
Matrix P(n*m,n);
for(int i=1;i<=m;i++){
P(i,1)=n;
for(int j=1;j<=Q.Ncols();j++)
P(i,j+1)=Q(i,j);
}
for(int i=n-1;i>=1;i--){
int jj=1;
for(int j=(n-i)*m+1;j<=(n-i+1)*m;j++){
P(j,1)=i;
for(int k=1;k<=n-1;k++){
P(j,k+1)= (Q(jj,k)==i) ? n : Q(jj,k);
}
jj++;
}
}
P.Release();
return P;
}