Newer
Older
// Declarations for class BFMatrix.
//
// The purpose of class BFmatrix is to have a class from which
// to derive 2 other classes; FullBFMatrix and SparseBFMatrix.
// The reason for this is that the two classes SplineField and
// DCTField will return Hessian matrices that are either Sparse
// (SplineField) or full (DCTField). By defining a pure virtual
// class BFMatrix with a minimal (only what is needed for non-
// linear reg.) functionality I will be able to write code that
// is independent of type of matrix returned, and hence of type
// field.
//
// The syntax for the (little) functionality is sort of a mixture
// of Newmat and SparseMatrix. Mostly SparseMatrix actually.
// I hope this will not complicate the use of the nonlin package
// for those who are only interested in the full (normal) case.
//
// At one point SparseMatrix was replaced by SpMat as the underlying
// sparse matrix representation in SparseBFMatrix. SpMat was written
// with an API that largely mimicks that of NEWMAT. This is the
// "historical" reason why a wrapper class was written, rather than
// using templatisation which would have been possible given the
// similarities in API between SpMat and NEWMAT.
//
/* Copyright (C) 2012 University of Oxford */
#ifndef BFMatrix_h
#define BFMatrix_h
#include <boost/shared_ptr.hpp>
#include "armawrap/newmat.h"
#include "SpMat.h"
#include "cg.h"
#include "bicg.h"
namespace MISCMATHS {
class BFMatrixException: public std::exception
{
private:
std::string m_msg;
public:
BFMatrixException(const std::string& msg) throw(): m_msg(msg) {}
virtual const char * what() const throw() {
}
~BFMatrixException() throw() {}
};
enum BFMatrixPrecisionType {BFMatrixDoublePrecision, BFMatrixFloatPrecision};
class BFMatrixColumnIterator;
class BFMatrix
{
protected:
public:
// Constructors, destructors and stuff
BFMatrix() {}
BFMatrix(unsigned int m, unsigned int n) {}
virtual ~BFMatrix() {}
friend class BFMatrixColumnIterator;
BFMatrixColumnIterator begin(unsigned int col) const;
BFMatrixColumnIterator end(unsigned int col) const;
// Access as NEWMAT::Matrix
virtual NEWMAT::ReturnMatrix AsMatrix() const = 0;
// Basic properties
virtual unsigned int Nrows() const = 0;
virtual unsigned int Ncols() const = 0;
// Print matrix (for debugging)
virtual void Print(const std::string fname=std::string("")) const = 0;
// Setting, deleting or resizing the whole sparse matrix.
// virtual void SetMatrix(const MISCMATHS::SpMat<double>& M) = 0;
// virtual void SetMatrix(const MISCMATHS::SpMat<float>& M) = 0;
virtual void SetMatrix(const NEWMAT::Matrix& M) = 0;
virtual void Clear() = 0;
virtual void Resize(unsigned int m, unsigned int n) = 0;
// Accessing
inline double operator()(unsigned int r, unsigned int c) const {return(Peek(r,c));}
virtual double Peek(unsigned int r, unsigned int c) const = 0;
NEWMAT::Matrix SubMatrix(unsigned int fr, unsigned int lr, unsigned int fc, unsigned int lc) const;
// Assigning
virtual void Set(unsigned int x, unsigned int y, double val) = 0;
virtual void Insert(unsigned int x, unsigned int y, double val) = 0;
virtual void AddTo(unsigned int x, unsigned int y, double val) = 0;
// Transpose
virtual boost::shared_ptr<BFMatrix> Transpose() const = 0;
// Concatenation. Note that desired polymorphism prevents us from using BFMatrix->NEWMAT::Matrix conversion
// Concatenate two matrices yielding a third
// AB = [*this B] in Matlab lingo
virtual void HorConcat(const BFMatrix& B, BFMatrix& AB) const = 0;
virtual void HorConcat(const NEWMAT::Matrix& B, BFMatrix& AB) const = 0;
// AB = [*this; B] in Matlab lingo
virtual void VertConcat(const BFMatrix& B, BFMatrix& AB) const = 0;
virtual void VertConcat(const NEWMAT::Matrix& B, BFMatrix& AB) const = 0;
// Concatenate another matrix to *this
virtual void HorConcat2MyRight(const BFMatrix& B) = 0;
virtual void HorConcat2MyRight(const NEWMAT::Matrix& B) = 0;
virtual void VertConcatBelowMe(const BFMatrix& B) = 0;
virtual void VertConcatBelowMe(const NEWMAT::Matrix& B) = 0;
// Multiply by scalar
virtual void MulMeByScalar(double s) = 0;
// Multiply by vector
virtual NEWMAT::ReturnMatrix MulByVec(const NEWMAT::ColumnVector& v) const = 0;
// Add another matrix to this one
virtual void AddToMe(const BFMatrix& m, double s=1.0) = 0;
// Given A*x=b, solve for x.
virtual NEWMAT::ReturnMatrix SolveForx(const NEWMAT::ColumnVector& b,
MISCMATHS::MatrixType type=SYM_POSDEF,
double tol=1e-6,
int miter=200) const = 0;
template<class T>
class SparseBFMatrix : public BFMatrix
{
private:
boost::shared_ptr<MISCMATHS::SpMat<T> > mp;
public:
// Constructors, destructor and assignment
SparseBFMatrix()
: mp(boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>())) {}
SparseBFMatrix(unsigned int m, unsigned int n)
: mp(boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>(m,n))) {}
SparseBFMatrix(unsigned int m, unsigned int n, const unsigned int *irp, const unsigned int *jcp, const double *sp)
: mp(boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>(m,n,irp,jcp,sp))) {}
SparseBFMatrix(const MISCMATHS::SpMat<T>& M)
: mp(boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>(M))) {}
SparseBFMatrix(const NEWMAT::Matrix& M)
: mp(boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>(M))) {}
SparseBFMatrix(const SparseBFMatrix<T>& M)
: mp(boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>(*(M.mp)))) {}
virtual ~SparseBFMatrix() {}
virtual const SparseBFMatrix& operator=(const SparseBFMatrix<T>& M) {
mp = boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>(*(M.mp))); return(*this);
friend class BFMatrixColumnIterator;
// Access as NEWMAT::Matrix
virtual NEWMAT::ReturnMatrix AsMatrix() const {NEWMAT::Matrix ret; ret = mp->AsNEWMAT(); ret.Release(); return(ret);}
// Basic properties
virtual unsigned int Nrows() const {return(mp->Nrows());}
virtual unsigned int Ncols() const {return(mp->Ncols());}
// Print matrix (for debugging)
virtual void Print(const std::string fname=std::string("")) const {mp->Print(fname);}
// Setting, deleting or resizing the whole sparse matrix.
virtual void SetMatrix(const MISCMATHS::SpMat<T>& M) {mp = boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>(M));}
// virtual void SetMatrix(const MISCMATHS::SpMat<float>& M) {mp = boost::shared_ptr<MISCMATHS::SpMat<float> >(new MISCMATHS::SpMat<float>(M));}
virtual void SetMatrix(const NEWMAT::Matrix& M) {mp = boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>(M));}
virtual void SetMatrixPtr(boost::shared_ptr<MISCMATHS::SpMat<T> >& mptr) {mp = mptr;}
virtual void Clear() {mp = boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>());}
virtual void Resize(unsigned int m, unsigned int n) {mp = boost::shared_ptr<MISCMATHS::SpMat<T> >(new MISCMATHS::SpMat<T>(m,n));}
// Accessing values
virtual double Peek(unsigned int r, unsigned int c) const {return(mp->Peek(r,c));}
// Setting and inserting values
virtual void Set(unsigned int x, unsigned int y, double val) {mp->Set(x,y,val);}
virtual void Insert(unsigned int x, unsigned int y, double val) {mp->Set(x,y,val);}
virtual void AddTo(unsigned int x, unsigned int y, double val) {mp->AddTo(x,y,val);}
virtual boost::shared_ptr<BFMatrix> Transpose() const;
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Concatenation of two matrices returning a third
// AB = [*this B] in Matlab lingo
virtual void HorConcat(const BFMatrix& B, BFMatrix& AB) const;
virtual void HorConcat(const NEWMAT::Matrix& B, BFMatrix& AB) const;
// AB = [*this; B] in Matlab lingo
virtual void VertConcat(const BFMatrix& B, BFMatrix& AB) const;
virtual void VertConcat(const NEWMAT::Matrix& B, BFMatrix& AB) const;
// Concatenation of another matrix to *this
virtual void HorConcat2MyRight(const BFMatrix& B);
virtual void HorConcat2MyRight(const NEWMAT::Matrix& B);
virtual void VertConcatBelowMe(const BFMatrix& B);
virtual void VertConcatBelowMe(const NEWMAT::Matrix& B);
// Multiply by scalar
virtual void MulMeByScalar(double s) {(*mp)*=s;}
// Multiply by vector
virtual NEWMAT::ReturnMatrix MulByVec(const NEWMAT::ColumnVector& invec) const;
// Add another matrix to this one
virtual void AddToMe(const BFMatrix& m, double s=1.0);
// Given A*x=b, solve for x
virtual NEWMAT::ReturnMatrix SolveForx(const NEWMAT::ColumnVector& b,
MISCMATHS::MatrixType type,
double tol,
int miter) const;
};
class FullBFMatrix : public BFMatrix
{
private:
boost::shared_ptr<NEWMAT::Matrix> mp;
public:
// Constructors, destructor and assignment
FullBFMatrix() {mp = boost::shared_ptr<NEWMAT::Matrix>(new NEWMAT::Matrix());}
FullBFMatrix(unsigned int m, unsigned int n) {mp = boost::shared_ptr<NEWMAT::Matrix>(new NEWMAT::Matrix(m,n));}
FullBFMatrix(const MISCMATHS::SpMat<double>& M) {mp = boost::shared_ptr<NEWMAT::Matrix>(new NEWMAT::Matrix(M.AsNEWMAT()));}
FullBFMatrix(const NEWMAT::Matrix& M) {mp = boost::shared_ptr<NEWMAT::Matrix>(new NEWMAT::Matrix(M));}
virtual ~FullBFMatrix() {}
virtual const FullBFMatrix& operator=(const FullBFMatrix& M) {
mp = boost::shared_ptr<NEWMAT::Matrix>(new NEWMAT::Matrix(*(M.mp))); return(*this);
}
friend class BFMatrixColumnIterator;
virtual NEWMAT::ReturnMatrix AsMatrix() const {NEWMAT::Matrix ret; ret = *mp; ret.Release(); return(ret);}
virtual const NEWMAT::Matrix& ReadAsMatrix() const {return(*mp);}
// Basic properties
virtual unsigned int Nrows() const {return(mp->Nrows());}
virtual unsigned int Ncols() const {return(mp->Ncols());}
// Print matrix (for debugging)
virtual void Print(const std::string fname=std::string("")) const;
// Setting, deleting or resizing the whole matrix.
virtual void SetMatrix(const MISCMATHS::SpMat<double>& M) {mp = boost::shared_ptr<NEWMAT::Matrix>(new NEWMAT::Matrix(M.AsNEWMAT()));}
virtual void SetMatrix(const MISCMATHS::SpMat<float>& M) {mp = boost::shared_ptr<NEWMAT::Matrix>(new NEWMAT::Matrix(M.AsNEWMAT()));}
virtual void SetMatrix(const NEWMAT::Matrix& M) {mp = boost::shared_ptr<NEWMAT::Matrix>(new NEWMAT::Matrix(M));}
virtual void SetMatrixPtr(boost::shared_ptr<NEWMAT::Matrix>& mptr) {mp = mptr;}
virtual void Clear() {mp->ReSize(0,0);}
virtual void Resize(unsigned int m, unsigned int n) {mp->ReSize(m,n);}
// Accessing values
virtual double Peek(unsigned int r, unsigned int c) const {return((*mp)(r,c));}
// Setting and inserting values.
virtual void Set(unsigned int x, unsigned int y, double val) {(*mp)(x,y)=val;}
virtual void Insert(unsigned int x, unsigned int y, double val) {(*mp)(x,y)=val;}
virtual void AddTo(unsigned int x, unsigned int y, double val) {(*mp)(x,y)+=val;}
virtual boost::shared_ptr<BFMatrix> Transpose() const;
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// Concatenation of two matrices returning a third
virtual void HorConcat(const BFMatrix& B, BFMatrix& AB) const;
virtual void HorConcat(const NEWMAT::Matrix& B, BFMatrix& AB) const;
virtual void VertConcat(const BFMatrix& B, BFMatrix& AB) const;
virtual void VertConcat(const NEWMAT::Matrix& B, BFMatrix& AB) const;
// Concatenation of another matrix to *this
virtual void HorConcat2MyRight(const BFMatrix& B);
virtual void HorConcat2MyRight(const NEWMAT::Matrix& B);
virtual void VertConcatBelowMe(const BFMatrix& B);
virtual void VertConcatBelowMe(const NEWMAT::Matrix& B);
// Multiply by scalar
virtual void MulMeByScalar(double s);
// Multiply by vector
virtual NEWMAT::ReturnMatrix MulByVec(const NEWMAT::ColumnVector& invec) const;
// Add another matrix to this one
virtual void AddToMe(const BFMatrix& m, double s);
// Given A*x=b, solve for x
virtual NEWMAT::ReturnMatrix SolveForx(const NEWMAT::ColumnVector& b,
MISCMATHS::MatrixType type,
double tol,
int miter) const;
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
class BFMatrixColumnIterator {
public:
BFMatrixColumnIterator(const BFMatrix& mat, unsigned int col, bool end=false) : _mat(mat), _col(col)
{
if (col > mat.Ncols()) throw BFMatrixException("BFMatrixColumnIterator: col out of range");
const FullBFMatrix *fp = dynamic_cast<const FullBFMatrix *>(&(_mat));
if (fp) {
if (end) _row=_mat.Nrows()+1;
else _row=1;
_is_sparse=false;
_is_double=true;
}
else {
const SparseBFMatrix<float> *sfp = dynamic_cast<const SparseBFMatrix<float> *>(&(_mat));
if (sfp) {
if (end) _sfi = new SpMat<float>::ColumnIterator(sfp->mp->end(_col));
else _sfi = new SpMat<float>::ColumnIterator(sfp->mp->begin(_col));
_is_sparse = true;
_is_double = false;
}
else {
const SparseBFMatrix<double> *sdp = dynamic_cast<const SparseBFMatrix<double> *>(&(_mat));
if (sdp) {
if (end) _sdi = new SpMat<double>::ColumnIterator(sdp->mp->end(_col));
else _sdi = new SpMat<double>::ColumnIterator(sdp->mp->begin(_col));
_is_sparse = true;
_is_double = true;
}
else throw BFMatrixException("BFMatrixColumnIterator: No matching type for mat");
}
}
}
BFMatrixColumnIterator(const BFMatrixColumnIterator& rhs) : _mat(rhs._mat), _col(rhs._col), _is_sparse(rhs._is_sparse), _is_double(rhs._is_double) {
if (_is_sparse) {
if (_is_double) _sdi = new SpMat<double>::ColumnIterator(*(rhs._sdi));
else _sfi = new SpMat<float>::ColumnIterator(*(rhs._sfi));
}
else _row = rhs._row;
}
~BFMatrixColumnIterator() { if (_is_sparse) { if (_is_double) free(_sdi); else free(_sfi); } }
// Prefix case. Use this if at all possible.
BFMatrixColumnIterator& operator++() {
if (_is_sparse) { if (_is_double) ++(*_sdi); else ++(*_sfi); }
else _row++;
return(*this);
}
// Postfix case. Avoid.
BFMatrixColumnIterator operator++(int dummy) {
BFMatrixColumnIterator clone(*this);
if (_is_sparse) { if (_is_double) ++(*_sdi); else ++(*_sfi); }
else _row++;
}
bool operator==(const BFMatrixColumnIterator& rhs) const {
if (_is_sparse!=rhs._is_sparse || _is_double!=rhs._is_double) return(false);
if (_is_sparse) { if (_is_double) return(*_sdi==*(rhs._sdi)); else return(*_sfi==*(rhs._sfi)); }
else {
if (_col!=rhs._col || &_mat!=&(rhs._mat)) return(false);
else return(_row==rhs._row);
}
}
bool operator!=(const BFMatrixColumnIterator& rhs) const { return(!(*this==rhs)); }
double operator*() const {
if (_is_sparse) { if (_is_double) return(*(*_sdi)); else return(double(*(*_sfi))); }
else return(_mat.Peek(_row,_col));
}
unsigned int Row() const {
if (_is_sparse) { if (_is_double) return(_sdi->Row()); else return(double(_sfi->Row())); }
else return(_row);
}
private:
SpMat<double>::ColumnIterator *_sdi; // ptr to Sparse Double Iterator
SpMat<float>::ColumnIterator *_sfi; // ptr to Sparse Float Iterator
const BFMatrix& _mat;
unsigned int _col;
unsigned int _row;
bool _is_sparse;
bool _is_double;
};
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
//
// Here comes member functions for SparseBFMatrix. Since it is templated
// these need to go here rather than in bfmatrix.cpp.
//
//
// Member functions for SparseBFMatrix
//
//
// Transpose
//
template<class T>
boost::shared_ptr<BFMatrix> SparseBFMatrix<T>::Transpose() const
{
boost::shared_ptr<SparseBFMatrix<T> > tm(new SparseBFMatrix<T>(mp->t()));
return(tm);
}
//
// Concatenation of two matrices returning a third
//
template<class T>
void SparseBFMatrix<T>::HorConcat(const BFMatrix& B, BFMatrix& AB) const
{
if (B.Nrows() && Nrows() != B.Nrows()) {throw BFMatrixException("SparseBFMatrix::HorConcat: Matrices must have same # of rows");}
SparseBFMatrix<T> *pAB = dynamic_cast<SparseBFMatrix<T> *>(&AB);
if (pAB) { // Means that output is sparse of type T
*pAB = *this;
pAB->HorConcat2MyRight(B);
}
else {
FullBFMatrix *fpAB = dynamic_cast<FullBFMatrix *>(&AB);
if (fpAB) { // Means that output is full
*fpAB = FullBFMatrix(this->AsMatrix());
fpAB->HorConcat2MyRight(B);
}
else throw BFMatrixException("SparseBFMatrix::HorConcat: dynamic cast error");
}
}
template<class T>
void SparseBFMatrix<T>::HorConcat(const NEWMAT::Matrix& B, BFMatrix& AB) const
{
if (B.Nrows() && int(Nrows()) != B.Nrows()) {throw BFMatrixException("SparseBFMatrix::HorConcat: Matrices must have same # of rows");}
SparseBFMatrix<T> *pAB = dynamic_cast<SparseBFMatrix<T> *>(&AB);
if (pAB) { // Means that output is sparse
*pAB = *this;
pAB->HorConcat2MyRight(B);
}
else {
FullBFMatrix *fpAB = dynamic_cast<FullBFMatrix *>(&AB);
if (fpAB) {// Means that output is full
*fpAB = FullBFMatrix(this->AsMatrix());
fpAB->HorConcat2MyRight(B);
}
else throw BFMatrixException("SparseBFMatrix::HorConcat: dynamic cast error");
}
}
template<class T>
void SparseBFMatrix<T>::VertConcat(const BFMatrix& B, BFMatrix& AB) const
{
if (B.Ncols() && Ncols() != B.Ncols()) {throw BFMatrixException("SparseBFMatrix::VertConcat: Matrices must have same # of columns");}
SparseBFMatrix<T> *pAB = dynamic_cast<SparseBFMatrix<T> *>(&AB);
if (pAB) { // Means that output is sparse
*pAB = *this;
pAB->VertConcatBelowMe(B);
}
else {
FullBFMatrix *fpAB = dynamic_cast<FullBFMatrix *>(&AB);
if (fpAB) { // Means that output is full
*fpAB = FullBFMatrix(this->AsMatrix());
fpAB->VertConcatBelowMe(B);
}
else throw BFMatrixException("SparseBFMatrix::VertConcat: dynamic cast error");
}
}
template<class T>
void SparseBFMatrix<T>::VertConcat(const NEWMAT::Matrix& B, BFMatrix& AB) const
{
if (B.Ncols() && int(Ncols()) != B.Ncols()) {throw BFMatrixException("SparseBFMatrix::VertConcat: Matrices must have same # of columns");}
SparseBFMatrix<T> *pAB = dynamic_cast<SparseBFMatrix<T> *>(&AB);
if (pAB) { // Means that output is sparse
*pAB = *this;
pAB->VertConcatBelowMe(B);
}
else {
FullBFMatrix *fpAB = dynamic_cast<FullBFMatrix *>(&AB);
if (fpAB) { // Means that output is full
*fpAB = FullBFMatrix(this->AsMatrix());
fpAB->VertConcatBelowMe(B);
}
else throw BFMatrixException("SparseBFMatrix::VertConcat: dynamic cast error");
}
}
//
// Concatenate another matrix to *this
//
template<class T>
void SparseBFMatrix<T>::HorConcat2MyRight(const BFMatrix& B)
{
if (!B.Nrows()) return;
if (Nrows() != B.Nrows()) {throw BFMatrixException("SparseBFMatrix::HorConcat2MyRight: Matrices must have same # of rows");}
const SparseBFMatrix<T> *pB = dynamic_cast<const SparseBFMatrix<T> *>(&B);
if (pB) { // Means that we want to concatenate a sparse matrix
*mp |= *(pB->mp);
}
else {
const FullBFMatrix *fpB = dynamic_cast<const FullBFMatrix *>(&B);
if (fpB) { // Means that we want to concatenate a full
this->HorConcat2MyRight(fpB->AsMatrix());
}
else throw BFMatrixException("SparseBFMatrix::HorConcat2MyRight: dynamic cast error");
}
}
template<class T>
void SparseBFMatrix<T>::HorConcat2MyRight(const NEWMAT::Matrix& B)
{
if (!B.Nrows()) return;
if (int(Nrows()) != B.Nrows()) {throw BFMatrixException("SparseBFMatrix::HorConcat2MyRight: Matrices must have same # of rows");}
*mp |= B;
}
template<class T>
void SparseBFMatrix<T>::VertConcatBelowMe(const BFMatrix& B)
{
if (!B.Ncols()) return;
if (Ncols() != B.Ncols()) {throw BFMatrixException("SparseBFMatrix::VertConcatBelowMe: Matrices must have same # of columns");}
const SparseBFMatrix<T> *pB = dynamic_cast<const SparseBFMatrix<T> *>(&B);
if (pB) { // Means that we want to concatenate a sparse matrix
*mp &= *(pB->mp);
}
else {
const FullBFMatrix *fpB = dynamic_cast<const FullBFMatrix *>(&B);
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
if (fpB) { // Means that we want to concatenate a full
this->VertConcatBelowMe(fpB->AsMatrix());
}
else throw BFMatrixException("SparseBFMatrix::VertConcatBelowMe: dynamic cast error");
}
}
template<class T>
void SparseBFMatrix<T>::VertConcatBelowMe(const NEWMAT::Matrix& B)
{
if (!B.Ncols()) return;
if (int(Ncols()) != B.Ncols()) {throw BFMatrixException("SparseBFMatrix::VertConcatBelowMe: Matrices must have same # of columns");}
*mp &= B;
}
// Multiply by vector
template<class T>
NEWMAT::ReturnMatrix SparseBFMatrix<T>::MulByVec(const NEWMAT::ColumnVector& invec) const
{
if (invec.Nrows() != int(Ncols())) {throw BFMatrixException("Matrix-vector size mismatch");}
NEWMAT::ColumnVector outvec = *mp * invec;
outvec.Release();
return(outvec);
}
// Add another matrix to this one
template<class T>
void SparseBFMatrix<T>::AddToMe(const BFMatrix& M, double s)
{
if (Ncols() != M.Ncols() || Nrows() != M.Nrows()) {
throw BFMatrixException("SparseBFMatrix::AddToMe: Matrix size mismatch");
}
const SparseBFMatrix<T> *pM = dynamic_cast<const SparseBFMatrix<T> *>(&M);
if (pM) { // Add sparse matrix to this sparse matrix
if (s == 1.0) *mp += *(pM->mp);
else *mp += s * *(pM->mp);
}
else {
const FullBFMatrix *fpM = dynamic_cast<const FullBFMatrix *>(&M);
if (fpM) { // Add full matrix to this sparse matrix
if (s == 1.0) *mp += SpMat<T>(fpM->ReadAsMatrix());
else *mp += s * SpMat<T>(fpM->ReadAsMatrix());
}
else throw BFMatrixException("SparseBFMatrix::AddToMe: dynamic cast error");
}
}
// Given A*x=b, solve for x
template<class T>
NEWMAT::ReturnMatrix SparseBFMatrix<T>::SolveForx(const NEWMAT::ColumnVector& b,
MISCMATHS::MatrixType type,
double tol,
int miter) const
{
if (b.Nrows() != int(Nrows())) {
throw BFMatrixException("SparseBFMatrix::SolveForx: Matrix-vector size mismatch");
}
NEWMAT::ColumnVector x = mp->SolveForx(b,type,tol,miter);
x.Release();
return(x);
}
} // End namespace MISCMATHS
#endif // End #ifndef BFMatrix_h