Skip to content
Snippets Groups Projects
nonlin.h 16.7 KiB
Newer Older
/*! \file nonlin.h
    \brief Declarations for nonlinear optimisation

    \author Jesper Andersson
    \version 1.0b, 2009.
*/
// Contains declaration for nonlinear optimisation
//
// Simplex.h
//
// Jesper Andersson, FMRIB Image Analysis Group
//
// Copyright (C) 2009 University of Oxford 
//

#ifndef nonlin_h
#define nonlin_h

#include <string>
#include <vector>
#include <boost/shared_ptr.hpp>
#include "bfmatrix.h"
#include "newmat.h"

namespace MISCMATHS {

enum NLMethod {NL_VM,                               // Variable-Metric (see NRinC)
               NL_CG,                               // Conjugate-Gradient (see NRinC)
               NL_SCG,                              // Scaled Conjugate-Gradient (See Moller 1993).
Jesper Andersson's avatar
Jesper Andersson committed
               NL_LM,                               // Levenberg-Marquardt (see NRinC)
               NL_GD,                               // Gradient Descent
               NL_NM};                              // Nelder-Mead simplex method (see NRinC)

enum LMType {LM_L, LM_LM};                          // Levenberg or Levenberg-Marquardt

enum VMUpdateType {VM_DFP, VM_BFGS};                // See NRinC chapter 10.

enum CGUpdateType {CG_FR, CG_PR};                   // Fletcher-Reeves, Polak-Ribiere

enum VMMatrixType {VM_OPT,                          // 
                   VM_COL,                          // Store all rank-one updates as column-vectors
                   VM_FULL};                        // Store full estimate of inverse Hessian

enum LinOut {LM_MAXITER,                            // Too many iterations in line-minimisation
             LM_LAMBDA_NILL,                        // Could not find a minima along this direction
             LM_CONV};                              // Line-minimisation converged.

enum NonlinOut {NL_UNDEFINED,                       // Initial value before minimisation
                NL_MAXITER,                         // Too many iterations
                NL_LM_MAXITER,                      // To many iterations during a line-minimisation
                NL_PARCONV,                         // Convergence. Step in parameter space small
                NL_GRADCONV,                        // Convergence. Gradient small
                NL_CFCONV,                          // Convergence. Change in cost-function small
                NL_LCONV};                          // Convergence, lambda very large

const double EPS = 2.0e-16;                         // Losely based on NRinC 20.1

class NonlinException: public std::exception
{
private:
  std::string m_msg;
public:
  NonlinException(const std::string& msg) throw(): m_msg(msg) {}

  virtual const char * what() const throw() {
    return string("Nonlin: msg=" + m_msg).c_str();
  }

  ~NonlinException() throw() {}
};

// NonlinParam is a struct that contains the
// information about "how" the 
// minisation should be performed. I.e. it
// contains things like choice of minimisation
// algorithm, # of parameters, converegence 
// criteria etc

class NonlinParam
{
public:

  NonlinParam(int                   pnpar,
              NLMethod              pmtd,
              NEWMAT::ColumnVector  ppar=NEWMAT::ColumnVector(),
              bool                  plogcf=false,
              bool                  ploglambda=false,
              bool                  plogpar=false, 
              int                   pmaxiter=200,
              double                pcftol=1.0e-8,
              double                pgtol=1.0e-8,
              double                pptol=4.0*EPS,
              VMUpdateType          pvmut=VM_BFGS,
              double                palpha=1.0e-4,
              double                pstepmax=10,
              int                   plm_maxiter=50,
              int                   pmaxrestart=0,
              bool                  pautoscale=true,
              CGUpdateType          pcgut=CG_PR,
              double                plm_ftol=1.0e-3,
              LMType                plmtype=LM_LM,
              double                pltol=1.0e20,
	      int                   pcg_maxiter=200,
	      double                pcg_tol=1.0e-6,
              double                plambda=0.1)
    : npar(pnpar), mtd(pmtd), logcf(plogcf), 
    loglambda(ploglambda), logpar(plogpar), maxiter(pmaxiter), 
    cftol(pcftol), gtol(pgtol), ptol(pptol), vmut(pvmut), 
    alpha(palpha), stepmax(pstepmax), lm_maxiter(plm_maxiter),
    maxrestart(pmaxrestart), autoscale(pautoscale), cgut(pcgut), 
    lm_ftol(plm_ftol), lmtype(plmtype), ltol(pltol), cg_maxiter(pcg_maxiter), 
    cg_tol(pcg_tol), lambda(), cf(), par(), niter(0), nrestart(0), status(NL_UNDEFINED)
  {
    lambda.push_back(plambda);
    if (ppar.Nrows()) SetStartingEstimate(ppar);
    else {
      NEWMAT::ColumnVector  tmp(npar);
      tmp = 0.0;
      SetStartingEstimate(tmp);
    }
  }
  ~NonlinParam() {}                  

  // Routines to check values

  int NPar() const {return(npar);}
  NLMethod Method() const {return(mtd);}
  int MaxIter() const {return(maxiter);}
  int NIter() const {return(niter);}
  double FractionalCFTolerance() const {return(cftol);}
  double FractionalGradientTolerance() const {return(gtol);}
  double FractionalParameterTolerance() const {return(ptol);}
  VMUpdateType VariableMetricUpdate() const {return(vmut);}
  double VariableMetricAlpha() const {return(alpha);}
  int MaxVariableMetricRestarts() const {return(maxrestart);}
  int VariableMetricRestarts() const {return(nrestart);}
  bool VariableMetricAutoScale() const {return(autoscale);}
  double LineSearchMaxStep() const {return(stepmax);}
  int LineSearchMaxIterations() const {return(lm_maxiter);}
  CGUpdateType ConjugateGradientUpdate() const {return(cgut);}
  double LineSearchFractionalParameterTolerance() const {return(lm_ftol);}
  LMType GaussNewtonType() const {return(lmtype);}
  double LambdaConvergenceCriterion() const {return(ltol);}
  int EquationSolverMaxIter() const {return(cg_maxiter);}
  double EquationSolverTol() const {return(cg_tol);}
  bool LoggingParameters() const {return(logpar);}
  bool LoggingCostFunction() const {return(logcf);}
  bool LoggingLambda() const {return(loglambda);}

  // Routines to get output

  double Lambda() const {return(lambda.back());}
  double InitialLambda() const {if (loglambda) return(lambda[0]); else {throw NonlinException("InitialLabda: Lambda not logged"); return(0.0);}}
  const std::vector<double>& LambdaHistory() const {if (loglambda) return(lambda); else {throw NonlinException("InitialLabda: Lambda not logged"); return(lambda);}}
  const NEWMAT::ColumnVector& Par() const {return(par.back());}
  const NEWMAT::ColumnVector& InitialPar() const {if (logpar) return(par[0]); else {throw NonlinException("InitialPar: Parameters not logged"); return(par[0]);}}
  const std::vector<NEWMAT::ColumnVector>& ParHistory() const {if (logpar) return(par); else {throw NonlinException("ParHistory: Parameters not logged"); return(par);}}
  double CF() const {return(cf.back());}
  double InitialCF() const {if (logcf) return(cf[0]); else {throw NonlinException("InitialCF: Cost-function not logged"); return(cf[0]);}}
  const std::vector<double> CFHistory() const {if (logcf) return(cf); else {throw NonlinException("CFHistory: Cost-function not logged"); return(cf);}}
  NonlinOut Status() const {return(status);}
Jesper Andersson's avatar
Jesper Andersson committed
  bool Success() const { switch(status) { case NL_UNDEFINED: case NL_MAXITER: case NL_LM_MAXITER: return(false); break; default: return(true); } };
  std::string TextStatus() const;
      
  // Routines to set values of steering parameters
  void SetMethod(NLMethod pmtd) {mtd = pmtd;}
  void LogCF(bool flag=true) {logcf = flag;}
  void LogPar(bool flag=true) {logpar = flag;}
  void LogLambda(bool flag=true) {loglambda = flag;}
  void SetStartingEstimate(NEWMAT::ColumnVector& sp) {
    if (niter) throw NonlinException("SetStartingEstimates: Object has to be reset before setting new starting parameters");
    SetPar(sp);
  }
  void SetMaxIter(unsigned int pmiter) {maxiter = pmiter;}
  void SetFractionalCFTolerance(double pcftol) {
    if (pcftol>0.5) throw NonlinException("SetFractionalCFTolerance: Nonsensically large tolerance");
    else if (pcftol <= 0.0) NonlinException("SetFractionalCFTolerance: Tolerance must be non-zero and positive");
    cftol = pcftol;
  }
  void SetFractionalGradientTolerance(double pgtol) {
    if (pgtol>0.5) throw NonlinException("SetFractionalGradientTolerance: Nonsensically large tolerance");
    else if (pgtol <= 0.0) NonlinException("SetFractionalGradientTolerance: Tolerance must be non-zero and positive");
    gtol = pgtol;
  }
  void SetFractionalParameterTolerance(double pptol) {
    if (pptol>0.5) throw NonlinException("SetFractionalParameterTolerance: Nonsensically large tolerance");
    else if (pptol <= 0.0) NonlinException("SetFractionalParameterTolerance: Tolerance must be non-zero and positive");
    ptol = pptol;
  }
  void SetVariableMetricUpdate(VMUpdateType pvmut) {vmut = pvmut;}
  void SetVariableMetricAlpha(double palpha) {
    if (palpha>=1.0 || palpha<=0.0) throw NonlinException("SetVariableMetricAlpha: Alpha must be between 0 and 1");
    alpha = palpha;
  }
  void SetMaxVariableMetricRestarts(unsigned int pmaxrestart) {maxrestart = pmaxrestart;}
  void SetVariableMetricAutoScale(bool flag=true) {autoscale = flag;}
  void SetLineSearchMaxStep(double pstepmax) {
    if (pstepmax<=0) throw NonlinException("SetLineSearchMaxStep: maxstep must be non-zero and positive");
    stepmax = pstepmax;
  }
  void SetLineMinimisationMaxIterations(unsigned int plm_maxiter) {lm_maxiter = plm_maxiter;}
  void SetConjugateGradientUpdate(CGUpdateType pcgut) {cgut = pcgut;}
  void SetLineMinimisationFractionalParameterTolerance(double plm_ftol) {
    if (plm_ftol>0.5) throw NonlinException("SetLineMinimisationFractionalParameterTolerance: Nonsensically large tolerance");
    else if (plm_ftol <= 0.0) NonlinException("SetLineMinimisationFractionalParameterTolerance: Tolerance must be non-zero and positive");
    lm_ftol = plm_ftol;
  }
  void SetGaussNewtonType(LMType plmtype) {lmtype = plmtype;}
  void SetLambdaConvergenceCriterion(double pltol) {
    if (pltol<1.0) throw NonlinException("SetLambdaConvergenceCriterion: Nonsensically small tolerance");
    ltol = pltol;
  }
  void SetEquationSolverMaxIter(int pcg_maxiter) {cg_maxiter = pcg_maxiter;}
  void SetEquationSolverTol(double pcg_tol) {cg_tol = pcg_tol;}

  
  // Reset is used to reset a NonlinParam object after it has run to convergence, thereby allowing it
  // to be reused with a different CF object. This is to avoid the cost of creating the object many
  // times when fitting for example multiple voxels.
  void Reset() {}
  // Routines used by the (global) non-linear fitting routines. Note that these can
  // all be called for const objects.
  void SetPar(const NEWMAT::ColumnVector& p) const {
    if (p.Nrows() != npar) throw NonlinException("SetPar: Mismatch between starting vector and # of parameters");
    if (logpar || !par.size()) par.push_back(p); 
    else par[0] = p;
  }
  void SetCF(double pcf) const {
    if (logcf || !cf.size()) cf.push_back(pcf); 
    else cf[0] = pcf;
  }
  void SetLambda(double pl) const {
    if (loglambda || !lambda.size()) lambda.push_back(pl); 
    else lambda[0] = pl;
  }
  bool NextIter(bool success=true) const {if (success && niter++ >= maxiter) return(false); else return(true);}
  bool NextRestart() const {if (nrestart++ >= maxrestart) return(false); else return(true);}
  void SetStatus(NonlinOut  pstatus) const {status = pstatus;}
private:

  //         INPUT PARAMETERS
  //
  //         Paramaters that apply to all algorithms

  const int                  npar;       // # of parameters
  NLMethod                   mtd;        // Minimisation method
  bool                       logcf;      // If true, history of cost-function is logged
  bool                       loglambda;  // If true, history of lambda is logged
  bool                       logpar;     // If true history of parameters is logged
  int                        maxiter;    // Maximum # of iterations allowed
  double                     cftol;      // Tolerance for cost-function gonvergence criterion
  double                     gtol;       // Tolerance for gradient convergence criterion
  double                     ptol;       // Tolerance for parameter convergence criterion

  //         Parameters that apply to Variable-Metric Algorithm

  VMUpdateType               vmut;       // DFP or BFGS
  double                     alpha;      // Criterion for convergence in line minimisation
  double                     stepmax;    // Maximum step length for line minimisation
  int                        lm_maxiter; // Maximum # of iterations for line minimisation
  int                        maxrestart; // Maximum # of restarts that should be done.      
  bool                       autoscale;  // "Automatic" search for optimal scaling

  //         Parameters that apply to CG algorithm

  CGUpdateType               cgut;       // Fletcher-Reeves or Polak-Ribiere
  double                     lm_ftol;    // Convergence criterion for line-search

  //         Parameters that apply to LM algorithm

  LMType                     lmtype;     // Levenberg or Levenberg-Marquardt
  double                     ltol;       // Convergence criterion based on large lambda
  int                        cg_maxiter; // Maximum # of iterations for iterative "inverse" of Hessian
  double                     cg_tol;     // Tolerance for iterative "inverse" of Hessian

  //
  //         OUTPUT PARAMETERS
  //
  mutable std::vector<double>                        lambda;     // (History of) lambda (LM and SCG type minimisation)
  mutable std::vector<double>                        cf;         // (History of) cost-function
  mutable std::vector<NEWMAT::ColumnVector>          par;        // (History of) Parameter estimates
  mutable int                                        niter;      // Number of iterations
  mutable int                                        nrestart;   // Number of restarts
  mutable NonlinOut                                  status;     // Output status  
  
  NonlinParam& operator=(const NonlinParam& rhs); // Hide assignment

};
  
// NonlinCF (Cost Function) is a virtual
// class that defines a minimal interface.
// By subclassing NonlinCF the "user" can
// create a class that allows him/her to
// use NONLIN to minimise his/her function.
class NonlinCF
{
private:
  NonlinCF& operator=(const NonlinCF& rhs); // Hide assignment
public:
  NonlinCF() {}
  virtual ~NonlinCF() {}
  virtual double sf() const {return(1.0);}
  virtual NEWMAT::ReturnMatrix grad(const NEWMAT::ColumnVector& p) const;  
  virtual boost::shared_ptr<BFMatrix> hess(const NEWMAT::ColumnVector& p,
                                           boost::shared_ptr<BFMatrix> iptr=boost::shared_ptr<BFMatrix>()) const;  
  virtual double cf(const NEWMAT::ColumnVector& p) const = 0;              
};

// Varmet matrix is a "helper" class
// that makes it a little easier to
// implement variable-metric minimisation.
class VarmetMatrix
{
private:
  int                                 sz;
  VMMatrixType                        mtp;
  VMUpdateType                        utp;
  NEWMAT::Matrix                      mat;
  std::vector<double>                 sf;
  std::vector<NEWMAT::ColumnVector>   vec;

  VarmetMatrix& operator=(const VarmetMatrix& rhs);  // Hide assignment

public:
  explicit VarmetMatrix(int psz, VMMatrixType pmtp, VMUpdateType putp) 
  : sz(psz), mtp(pmtp), utp(putp)
  {
    if (sz > 0 && mtp == VM_OPT) {
      if (sz < 100) {
        mtp = VM_FULL;
	NEWMAT::IdentityMatrix  tmp(sz);
        mat = tmp;
      }
      else {
        mtp = VM_COL;
      }
    }
  }

  ~VarmetMatrix() {}

  int size() {return(sz);}
  VMUpdateType updatetype() {return(utp);}
  VMMatrixType matrixtype() {return(mtp);}
  void print() const;

  void reset()
  {
    if (sz > 0) {
      if (mtp == VM_FULL) {
	NEWMAT::IdentityMatrix  tmp(sz);
        mat = tmp;
      }
      else if (mtp == VM_COL) {
        sf.clear();
        vec.clear();
      }
    }
  }

  void update(const NEWMAT::ColumnVector& pdiff,  // x_{i+1} - x_i
              const NEWMAT::ColumnVector& gdiff); // \nabla f_{i+1} - \nabla f_i
  friend NEWMAT::ColumnVector operator*(const VarmetMatrix&          m,
                                        const NEWMAT::ColumnVector&  v); 
};

// Declaration of (global) main function for minimisation

NonlinOut nonlin(const NonlinParam& p, const NonlinCF& cfo);

// Declaration of global utility functions

pair<NEWMAT::ColumnVector,NEWMAT::ColumnVector> check_grad(const NEWMAT::ColumnVector&  par,
                                                           const NonlinCF&                     cfo);

pair<boost::shared_ptr<BFMatrix>,boost::shared_ptr<BFMatrix> > check_hess(const NEWMAT::ColumnVector& par,
                                                                          const NonlinCF&     cfo);

} // End namespace MISCMATHS

#endif // end #ifndef nonlin_h