Skip to content
Snippets Groups Projects
nonlin.cpp 41.2 KiB
Newer Older
// Definitions for module nonlin

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <vector>
#include <cmath>
#include "newmat.h"
#include "newmatio.h"
#include "bfmatrix.h"
#include "nonlin.h"
#include "utils/fsl_isfinite.h"

using namespace std;
using namespace NEWMAT;

namespace MISCMATHS {

// Declarations of routines for use only in this module

// Main routine for Variable-Metric optimisation

NonlinOut varmet(const NonlinParam& p, const NonlinCF& cfo);

// Main routine for Conjugate-Gradient optimisation

NonlinOut congra(const NonlinParam& p, const NonlinCF& cfo);

// Main routine for scaled conjugate-gradient optimisation

NonlinOut sccngr(const NonlinParam& p, const NonlinCF& cfo);

// Main routine for Levenberg-Marquardt optimisation

NonlinOut levmar(const NonlinParam& p, const NonlinCF& cfo);

LinOut linsrch(// Input
               const ColumnVector&  pdir,    // Search direction
               const ColumnVector&  p0,      // Current parameter values
               const ColumnVector&  grad,    // Gradient at p0
               const NonlinCF&      cfo,     // Cost-function object
               double               f0,      // Current cost-function value
               double               sf,      // Scale factor for cost-function
               double               maxiter, // Max # of iterations in line minimisation
               double               sm,      // Stepmax
               double               alpha,   // Alpha (sorry).
               double               ptol,    // Tolerance in parameter space
               // Output
               double               *lambda,// Resulting step length
               double               *of,    // Value of cost-function on output
               ColumnVector         *np);   // New parameters

double scale_factor(const ColumnVector&  p,       // Current parameter values
                    const ColumnVector&  pdir,    // Search direction
                    const NonlinCF&      cfo,     // Cost-function object
                    int                  maxiter, // Max # of iterations
                    double               sf);     // Scale factor.

LinOut linmin(// Input
              const ColumnVector&   p,      // Current parameter values
              const ColumnVector&   pdir,   // Search direction
              const NonlinCF&       cfo,    // Cost-function object
              double                sf,     // Scale factor for cost-function
              pair<double,double>   lp,     // Left point
              pair<double,double>   mp,     // Point somewhere in interval
              pair<double,double>   rp,     // Right point
              double                ftol,   // Fractional tolerance
              int                   maxiter,// Max # of iterations
              // Output
              pair<double,double>   *x);    // Best point

pair<double,double> bracket(// Input 
                            const ColumnVector& p,      // Current parameter values
                            const ColumnVector& pdir,   // Search direction
                            const NonlinCF&     cfo,    // Cost-function object
                            double              ptol,   // Relative tolerance for parameter values
                            double              sf,     // Scale factor of cost-function
                            // Output
                            pair<double,double> *p_0,   // Cost-function value at p
                            pair<double,double> *p_m);  // Point between p_0 and p_l

// Utility routine that checks for convergence based on "zero"-gradient

// Utility routines that checks for convergence based on various criteria
// Based on zero (neglible) gradient
bool zero_grad_conv(const ColumnVector&   par,
                    const ColumnVector&   grad,
                    double                cf,
                    double                gtol);
// Based on zero (neglible) decrease in cost-function
bool zero_cf_diff_conv(double cfo,
                       double cfn,
                       double cftol);
// Based on zero (neglible) step in parameter space
bool zero_par_step_conv(const ColumnVector&   par,
                        const ColumnVector&   step,
                        double                ptol);

void print_newmat(const NEWMAT::GeneralMatrix&  m,
                  std::string                   fname);


// If user choses not to overide the grad-method of the NonlinCF
// base class this routine will be used to calculate numerical derivatives.

ReturnMatrix NonlinCF::grad(const ColumnVector& p) const
{
  ColumnVector gradv(p.Nrows());
  ColumnVector tmpp = p;
  double tiny = 1e-8;
  double cf0 = cf(tmpp);
  for (int i=0; i<p.Nrows(); i++) {
    double step = tiny * max(tmpp.element(i),1.0);
    tmpp.element(i) += step;
    gradv.element(i) = (cf(tmpp) - cf0) / step;
    tmpp.element(i) -= step;
  }
  gradv.Release();
  return(gradv);    
}

// If user choses not to overide the hess-method of the NonlinCF
// base class this routine will calculate numerical 2nd derivatives.
// Note also that the hessian will only be used for the Levenberg-
// Marquardt minimisation.
// It is in general _not_ a good idea to use a method that explicitly
// uses the Hessian (i.e. LM) when calculating it numerically.
// Note that it returns a (safe) pointer to BFMatrix. BFMatrix has two
// subclasses FullBFMatrix, and SparseBFMatrix which can be used 
// used interchangeably depending on if the structure of the Hessian
// renders it sparse or not.

boost::shared_ptr<BFMatrix> NonlinCF::hess(const ColumnVector&         p,
                                           boost::shared_ptr<BFMatrix> iptr) const
{
  boost::shared_ptr<BFMatrix>    hessm;
  if (iptr && int(iptr->Nrows())==p.Nrows() && int(iptr->Ncols())==p.Nrows()) hessm = iptr;
  else hessm = boost::shared_ptr<BFMatrix>(new FullBFMatrix(p.Nrows(),p.Nrows()));
  ColumnVector tmpp = p;
  double tiny = 1e-4;
  double fx0y0 = cf(tmpp);
  ColumnVector fdx(p.Nrows());
  ColumnVector step(p.Nrows());

  // First calculate all f(x+dx_i) values

  for (int i=0; i<p.Nrows(); i++) {         
    step.element(i) = tiny * max(tmpp.element(i),1.0);
    tmpp.element(i) += step.element(i);
    fdx.element(i) = cf(tmpp);
    tmpp.element(i) -= step.element(i);
  }
  
  // Then values of matrix

  for (int i=0; i<p.Nrows(); i++) {
    for (int j=i; j<p.Nrows(); j++) {
      if (i==j) {   // If diagonal element
        tmpp.element(i) -= step.element(i);
        double tmp = cf(tmpp);
        hessm->Set(i+1,i+1,(fdx.element(i) + tmp - 2.0*fx0y0) / (step.element(i)*step.element(i)));
        tmpp.element(i) += step.element(i);
      }
      else {        // If off-diagonal element
        tmpp.element(i) += step.element(i);
        tmpp.element(j) += step.element(j);
        hessm->Set(i+1,j+1,(cf(tmpp)+fx0y0-fdx.element(i)-fdx.element(j)) / (step.element(i)*step.element(j)));
        hessm->Set(j+1,i+1,hessm->Peek(i+1,j+1));
        tmpp.element(i) -= step.element(i);
        tmpp.element(j) -= step.element(j);
      }
    }
  }

  return(hessm);
}

// Display (for debug purposes) matrix if it is small enough for that to make sense

void VarmetMatrix::print() const
{
  if (sz > 10) {
    cout << "Matrix too big to be meaningful to display" << endl;
    return;
  }
  else {
    if (mtp == VM_FULL) {
      cout << setw(10) << setprecision(5) << mat;
    }
    else if (mtp == VM_COL) {
      Matrix  tmp = IdentityMatrix(sz);
      for (unsigned int i=0; i<sf.size(); i++) {
        tmp += sf[i] * vec[i]*(vec[i]).t();
      }
      cout << setw(10) << setprecision(5) << tmp;
    }
  }
  return;
}

// Update estimate of inverse Hessian based on latest step

void VarmetMatrix::update(const NEWMAT::ColumnVector& pdiff,  // x_{i+1} - x_i
                          const NEWMAT::ColumnVector& gdiff)  // \nabla f_{i+1} - \nabla f_i
{
  // Sort out if this call defines size of problem
  if (pdiff.Nrows() != sz || gdiff.Nrows() != sz) {
    if (sf.size() == 0 && pdiff.Nrows()==gdiff.Nrows()) {
      sz = pdiff.Nrows();
      if (mtp == VM_OPT) {
        if (sz < 100) {mtp = VM_FULL;}
        else {mtp = VM_COL;}
      }
    }
    else {throw NonlinException("VarmetMatrix::update: mismatch between vector and matrix sizes");}
  }
  // Now do the actual update
  double sf1 = DotProduct(pdiff,gdiff);
  if ((sf1*sf1) > MISCMATHS::EPS*DotProduct(pdiff,pdiff)*DotProduct(gdiff,gdiff)) {
    sf1 = 1.0 / sf1;
    ColumnVector v2 = (*this) * gdiff;
    double sf2 = -1.0 / DotProduct(gdiff,v2);
    if (mtp == VM_FULL) {
      mat += sf1 * pdiff * pdiff.t();
      mat += sf2 * v2 * v2.t();
    }
    else {
      vec.push_back(pdiff);
      vec.push_back(v2);
      sf.push_back(sf1);
      sf.push_back(sf2);
    }
    if (utp == VM_BFGS) {
      if (mtp == VM_FULL) {
        ColumnVector u = sf1*pdiff + sf2*v2;
        mat -= (1.0/sf2) * u * u.t();
      }
      else {
        vec.push_back(sf1*pdiff + sf2*v2);
        sf.push_back(-1.0/sf2);
      }
    }
  }
}

// Multiply representation of matrix with vector

ColumnVector operator*(const VarmetMatrix& m, const ColumnVector& v)
{
  if (m.mtp == VM_FULL) {return(m.mat*v);}
  else {
    ColumnVector ov = v; // Multiplication with unity matrix
    if (m.sf.size() != 0) {
      std::vector<double>::const_iterator                sfp;
      std::vector<NEWMAT::ColumnVector>::const_iterator  vep;
      for (sfp=m.sf.begin(), vep=m.vec.begin(); sfp!=m.sf.end(); ++sfp, ++vep) {
        double tmp = (*sfp) * DotProduct((*vep),v);
        ov += tmp * (*vep);
      }
    }
    return(ov);
  }
}

// Gateway function to routines for non-linear optimisation

NonlinOut nonlin(const NonlinParam& p, const NonlinCF& cfo)
{
  NonlinOut status = NL_MAXITER;

  // Call functions that actually do the job

  switch (p.Method()) {
  case NL_VM:
    status = varmet(p,cfo);
    break;
  case NL_CG:
    status = congra(p,cfo);
    break;
  case NL_SCG:
    status = sccngr(p,cfo);
    break;
  case NL_LM:
    status = levmar(p,cfo);
    break;
  }

  return(status);
}

// Main routine for Levenberg-Marquardt optimisation

NonlinOut levmar(const NonlinParam& p, const NonlinCF& cfo)
{
  // Calculate initial values
  p.SetCF(cfo.cf(p.Par()));                                   // Cost-function evaluated at current parameters
  bool                            success = true;             // True if last step decreased CF
  double                          olambda = 0.0;              // How much the diagonal of H was nudged last time
  ColumnVector                    g;                          // Gradient
  boost::shared_ptr<BFMatrix>     H;                          // Hessian

  while (p.NextIter(success)) {
    if (success) {                                            // If last attempt decreased cost-function
      g = cfo.grad(p.Par());                                  // Gradient evaluated at current parameters
      H = cfo.hess(p.Par(),H);                                // Hessian evaluated at current parameters
    }
    for (int i=1; i<=p.NPar(); i++) {                         // Nudge it
      if (p.GaussNewtonType() == LM_LM) {                     // If Levenberg-Marquardt
        H->AddTo(i,i,(p.Lambda()-olambda)*H->Peek(i,i));
      }
      else if (p.GaussNewtonType() == LM_L) {                // If Levenberg
        H->AddTo(i,i,p.Lambda()-olambda);             
      }
    }
    ColumnVector step = -H->SolveForx(g,SYM_POSDEF,p.EquationSolverTol(),p.EquationSolverMaxIter());
    double ncf = cfo.cf(p.Par()+step);
    if (success = (ncf < p.CF())) {                           // If last step successful
      olambda = 0.0;                                          // Pristine Hessian, so no need to undo old lambda
      p.SetPar(p.Par()+step);                                 // Set attempt as new parameters
      p.SetLambda(p.Lambda()/10.0);                           // Decrease nudge factor
      // Check for convergence based on small decrease of cf
      if (zero_cf_diff_conv(p.CF(),ncf,p.FractionalCFTolerance())) {
        p.SetCF(ncf); p.SetStatus(NL_CFCONV); return(p.Status()); 
      }
      p.SetCF(ncf);                                           // Store value of cost-function
    }
    else {                                                    // If last step was unsuccesful
      olambda = p.Lambda();                                   // Returning to same H, so must undo old lambda
      p.SetLambda(10.0*p.Lambda());                           // Increase nudge factor
      p.SetCF(p.CF());                                        // Push another copy of best cost function value thus far
      // Check for convergence based on _really_ large lambda
      if (p.Lambda() > p.LambdaConvergenceCriterion()) {
        p.SetStatus(NL_LCONV); return(p.Status());
      }
    }
  }
  // Getting here means we did too many iterations
  p.SetStatus(NL_MAXITER);

  return(p.Status());
}
  /*
// Main routine for Levenberg-Marquardt optimisation

NonlinOut levmar(const NonlinParam& p, const NonlinCF& cfo)
{
  // Calculate initial values
  p.SetCF(cfo.cf(p.Par()));                                   // Cost-function evaluated at current parameters
  ColumnVector g = cfo.grad(p.Par());                         // Gradient evaluated at current parameters
  boost::shared_ptr<BFMatrix> H = cfo.hess(p.Par());          // Hessian evaluated at current parameters

  double olambda = 0.0;
  bool   success = true;                                      // True if last step decreased CF

  while (p.NextIter(success)) {
    for (int i=1; i<=p.NPar(); i++) { // Nudge diagonal of H
      if (p.GaussNewtonType() == LM_LM) {
        H->AddTo(i,i,(p.Lambda()-olambda)*H->Peek(i,i));
      }
      else if (p.GaussNewtonType() == LM_L) {
        H->AddTo(i,i,p.Lambda()-olambda);
      }
    }     
    ColumnVector step = -H->SolveForx(g,SYM_POSDEF,p.EquationSolverTol(),p.EquationSolverMaxIter());
    double ncf = cfo.cf(p.Par()+step);
    if (success = (ncf < p.CF())) {                  // If last step successful
      olambda = 0.0;                     // New H, so no need to undo old lambda
      p.SetLambda(p.Lambda()/10.0);
      p.SetPar(p.Par()+step);
      // Check for convergence based on small decrease of cf
      if (zero_cf_diff_conv(p.CF(),ncf,p.FractionalCFTolerance())) {
	p.SetCF(ncf); p.SetStatus(NL_CFCONV); return(p.Status()); 
      }
      p.SetCF(ncf);
      g = cfo.grad(p.Par());
      H = cfo.hess(p.Par(),H);
    }
    else {                               // If last step was unsuccesful
      olambda = p.Lambda();              // Returning to same H, so must undo old lambda
      p.SetLambda(10.0*p.Lambda());
      p.SetCF(p.CF());                   // Push another copy
      // Check for convergence based on _really_ large lambda
      if (p.Lambda() > p.LambdaConvergenceCriterion()) {
        p.SetStatus(NL_LCONV); return(p.Status());
      }
    }
  }
  // This means we did too many iterations
  p.SetStatus(NL_MAXITER);

  return(p.Status());
}
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
// Main routine for conjugate-gradient optimisation. The 
// implementation follows that of Numerical Recipies 
// reasonably closely.

NonlinOut congra(const NonlinParam& np, const NonlinCF& cfo)
{
  // Set up initial values
  np.SetCF(cfo.cf(np.Par()));
  ColumnVector r = -cfo.grad(np.Par());
  ColumnVector p = r;

  while (np.NextIter()) {
    // Check for convergence based on zero gradient
    if (zero_grad_conv(np.Par(),r,np.CF(),np.FractionalGradientTolerance())) {
      np.SetStatus(NL_GRADCONV); return(np.Status());
    }  
    // Bracket minimum along p
    pair<double,double> lp, mp;                                                                      // Leftmost and middle point of bracket
    pair<double,double> rp = bracket(np.Par(),p,cfo,np.FractionalParameterTolerance(),1.0,&lp,&mp);  // Rightmost point of bracket
    if (rp == lp) {                                                                                  // If no smaller point along p
      np.SetStatus(NL_PARCONV); return(np.Status());                                                 // Assume it is because we are at minimum
    }
    // Find minimum along p between lp and rp
    pair<double,double> minp;                               // Minimum along p
    LinOut lm_status = linmin(np.Par(),p,cfo,1.0,lp,mp,rp,
                              np.LineSearchFractionalParameterTolerance(),
                              np.LineSearchMaxIterations(),&minp);
    // Check for problems with line-search
    if (lm_status == LM_MAXITER) {np.SetStatus(NL_LM_MAXITER); return(np.Status());} // Ouch!
    // Set new cf value and parameters
    np.SetPar(np.Par() + minp.first*p);
    np.SetCF(minp.second);  
    // Check for convergence based on small decrease of cost-function
    if (zero_cf_diff_conv(np.CF(),minp.second,np.FractionalCFTolerance())) {np.SetStatus(NL_CFCONV); return(np.Status());}
    // Check for convergence based on neglible move in parameter space
    else if (zero_par_step_conv(minp.first*p,np.Par(),np.FractionalParameterTolerance())) {np.SetStatus(NL_PARCONV); return(np.Status());}
    else {  // If no covergence
      if (((np.NIter())%np.NPar()) == 0) {                          // Explicitly reset directions after npar iterations
        r = -cfo.grad(np.Par());
        p = r;
      }
      else {
        ColumnVector oldr = r;
        r = -cfo.grad(np.Par());
        if (np.ConjugateGradientUpdate() == CG_FR) {              // Get conjugate direction Fletcher-Reeves flavour
          p = r + (DotProduct(r,r)/DotProduct(oldr,oldr)) * p;
	}
        else if (np.ConjugateGradientUpdate() == CG_PR) {         // Get conjugate direction Polak-Ribiere flavour
          p = r + (DotProduct(r-oldr,r)/DotProduct(oldr,oldr)) * p;
        }
      }
    }
  }
  // If we get here we have used too many iterations
  np.SetStatus(NL_MAXITER);
    
  return(np.Status());
}

// Main routine for scaled conjugate-gradient optimisation. The
// idea of the algorithm is similar to that of Levenberg-
// Marquardt. In the LM algorithm the search direction is a 
// "compromise" between the Newton direction and the gradient
// direction, where the compromise depends on a factor lambda.
// A large lambda means that it is close to the gradient and a 
// small lambda that it is close to the Newton direction. The 
// value of lambda is updated each iteration depending on the
// success of the last step. In this method the compromise is
// between the "conjugate gradient" direction and the gradient
// direction. The variable names follow the (excellent!) paper 
// by Martin Mller (1993) Neural Networks 6:525-533.
// I have tried to follow the notation he uses in his paper, thus
// enabling that to be the "documentation" for the routine below.

NonlinOut sccngr(const NonlinParam& np, const NonlinCF& cfo)
{
  // Set up initial values
  np.SetCF(cfo.cf(np.Par()));           // Current value for cost-function (E in Moller 92).
  double sigma = 1.0e-2;                // Step-length when estmating H*p from g(w+sigma*p)-g(w)
  double lambda_bar = 0.0;              // Update for lambda if approximate hessian not positive definite
  ColumnVector r = -cfo.grad(np.Par()); // Negative gradient
  ColumnVector p = r;                   // Search direction
  bool success = true;                  // True if previous step was successful
  double delta = 0.0;                   // Used to check pos def of H in loop below
  ColumnVector s(np.NPar());            // Used as approximation to H*p in loop below 

  while (np.NextIter()) {
    double p2 = DotProduct(p,p);                            // p'*p, Temporary variable to save some time
    if (success == true) {                                  // If last step led to reduction of cos-function
      double sigma_k = sigma/sqrt(p2);                      // Normalised step-length when estimating H*p
      s = (cfo.grad(np.Par()+sigma_k*p) + r) / sigma_k;     // Approximation to H*p
      delta = DotProduct(p,s);                              // Approximation to p'*H*p
    }
    s += (np.Lambda()-lambda_bar)*p;                      // Equivalent to adding (l-lb)*I to H
    delta += (np.Lambda()-lambda_bar)*p2;                 // If <0 then H+(l-lb)*I not positive definite
    if (delta <= 0) {                                     // If it H is not positive definite
      s += (np.Lambda() - 2.0*(delta/p2)) * p;            // Make H more diagonal dominant to ensure pos def
      lambda_bar = 2.0*(np.Lambda() - delta/p2);
      delta  = np.Lambda()*p2 - delta;
      np.SetLambda(lambda_bar);
    }
    double mu = DotProduct(p,r);
    double alpha = mu/delta;                              // Step size in direction p
    double tmp_cf = cfo.cf(np.Par()+alpha*p);             // Value of cost-function at attempted new point

    char fname[100]; 
    sprintf(fname,"/Users/jesper/Desktop/gradient_%02d.txt",np.NIter());
    print_newmat(r,fname);
    sprintf(fname,"/Users/jesper/Desktop/step_%02d.txt",np.NIter());
    ColumnVector  step(p); step *= alpha;
    print_newmat(step,fname);
    
    
    double Delta = 2.0*delta*(np.CF()-tmp_cf) / (mu*mu);  // > 0 means attempted step reduced cost-function
    if (Delta >= 0) {                                     // If step reduces cost-function
      np.SetCF(tmp_cf);                                   // Update lowest observed value of cost-function
      np.SetPar(np.Par() + alpha*p);                      // Update best set of parameters
      lambda_bar = 0.0;
      success = true;
      if ((np.NIter()%np.NPar()) == 0) {                   // If npar iterations since last resetting of directions
        r = -cfo.grad(np.Par());                          // Reset search direction to negative gradient
        p = r;
      }
      else {
        ColumnVector oldr = r;
        r = -cfo.grad(np.Par());
        double beta = (DotProduct(r,r)-DotProduct(oldr,r)) / mu;
        p = r + beta*p;                              // New search direction
      } 
      if (Delta > 0.75) {                            // If attempted step was \emph{REALLY} good
	np.SetLambda(np.Lambda()/2.0);
      }
    }
    else {                                           // If step doesn't reduce cost-function
      lambda_bar = np.Lambda();
      success = false;
    }
    if (Delta < 0.25) {                              // If step reduced cost-function only "a little" (or not at all)
      np.SetLambda(4.0*np.Lambda());
    }
    if (zero_grad_conv(np.Par(),r,np.CF(),np.FractionalGradientTolerance())) {  // If gradient is (practically) zero
      np.SetStatus(NL_GRADCONV); return(np.Status());
    }
  }
  // If we get here we have exceeded allowed # of iterations
  np.SetStatus(NL_MAXITER);
  return(np.Status());
}
 
// Main routine for variable-metric optimisation. This implements
// the variable-metric optimisation with the BFGS or DFP updating
// schemes. The implementation details are mostly quite close to
// those described in Numerical Recipies in C.

NonlinOut varmet(const NonlinParam& p, const NonlinCF& cfo)
{
  // Get scale factor to ensure a relative scale beteween
  // parameters and cost-function such that fast and robust
  // convergence is acheieved.

  double sf = cfo.sf();                      // Suggestion by "user"
  ColumnVector grad = sf*cfo.grad(p.Par());  // Gradient of const-function
  if (p.VariableMetricAutoScale()) {
    sf = scale_factor(p.Par(),-grad,cfo,p.LineSearchMaxIterations(),sf);         // Refinement by "me"
    if (sf == 0.0) {                                                             // No minimum in indicated direction
      p.SetStatus(NL_PARCONV);                                                   // Assume this means we are already at minimum
      return(p.Status());
    }
    grad = (sf/cfo.sf()) * grad;
  }

  VarmetMatrix  iH(p.NPar(),VM_OPT,p.VariableMetricUpdate());   // Inverse Hessian
  p.SetCF(sf*cfo.cf(p.Par()));                                // Current value of cost-function
  ColumnVector  pdir = -(iH*grad);                            // Direction to search in

  double        lambda = 0.0;     // Step-length returned by linsrch
  double        newcf = 0.0;      // New value for cost-function
  ColumnVector  newpar(p.NPar()); // New point in parameter space

  while (p.NextIter()) {
    // Do a line-search to find a new point in parameter space
    LinOut status = linsrch(pdir,p.Par(),grad,cfo,p.CF(),sf,p.LineSearchMaxIterations(),
                            p.LineSearchMaxStep(),p.VariableMetricAlpha(),
                            p.LineSearchFractionalParameterTolerance(),&lambda,&newcf,&newpar);
    // Check for convergence/problems based on outcome of linsrch
    if (status == LM_MAXITER) {p.SetStatus(NL_LM_MAXITER); return(p.Status());}
    else if (status == LM_LAMBDA_NILL) { // This means we might be heading uphill and should restart
      if (p.NextRestart()) { // If we have spare restarts
        p.SetCF(p.CF());      // Another copy of old value
        iH.reset();           // Back to being unity matrix
        pdir = -grad;
        continue;
      }
      else {  
        p.SetStatus(NL_PARCONV); return(p.Status());
      }
    }
    // Test for convergence based on distance between points in parameter space
    ColumnVector dpar = newpar - p.Par();
    p.SetPar(newpar);
    p.SetCF(newcf);
    if (zero_par_step_conv(dpar,p.Par(),p.FractionalParameterTolerance())) {p.SetStatus(NL_PARCONV); return(p.Status());}
    // Get gradient at new point
    ColumnVector newgrad = sf*cfo.grad(p.Par());
    // Test for convergence based on "zero" gradient
    if (zero_grad_conv(p.Par(),newgrad,p.CF(),p.FractionalGradientTolerance())) {p.SetStatus(NL_GRADCONV); return(p.Status());}
    // Update estimate of inverse Hessian
    iH.update(dpar,newgrad-grad);
    // Update parameters and get new direction to go in
    grad = newgrad;
    pdir = -(iH*grad);      // N.B. no unary - op for iH, parenthesis necessary
  }

  // If we get here we have exceeded the allowed # of iterations
  p.SetStatus(NL_MAXITER);

  return(p.Status());  
}  

LinOut linsrch(// Input
               const ColumnVector&  dir,    // Search direction
               const ColumnVector&  p0,      // Current parameter values
               const ColumnVector&  grad,    // Gradient at p0
               const NonlinCF&      cfo,     // Cost-function object
               double               f0,      // Current cost-function value
               double               sf,      // Scale factor for cost-function
               double               maxiter, // Max # of iterations
               double               sm,      // Stepmax
               double               alpha,   // Alpha (sorry).
               double               ptol,    // Tolerance in parameter space
               // Output
               double               *lambda, // Resulting step length
               double               *of,     // Value of cost-function on output
               ColumnVector         *np)     // New parameters
{
  const double lmin = 0.1;             
  const double lmax = 0.5; 

  // First make sure that the step-length suggested
  // by pdir isn't completely unreasonable.

  double totstep=sqrt(DotProduct(dir,dir));
  ColumnVector pdir(dir);
  if (totstep > sm) {pdir *= sm/totstep;}

  // Calculate expected rate of change in the direction 
  // given by pdir.

  double fp0 = DotProduct(grad,pdir);

  // Calculate smallest meaningful lambda given what is
  // smallest meaningful change in parameter value.

  double almin=0.0;
  for (int i=0; i<p0.Nrows(); i++) {
    almin = max(almin,abs(pdir.element(i))/max(abs(p0.element(i)),1.0));
  }
  almin = ptol / almin;

  // First try a step of full lambda
  
  *lambda = 1.0;                        // Start with that
  (*np) =  p0 + (*lambda)*pdir;         // First new parameters to try
  double f2 = sf * cfo.cf(*np);         // Cost-function value for par

  // See if that does it (fat chance!)
  if (f2 < f0 + alpha*(*lambda)*DotProduct(grad,(*np)-p0)) {*of = f2; return(LM_CONV);}

  // Calculate Quadratic based on f(0), f'(0)
  // and f(1) and find minimum of that quadratic.

  *lambda = - fp0 / (2.0*(f2-f0-fp0));  // Minumum of f(lambda)
  // Make sure new lambda is 0.1*old_l < lambda < 0.5*old_l
  *lambda = max(lmin,*lambda);
  *lambda = min(lmax,*lambda);
  (*np) =  p0 + (*lambda)*pdir;         // Second set of new parameters to try
  double f1 = sf * cfo.cf(*np);              // Cost-function value for par

  // Now we will start fitting cubics to f(0), f'(0),
  // f(lambda_1) and f(lambda_2) where lambda_1 is the
  // lambda most recently tested and where lambda_2 is
  // the lambda tested second to last.

  double       l2 = 1.0;     // Second to last lambda
  double       l1 = *lambda; // Last lambda
  Matrix       X(2,2);
  ColumnVector y(2);       
  
  for (int iter=0; iter<maxiter; iter++) {
    // See if present lambda might be too small
    if (*lambda < almin) {*of = f1; return(LM_LAMBDA_NILL);}
    // See if present value is acceptable
    if (f1 < f0 + alpha*(*lambda)*DotProduct(grad,(*np)-p0)) {*of = f1; return(LM_CONV);}
    // Find parameter values for cubic and square on lambda
    X << pow(l1,3) << pow(l1,2) << pow(l2,3) << pow(l2,2);
    y << f1-fp0*l1-f0 << f2-fp0*l2-f0;
    ColumnVector b = X.i()*y;
    // Find value for lambda that yield minimum of cubic
    *lambda = (-b.element(1) + sqrt(pow(b.element(1),2) - 3.0*b.element(0)*fp0)) / (3.0*b.element(0));
    // Make sure new lambda is 0.1*old_l < lambda < 0.5*old_l
    *lambda = max(lmin*l1,*lambda);
    *lambda = min(lmax*l1,*lambda);
    // Get new function value and update parameters
    f2 = f1;
    (*np) = p0 + (*lambda)*pdir;
    f1 = sf * cfo.cf(*np);
    l2 = l1;
    l1 = *lambda;
  }

  // If we are here we have exceeded # of iterations
  
  *of = f1;
  return(LM_MAXITER);
}

// Will try and find a scale factor for the cost-function such that
// the step length (lambda) for the first iteration of the variable-
// metric method is ~0.25. Empricially I have found that such a scaling
// that yields a first step length in the range 0.1 -- 0.5 will yield 
// robust and fast convergence. N.B. though that I have only tested that
// for non-linear reg, and it is concievable that it is different for
// other applications with fewer parameters.
 
double scale_factor(const ColumnVector&  p,       // Current parameter values
                    const ColumnVector&  pdir,    // Search direction
                    const NonlinCF&      cfo,     // Cost-function object
                    int                  maxiter, // Max # of iterations
                    double               sf)      // Scale factor.
{
  const double        dl = 0.25;   // Desired Lambda
  const double        ftol = 0.01; // Fractional tolerance for minimum

  // Start out by finding an upper bound for lambda such that
  // a minimum is guaranteed to be between 0 and rp
  
  pair<double,double> lp;
  pair<double,double> mp;
  pair<double,double> rp = bracket(p,pdir,cfo,ftol,sf,&lp,&mp);
  if (rp == mp) { // If there is no minimum in the indicated direction
    return(0.0);
  }

  // Now find a minimum with a fractional accuracy of ~1%

  pair<double,double> minpoint;
  
  if (linmin(p,pdir,cfo,sf,lp,mp,rp,ftol,maxiter,&minpoint) == LM_MAXITER) {
    throw NonlinException("Failed to find minimum along search direction");
  }

  sf *= minpoint.first/dl;
  return(sf);
}

// Will find the minimum of the cost-function as a function of 
// lambda. This routine will find the minimum to a fractional
// tolerance of lambda. This is NOT practical to use for the
// Variable Metric minimisation (too slow), but is used for
// the conjugate-gradient method and for finding the initial 
// scaling between parameters and cost-function for the 
// variable metric method.

LinOut linmin(// Input
              const ColumnVector&   p,      // Current parameter values
              const ColumnVector&   pdir,   // Search direction
              const NonlinCF&       cfo,    // Cost-function object
              double                sf,     // Scale factor for cost-function
              pair<double,double>   lp,     // Left point
              pair<double,double>   mp,     // Point somewhere in interval
              pair<double,double>   rp,     // Right point
              double                ftol,   // Fractional tolerance
              int                   maxiter,// Max # of iterations
              // Output
              pair<double,double>   *x)     // Best point
{
  const double         gold = 0.382;// Golden section
  pair<double,double>  test;        // New point to test
  pair<double,double>  w = mp;      // Second best point
  pair<double,double>  v = mp;      // Last value of second best point
  double               step = 0.0;
  double               ostep = 0.0; // Length of 2nd to last step taken
  double               d = 0.0;     // Length of last step taken
  ColumnVector         y(3);        // Used for fitting parabolic
  Matrix               X(3,3);      // Used for fitting parabolic
  *x = mp;                          // Initialise "best" point

  for (int i=0; i<maxiter; i++) {
    double midp = (rp.first+lp.first)/2.0;                       // Midpoint of bracketing points
    double tol = 2.0*ftol*abs(x->first)+MISCMATHS::EPS;          // Absolute tolerance
    if  (abs(x->first-midp) <= (tol-0.5*(rp.first-lp.first))) {  // Convergence check
      return(LM_CONV);
    }
    // Try parabolic fit, but not before third iteration
    double tmp = 10.0*sqrt(MISCMATHS::EPS);
    if (abs(ostep) > tol/2.0 &&           // If second to last step big enough
        abs(x->first-w.first) > tmp && 
        abs(x->first-v.first) > tmp && 
        abs(w.first-v.first) > tmp) {     // And points not degenerate
      step = ostep;
      ostep = d;
      y << x->second << w.second << v.second;
      X << pow(x->first,2.0) << x->first << 1.0 <<
	   pow(w.first,2.0) << w.first << 1.0 <<
	   pow(v.first,2.0) << v.first << 1.0;
      ColumnVector b = X.i() * y;
      if (b.element(0) < 4*MISCMATHS::EPS ||                   // If on line or going for maximum
          (test.first = -b.element(1)/(2.0*b.element(0))) <= lp.first 
          || test.first >= rp.first ||                         // If outside bracketed interval
          abs(test.first-x->first) > 0.5*step) {               // Or if step too big (indicates oscillation)
        // Take golden step into larger interval
        if (rp.first-x->first > x->first-lp.first) {           // If right interval larger
          test.first = x->first + gold * (rp.first - x->first);
        }
        else {
          test.first = x->first - gold * (x->first - lp.first); 
        }
      }
    }
    else { // Take golden step into larger interval   
      if (x->first < midp) {            // If right interval larger
        ostep = rp.first - x->first;
        test.first = x->first + gold * (rp.first - x->first);
      }
      else {
        ostep = x->first - lp.first;
        test.first = x->first - gold * (x->first - lp.first); 
      }
    }
    d = test.first - x->first;                              // Signed length of step
    test.second = sf*cfo.cf(p+test.first*pdir);                // Evaluate cf at new point
    // Now we have a new point, and we need to figure out what to do with it
    if (test.second <= x->second) {  // If it beats the best step
      if (test.first > x->first) {lp = *x;}
      else {rp = *x;}
      v = w; w = *x; *x = test;
    }
    else {
      if (test.first < x->first) {lp = test;}
      else {rp = test;}
      if (test.second <= w.second || w.first == x->first) {
        v = w; w = test;
      }
      else if (test.second <= v.second || v.first == x->first || v.first == w.first) {
        v = test;
      }
    }
  }
  // If we are here we have used too many iterations
  return(LM_MAXITER); // Error status    
}
              
// Will return a value lambda such that a function minimum is guaranteed to
// lie somewhere in the interval between p and p+lambda*pdir. The second value
// of the returned pair is the cost-function value at the point.

pair<double,double> bracket(// Input 
                            const ColumnVector& p,      // Current parameter values
                            const ColumnVector& pdir,   // Search direction
                            const NonlinCF&     cfo,    // Cost-function object
                            double              ptol,   // Relative tolerance for parameter values
                            double              sf,     // Scale factor of cost-function
                            // Output
                            pair<double,double> *p_0,   // Cost-function value at p
                            pair<double,double> *p_m)   // Point between p_0 and p_l
{
  pair<double,double>  p_l;
  const double gr = 0.618034;
  const double maxstep = 100.0;
  p_0->first = 0.0;
  double cf0 = sf*cfo.cf(p);
  double l1 = 1.0;
  double cf1 = sf*cfo.cf(p+l1*pdir);

  // Find maximum relative component of search direction

  double test = 0.0;
  for (int i=0; i<pdir.Nrows(); i++) {test = max(test,abs(pdir.element(i))/max(p.element(i),1.0));}

  // Do a crude initial search for order of magnitude

  while (!isfinite(cf1)) {
    l1 *= 0.1;
    cf1 = sf*cfo.cf(p+l1*pdir);
  }

  // Get third point to get us started
  double l2 = 0.0;
  double cf2 = 0.0;
  if (cf1 < cf0) {l2 = (2.0 + gr)*l1; cf2 = sf*cfo.cf(p+l2*pdir);}
  else {l2 = l1; cf2 = cf1; l1 = gr * l2; cf1 = sf*cfo.cf(p+l1*pdir);}
  // Check if we already have a bracket
  if (cf1 < cf0 && cf1 < cf2) {
    p_l.first = l2; p_l.second = cf2;
    p_m->first = l1; p_m->second = cf1;
    p_0->second = cf0; 
    return(p_l);
  }

  Matrix        X(2,2);
  ColumnVector  y(2);
  double        lt = 0.0;
  double        cft = 0.0;

  while (!(cf1 < cf0 && cf1 < cf2)) {  // If minimum still not bracketed
    if (l2*test < ptol) {              // If interval ridicously small
      p_l = *p_0;
      *p_m = *p_0;
      return(p_l);
    }
    // Let's see if a parabolic might help us
    if (abs(l2-l1) > 10.0*sqrt(MISCMATHS::EPS)) {
      X << pow(l1,2.0) << l1 << pow(l2,2.0) << l2;
      y << cf1 << cf2;
      ColumnVector b = X.i()*y;
      if (b.element(0) > 4.0*MISCMATHS::EPS) {           // Check they are not on a line and not for maximum
        lt = - (b.element(1) / (2.0 * b.element(0))); // Tentative point
        if (lt > 0 && lt < l2) {                      // If in range of previous points
          cft = sf*cfo.cf(p+lt*pdir);
          if (cft < cf0 && cft < cf2) {l1=lt; cf1=cft; continue;}
          else if (cft > cf0 && lt < l1 && cft < cf1) {l2=l1; cf2=cf1; l1=lt; cf1=cft; continue;}
          else if (cft > cf0 && lt > l1 && cft < cf2) {l2=lt; cf2=cft; continue;}
        }
        else if (lt > 0 && lt < maxstep*l2) {       // If expansion in allowed range
          cft = sf*cfo.cf(p+lt*pdir);
          l1 = l2; cf1 = cf2; 
          l2 = lt; cf2 = cft;
          continue;
        }
      }
    }
    // If we are here the parabolic was of no use
    if (cf2 < cf0) { // We need to expand
      lt = (2.0 + gr)*l2;
      cft = sf*cfo.cf(p+lt*pdir);
      l1 = l2; cf1 = cf2;
      l2 = lt; cf2 = cft;
    }
    else { // We need to contract
      lt = gr * l1;
      cft = sf*cfo.cf(p+lt*pdir);
      l2 = l1; cf2 = cf1;
      l1 = lt; cf1 = cft;
    }     
  }  

  // If we are here we know that there is a minimum
  // somewhere between 0 and l2;

  p_0->second = cf0;
  p_m->first = l1;
  p_m->second = cf1;
  p_l.first = l2;
  p_l.second = cf2;
  return(p_l);   
}  

// Utility routines that checks for convergence based on various criteria

// Based on zero (neglible) gradient

bool zero_grad_conv(const ColumnVector&   par,
                    const ColumnVector&   grad,
                    double                cf,
                    double                gtol)
{
  double test = 0.0;     // test will be largest relative component of gradient
  for (int i=0; i<par.Nrows(); i++) {
    test = max(test,abs(grad.element(i))*max(abs(par.element(i)),1.0));
  }
  test /= max(cf,1.0);   // Protect against near-zero values for cost-function

  return(test < gtol);
}

// Based on zero (neglible) decrease in cost-function

bool zero_cf_diff_conv(double cfo,
                       double cfn,
                       double cftol)
{
  return(2.0*abs(cfo-cfn) <= cftol*(abs(cfo)+abs(cfn)+MISCMATHS::EPS));
}

// Based on zero (neglible) step in parameter space

bool zero_par_step_conv(const ColumnVector&   par,
                        const ColumnVector&   step,
                        double                ptol)
{
  double test = 0.0;
  for (int i=0; i<par.Nrows(); i++) {
    test = max(test,abs(step.element(i))/max(abs(par.element(i)),1.0));
  }
  return(test < ptol);
}

// Utility routines that allow the user to check accuracy of their own grad and hess functions

pair<ColumnVector,ColumnVector> check_grad(const ColumnVector&  par,
                                           const NonlinCF&      cfo)
{
  pair<ColumnVector,ColumnVector> rv;
  
  rv.first = cfo.NonlinCF::grad(par);
  rv.second = cfo.grad(par);