Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
switch (_order) {
case 0:
if (ax < 0.5) val = 1.0;
break;
case 1:
if (ax < 1) val = 1-ax;;
break;
case 2:
if (ax < 0.5) val = 0.75-ax*ax;
else if (ax < 1.5) val = 0.5*(1.5-ax)*(1.5-ax);
break;
case 3:
if (ax < 1) val = 2.0/3.0 + 0.5*ax*ax*(ax-2);
else if (ax < 2) { ax = 2-ax; val = (1.0/6.0)*(ax*ax*ax); }
break;
case 4:
if (ax < 0.5) { ax *= ax; val = (115.0/192.0) + ax*((2.0*ax-5.0)/8.0); }
else if (ax < 1.5) val = (55.0/96.0) + ax*(ax*(ax*((5.0-ax)/6.0) - 1.25) + 5.0/24.0);
else if (ax < 2.5) { ax -= 2.5; ax *= ax; val = (1.0/24.0)*ax*ax; }
break;
case 5:
if (ax < 1) { double xx = ax*ax; val = 0.55 + xx*(xx*((3.0-ax)/12.0) - 0.5); }
else if (ax < 2) val = 0.425 + ax*(ax*(ax*(ax*((ax-9.0)/24.0) + 1.25) - 1.75) + 0.625);
else if (ax < 3) { ax = 3-ax; double xx = ax*ax; val = (1.0/120.0)*ax*xx*xx; }
break;
case 6:
if (ax < 0.5) { ax *= ax; val = (5887.0/11520.0) + ax*(ax*((21.0-4.0*ax)/144.0) -77.0/192.0); }
else if (ax < 1.5) val = 7861.0/15360.0 + ax*(ax*(ax*(ax*(ax*((ax - 7.0)/48.0) + 0.328125) - 35.0/288.0) - 91.0/256.0) -7.0/768.0);
else if (ax < 2.5) val = 1379.0/7680.0 + ax*(ax*(ax*(ax*(ax*((14.0-ax)/120.0) - 0.65625) + 133.0/72.0) - 2.5703125) + 1267.0/960.0);
else if (ax < 3.5) { ax -= 3.5; ax *= ax*ax; val = (1.0/720.0) * ax*ax; }
break;
case 7:
if (ax < 1) { double xx = ax*ax; val = 151.0/315.0 + xx*(xx*(xx*((ax-4.0)/144.0) + 1.0/9.0) - 1.0/3.0); }
else if (ax < 2) val = 103.0/210.0 + ax*(ax*(ax*(ax*(ax*(ax*((12.0-ax)/240.0) -7.0/30.0) + 0.5) - 7.0/18.0) - 0.1) -7.0/90.0);
else if (ax < 3) val = ax*(ax*(ax*(ax*(ax*(ax*((ax-20.0)/720.0) + 7.0/30.0) - 19.0/18.0) + 49.0/18.0) - 23.0/6.0) + 217.0/90.0) - 139.0/630.0;
else if (ax < 4) { ax = 4-ax; double xxx=ax*ax*ax; val = (1.0/5040.0)*ax*xxx*xxx; }
break;
default:
throw SplinterpolatorException("get_wgt: invalid order spline");
break;
}
return(val);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the weight for the first derivative of a spline at
// coordinate x, where x is relative to the centre of the spline.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::get_dwgt(double x) const
{
double val = 0.0;
double ax = abs(x); // Kernels all anti-symmetric
int sign = (ax) ? static_cast<int>(x/ax) : 1; // Arbitrary choice for when x=0
switch (_order) {
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
throw SplinterpolatorException("get_dwgt: invalid order spline");
break;
case 2:
if (ax < 0.5) val = sign * -2.0*ax;
else if (ax < 1.5) val = sign * (-1.5 + ax);
break;
case 3:
if (ax < 1) val = sign * (1.5*ax*ax - 2.0*ax);
else if (ax < 2) { ax = 2-ax; val = sign * -0.5*ax*ax; }
break;
case 4:
if (ax < 0.5) val = sign * (ax*ax*ax - 1.25*ax);
else if (ax < 1.5) val = sign * (5.0/24.0 - ax*(2.5 - ax*(2.5 - (2.0/3.0)*ax)));
else if (ax < 2.5) { ax -= 2.5; val = sign * (1.0/6.0)*ax*ax*ax; }
break;
case 5:
if (ax < 1) val = sign * ax*(ax*(ax*(1-(5.0/12.0)*ax)) - 1);
else if (ax < 2) val = sign * (0.625 - ax*(3.5 - ax*(3.75 - ax*(1.5 - (5.0/24.0)*ax))));
else if (ax < 3) { ax -= 3; ax = ax*ax; val = sign * (-1.0/24.0)*ax*ax; }
break;
case 6:
if (ax < 0.5) { double xx = ax*ax; val = sign * ax*(xx*((7.0/12) - (1.0/6.0)*xx) - (77.0/96.0)); }
else if (ax < 1.5) {double xx = ax*ax; val = sign * (ax*(xx*(0.1250*xx + 1.3125) - 0.7109375) - xx*((35.0/48.0)*xx + (35.0/96.0)) - (7.0/768.0)); }
else if (ax < 2.5) { double xx = ax*ax; val = sign * ((1267.0/960.0) - ax*(xx*(0.05*xx + (21.0/8.0)) + (329.0/64.0)) + xx*((7.0/12.0)*xx + (133.0/24.0))); }
else if (ax < 3.5) { ax -= 3.5; double xx = ax*ax; val = sign * (1.0/120.0)*xx*xx*ax; }
break;
case 7:
if (ax < 1) { double xx = ax*ax; val = sign * ax*(xx*(xx*((7.0/144.0)*ax - (1.0/6.0)) + 4.0/9.0) - 2.0/3.0); }
else if (ax < 2) { double xx = ax*ax; val = sign * (ax*(xx*(xx*0.3 + 2.0) - 0.2) - xx*(xx*(xx*(7.0/240.0) + (7.0/6.0)) + (7.0/6.0)) - (7.0/90.0)); }
else if (ax < 3) { double xx = ax*ax; val = sign * (1.0/720.0)*(xx - 4.0*ax + 2.0)*(7.0*xx*xx - 92.0*xx*ax + 458.0*xx - 1024.0*ax + 868.0); }
else if (ax < 4) { ax = 4-ax; ax = ax*ax*ax; val = sign * (-1.0/720.0)*ax*ax; }
break;
default:
throw SplinterpolatorException("get_dwgt: invalid order spline");
break;
}
return(val);
}
template<class T>
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
inline void Splinterpolator<T>::get_dwgt1(const double * const *wgts, const double * const *dwgts,
const unsigned int *dd, unsigned int nd, unsigned int k,
unsigned int l, unsigned int m, double wgt1, double *dwgt1) const
{
for (unsigned int i=0; i<nd; i++) {
switch (dd[i]) {
case 2:
dwgt1[i] = wgts[4][m] * wgts[3][l] * dwgts[2][k];
break;
case 3:
dwgt1[i] = wgts[4][m] * dwgts[3][l] * wgts[2][k];
break;
case 4:
dwgt1[i] = dwgts[4][m] * wgts[3][l] * wgts[2][k];
break;
default:
dwgt1[i] = wgt1;
break;
}
}
}
template<class T>
inline std::pair<double,double> Splinterpolator<T>::range() const
{
std::pair<double,double> rng(0.0,0.0);
rng.second = static_cast<double>(_order+1.0)/2.0;
rng.first = - rng.second;
return(rng);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the value of the coefficient indexed by indx. Unlike the
// public Coef() this routine allows indexing outside the valid
// volume, returning values that are dependent on the extrapolation
// model when these are encountered.
//
// N.B. May change value of input index N.B.
//
/////////////////////////////////////////////////////////////////////
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
template<class T>
inline unsigned int Splinterpolator<T>::indx2indx(int indx, unsigned int d) const
{
if (d > (_ndim-1)) return(0);
if (indx < 0) {
switch (_et[d]) {
case Constant:
return(0);
break;
case Zeros: case Mirror:
return(1-indx);
break;
case Periodic:
return(_dim[d]+indx);
break;
default:
break;
}
}
else if (indx >= static_cast<int>(_dim[d])) {
switch (_et[d]) {
case Constant:
return(_dim[d]-1);
break;
case Zeros: case Mirror:
return(2*_dim[d]-indx-1);
break;
case Periodic:
return(indx-_dim[d]);
break;
default:
break;
}
}
return(indx);
}
template<class T>
unsigned int Splinterpolator<T>::indx2linear(int k, int l, int m) const
{
if (_ndim < 3) return(0);
int lindx = 0;
if (_ndim>4) lindx = indx2indx(m,4);
if (_ndim>3) lindx = _dim[3]*lindx + indx2indx(l,3);
lindx = _dim[0]*_dim[1]*(_dim[2]*lindx + indx2indx(k,2));
return(lindx);
}
template<class T>
inline unsigned int Splinterpolator<T>::add2linear(unsigned int lin, int j) const
{
if (_ndim < 2) return(lin);
else return(lin + _dim[0]*indx2indx(j,1));
}
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
template<class T>
T Splinterpolator<T>::coef(int *indx) const
{
// First fix any outside-volume indicies
for (unsigned int i=0; i<_ndim; i++) {
if (indx[i] < 0) {
switch (_et[i]) {
case Zeros:
return(static_cast<T>(0));
break;
case Constant:
indx[i] = 0;
break;
case Mirror:
indx[i] = 1-indx[i];
break;
case Periodic:
indx[i] = _dim[i]+indx[i];
break;
default:
break;
}
}
else if (indx[i] >= static_cast<int>(_dim[i])) {
switch (_et[i]) {
case Zeros:
return(static_cast<T>(0));
break;
case Constant:
indx[i] = _dim[i]-1;
break;
case Mirror:
indx[i] = 2*_dim[i]-indx[i]-1;
break;
case Periodic:
indx[i] = indx[i]-_dim[i];
break;
default:
break;
}
}
}
// Now make linear index
unsigned int lindx=indx[_ndim-1];
for (int i=_ndim-2; i>=0; i--) lindx = _dim[i]*lindx + indx[i];
return(coef_ptr()[lindx]);
}
template<class T>
bool Splinterpolator<T>::should_be_zero(const double *coord) const
{
for (unsigned int i=0; i<_ndim; i++) {
if (_et[i] == Zeros && (coord[i] < 0 || coord[i] > (_dim[i]-1))) return(true);
}
return(false);
}
template<class T>
unsigned int Splinterpolator<T>::n_nonzero(const unsigned int *vec) const
{
unsigned int n=0;
for (unsigned int i=0; i<_ndim; i++) if (vec[i]) n++;
return(n);
}
/////////////////////////////////////////////////////////////////////
//
// Takes care of the "common" tasks when constructing a
// Splinterpolator object. Called by constructors and by .Set()
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::common_construction(const T *data, const std::vector<unsigned int>& dim, unsigned int order, double prec, const std::vector<ExtrapolationType>& et, bool copy)
{
if (!dim.size()) throw SplinterpolatorException("common_construction: data has zeros dimensions");
if (!dim.size() > 5) throw SplinterpolatorException("common_construction: data cannot have more than 5 dimensions");
if (dim.size() != et.size()) throw SplinterpolatorException("common_construction: dim and et must have the same size");
for (unsigned int i=0; i<dim.size(); i++) if (!dim[i]) throw SplinterpolatorException("common_construction: data cannot have zeros size in any direction");
if (order > 7) throw SplinterpolatorException("common_construction: spline order must be lesst than 7");
if (!data) throw SplinterpolatorException("common_construction: zero data pointer");
_order = order;
_prec = prec;
_dim.resize(5);
_ndim = dim.size();
for (unsigned int i=0; i<5; i++) _dim[i] = (i < dim.size()) ? dim[i] : 1;
_own_coef = calc_coef(data,copy);
_valid = true;
}
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
/////////////////////////////////////////////////////////////////////
//
// Takes care of the "common" tasks when copy-constructing
// and when assigning.
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::assign(const Splinterpolator<T>& src)
{
_valid = src._valid;
_own_coef = src._own_coef;
_cptr = src._cptr;
_order = src._order;
_ndim = src._ndim;
_prec = src._prec;
_dim = src._dim;
_et = src._et;
if (_own_coef) { // If we need to do a deep copy
unsigned int ts = 1;
for (unsigned int i=0; i<_ndim; i++) ts *= _dim[i];
_coef = new T[ts];
memcpy(_coef,src._coef,ts*sizeof(T));
}
}
/////////////////////////////////////////////////////////////////////
//
// Performs deconvolution, converting signal to spline coefficients.
//
/////////////////////////////////////////////////////////////////////
template<class T>
bool Splinterpolator<T>::calc_coef(const T *data, bool copy)
if (_order < 2 && !copy) { _cptr = data; return(false); }
// Allocate memory and put the original data into _coef
unsigned int ts=1;
for (unsigned int i=0; i<_dim.size(); i++) ts *= _dim[i];
memcpy(_coef,data,ts*sizeof(T));
if (_order < 2) return(true); // If nearest neighbour or linear, that's all we need
// Loop over all non-singleton dimensions and deconvolve along them
//
std::vector<unsigned int> tdim(_dim.size()-1,0);
for (unsigned int cdir=0; cdir<_dim.size(); cdir++) {
if (_dim[cdir] > 1) deconv_along(cdir);
/////////////////////////////////////////////////////////////////////
//
// Performs deconvolution along one of the dimensions, visiting
// all points along the other dimensions.
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::deconv_along(unsigned int dim)
{
// Set up to reflect "missing" dimension
//
std::vector<unsigned int> rdim(4,1); // Sizes along remaining dimensions
std::vector<unsigned int> rstep(4,1); // Step-sizes (in "volume") of remaining dimensions
unsigned int mdim = 1; // Size along "missing" dimension
unsigned int mstep = 1; // Step-size along "missing" dimension
for (unsigned int i=0, j=0, ss=1; i<5; i++) {
if (i == dim) { // If it is our "missing" dimension
mdim = _dim[i];
mstep = ss;
}
else {
rdim[j] = _dim[i];
rstep[j++] = ss;
}
ss *= _dim[i];
}
SplineColumn col(mdim,mstep); // Column helps us do the job
for (unsigned int l=0; l<rdim[3]; l++) {
for (unsigned int k=0; k<rdim[2]; k++) {
for (unsigned int j=0; j<rdim[1]; j++) {
T *dp = _coef + l*rstep[3] + k*rstep[2] + j*rstep[1];
for (unsigned int i=0; i<rdim[0]; i++, dp+=rstep[0]) {
col.Get(dp); // Extract a column from the volume
col.Deconv(_order,_et[dim],_prec); // Deconvolve it
col.Set(dp); // Put back the deconvolved column
}
}
}
}
return;
}
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
/////////////////////////////////////////////////////////////////////
//
// Here starts private member functions for SplineColumn
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// This function returns the poles and scale-factors for splines
// of order 2--7. The values correspond to those found in
// table 1 in Unsers 1993 paper:
// B-spline signal processing. II. Efficiency design and applications
//
// The actual values have been taken from
// http://bigwww.epfl.ch/thevenaz/interpolation/coeff.c
//
/////////////////////////////////////////////////////////////////////
template<class T>
unsigned int Splinterpolator<T>::SplineColumn::get_poles(unsigned int order, double *z, unsigned int *sf) const
{
unsigned int np = 0; // # of poles
switch (order) {
case 2:
np = 1;
z[0] = 2.0*sqrt(2.0) - 3.0;
*sf = 8;
break;
case 3:
np = 1;
z[0] = sqrt(3.0) - 2.0;
*sf = 6;
break;
case 4:
np = 2;
z[0] = sqrt(664.0 - sqrt(438976.0)) + sqrt(304.0) - 19.0;
z[1] = sqrt(664.0 + sqrt(438976.0)) - sqrt(304.0) - 19.0;
*sf = 384;
break;
case 5:
np = 2;
z[0] = sqrt(135.0 / 2.0 - sqrt(17745.0 / 4.0)) + sqrt(105.0 / 4.0) - 13.0 / 2.0;
z[1] = sqrt(135.0 / 2.0 + sqrt(17745.0 / 4.0)) - sqrt(105.0 / 4.0) - 13.0 / 2.0;
*sf = 120;
break;
case 6:
np = 3;
z[0] = -0.48829458930304475513011803888378906211227916123938;
z[1] = -0.081679271076237512597937765737059080653379610398148;
z[2] = -0.0014141518083258177510872439765585925278641690553467;
*sf = 46080;
break;
case 7:
np = 3;
z[0] = -0.53528043079643816554240378168164607183392315234269;
z[1] = -0.12255461519232669051527226435935734360548654942730;
z[2] = -0.0091486948096082769285930216516478534156925639545994;
*sf = 5040;
break;
default:
throw SplinterpolatorException("SplineColumn::get_poles: invalid order of spline");
break;
}
return(np);
}
/////////////////////////////////////////////////////////////////////
//
// Initialises the first value for the forward sweep. The initialisation
// will always be an approximation (this is where the "infinite" in IIR
// breaks down) so the value will be calculated to a predefined precision.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::SplineColumn::init_fwd_sweep(double z, ExtrapolationType et, double prec) const
{
//
// Move logs away from here after debugging
//
unsigned int n = static_cast<unsigned int>((log(prec)/log(abs(z))) + 1.5);
n = (n > _sz) ? _sz : n;
double iv = _col[0];
if (et == Periodic) {
double *ptr=&_col[_sz-1];
double z2i=z;
for (unsigned int i=1; i<n; i++, ptr--, z2i*=z) iv += z2i * *ptr;
}
else {
double z2i=z;
for (unsigned int i=1; i<n; i++, ptr++, z2i*=z) iv += z2i * *ptr;
}
return(iv);
}
/////////////////////////////////////////////////////////////////////
//
// Initialises the first value for the backward sweep. The initialisation
// will always be an approximation (this is where the "infinite" in IIR
// breaks down) so the value will be calculated to a predefined precision.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::SplineColumn::init_bwd_sweep(double z, double lv, ExtrapolationType et, double prec) const
{
double iv = 0.0;
unsigned int n = static_cast<unsigned int>((log(prec)/log(abs(z))) + 1.5);
n = (n > _sz) ? _sz : n;
iv = z * _col[_sz-1];
double z2i = z*z;
double *ptr=_col;
for (unsigned int i=1; i<n; i++, ptr++, z2i*=z) {
iv += z2i * *ptr;
}
iv /= (z2i-1.0);
}
else {
iv = -z/(1.0-z*z) * (2.0*_col[_sz-1] - lv);
}
return(iv);
}
} // End namespace SPLINTERPOLATOR
#endif // End #ifndef splinterpolator.h