Skip to content
Snippets Groups Projects
miscmaths.cc 49.4 KiB
Newer Older
Christian Beckmann's avatar
Christian Beckmann committed
/*  miscmaths.cc

Tim Behrens's avatar
Tim Behrens committed
    Mark Jenkinson & Mark Woolrich & Christian Beckmann & Tim Behrens, FMRIB Image Analysis Group
Christian Beckmann's avatar
Christian Beckmann committed

    Copyright (C) 1999-2000 University of Oxford  */

/*  CCOPYRIGHT  */

// Miscellaneous maths functions

#include "miscmaths.h"
#include "stdlib.h"
#include "newmatio.h"
Christian Beckmann's avatar
Christian Beckmann committed

using namespace std;

namespace MISCMATHS {

  // The following lines are ignored by the current SGI compiler
  //  (version egcs-2.91.57)
  // A temporary fix of including the std:: in front of all abs() etc
  //  has been done for now
  using std::abs;
  using std::sqrt;
  using std::exp;
  using std::log;
  //  using std::pow;
  using std::atan2;

Mark Jenkinson's avatar
Mark Jenkinson committed

  string size(const Matrix& mat)
  {
    string str = num2str(mat.Nrows())+"*"+num2str(mat.Ncols());
        
    return str;
  }



Mark Jenkinson's avatar
Mark Jenkinson committed
  float Sinc(const float x) {
    if (fabs(x)<1e-9) {
      return 1-x*x*M_PI*M_PI/6.0;
    } else {
      return sin(M_PI*x)/(M_PI*x);
    }
  }

  double Sinc(const double x) {
    if (fabs(x)<1e-9) {
      return 1-x*x*M_PI*M_PI/6.0;
    } else {
      return sin(M_PI*x)/(M_PI*x);
    }
  }


Christian Beckmann's avatar
Christian Beckmann committed
  // General string/IO functions

  bool isnum(const string& str)
  {
    // assumes that initial whitespace has been removed
    if (isdigit(str[0])) return true;
    if ( (str[0]=='-') || (str[0]=='+') || (str[0]=='.') )  return true;
    return false;
  }
    
  string skip_alpha(ifstream& fs) 
  {
    string cline;
    while (!fs.eof()) {
      getline(fs,cline);
      cline += " "; // force extra entry in parsing
      istrstream ss(cline.c_str());
      string cc="";
      ss >> cc;
      if (isnum(cc)) {
	fs.seekg(-((int)cline.size()),ios::cur);
	return cline;
      }
    }
    return "";
  }

  ReturnMatrix read_ascii_matrix(int nrows, int ncols, const string& filename)
  {
    return read_ascii_matrix(filename,nrows,ncols);
  }


  ReturnMatrix read_ascii_matrix(const string& filename, int nrows, int ncols)
  {
    Matrix mat(nrows,ncols);
    mat = 0.0;
  
    if ( filename.size()<1 ) return mat;
    ifstream fs(filename.c_str());
    if (!fs) { 
      cerr << "Could not open matrix file " << filename << endl;
      return mat;
    }
    mat = read_ascii_matrix(fs,nrows,ncols);
    fs.close();
    mat.Release();
    return mat;
  }

  ReturnMatrix read_ascii_matrix(int nrows, int ncols, ifstream& fs)
  {
    return read_ascii_matrix(fs, nrows, ncols);
  }

  ReturnMatrix read_ascii_matrix(ifstream& fs, int nrows, int ncols)
  {
    Matrix mat(nrows,ncols);
    mat = 0.0;
    string ss="";
  
    ss = skip_alpha(fs);
    for (int r=1; r<=nrows; r++) {
      for (int c=1; c<=ncols; c++) {
	if (!fs.eof()) {
	  fs >> ss;
	  while ( !isnum(ss) && !fs.eof() ) {
	    fs >> ss;
	  }
Christian Beckmann's avatar
Christian Beckmann committed
	}
      }
    }
    mat.Release();
    return mat;
  }

  
  ReturnMatrix read_ascii_matrix(const string& filename)
  {
    Matrix mat;
    if ( filename.size()<1 ) return mat;
    ifstream fs(filename.c_str());
    if (!fs) { 
      cerr << "Could not open matrix file " << filename << endl;
      mat.Release();
      return mat;
    }
    mat = read_ascii_matrix(fs);
    fs.close();
    mat.Release();
    return mat;
  }


  ReturnMatrix read_ascii_matrix(ifstream& fs)
  {
    int rcount=0, cmax=0;
    string cline;
    // skip initial non-numeric lines
    //  and count the number of columns in the first numeric line
    cline = skip_alpha(fs);
    cline += " ";
    {
      istrstream ss(cline.c_str());
      string cc="";
      while (!ss.eof()) {
	cmax++;
	ss >> cc;
      }
    }
    cmax--;

Christian Beckmann's avatar
Christian Beckmann committed
      getline(fs,cline);
      cline += " "; // force extra entry in parsing
      istrstream ss(cline.c_str());
      string cc="";
      ss >> cc;
      if (!isnum(cc)) break;  // stop processing when non-numeric line found
      rcount++;  // add new row to matrix
    // now know the size of matrix
    fs.clear();
    fs.seekg(0,ios::beg);    
    return read_ascii_matrix(fs,rcount,cmax);

Christian Beckmann's avatar
Christian Beckmann committed
  }

#define BINFLAG 42

  ReturnMatrix read_binary_matrix(const string& filename)
  {
    Matrix mat;
    if ( filename.size()<1 ) return mat;
    ifstream fs(filename.c_str(), ios::in | ios::binary);
    if (!fs) { 
      cerr << "Could not open matrix file " << filename << endl;
      return mat;
    }
    mat = read_binary_matrix(fs);
    fs.close();
    mat.Release();
    return mat;
  }


  ReturnMatrix read_binary_matrix(ifstream& fs)
  {
    bool swapbytes = false;
    unsigned int testval;
Christian Beckmann's avatar
Christian Beckmann committed
    // test for byte swapping
    fs.read((char*)&testval,sizeof(testval));
    if (testval!=BINFLAG) {
      swapbytes = true;
      Swap_Nbytes(1,sizeof(testval),&testval);
      if (testval!=BINFLAG) { 
	cerr << "Unrecognised binary matrix file format" << endl;
	Matrix mres;
	mres.Release();
	return mres;
      }
Christian Beckmann's avatar
Christian Beckmann committed
    }

    // read matrix dimensions (num rows x num cols)
Christian Beckmann's avatar
Christian Beckmann committed
    fs.read((char*)&ival,sizeof(ival));
    // ignore the padding (reserved for future use)
    fs.read((char*)&ival,sizeof(ival));
    if (swapbytes) Swap_Nbytes(1,sizeof(ival),&ival);
Christian Beckmann's avatar
Christian Beckmann committed
    nx = ival;
    fs.read((char*)&ival,sizeof(ival));
    if (swapbytes) Swap_Nbytes(1,sizeof(ival),&ival);
Christian Beckmann's avatar
Christian Beckmann committed
    ny = ival;

    // set up and read matrix (rows fast, cols slow)
Christian Beckmann's avatar
Christian Beckmann committed
    Matrix mres(nx,ny);
    for (unsigned int y=1; y<=ny; y++) {
      for (unsigned int x=1; x<=nx; x++) {
Christian Beckmann's avatar
Christian Beckmann committed
	fs.read((char*)&val,sizeof(val));
	if (swapbytes) Swap_Nbytes(1,sizeof(val),&val);
Christian Beckmann's avatar
Christian Beckmann committed
	mres(x,y)=val;
      }
    }
    
    mres.Release();
    return mres;
  }


  // WRITE FUNCTIONS //


  int write_ascii_matrix(const string& filename, const Matrix& mat, 
			 int precision)
  {
    return write_ascii_matrix(mat, filename, precision);
  }

  int write_ascii_matrix(const Matrix& mat, const string& filename, 
			 int precision)
  {
    Tracer tr("write_ascii_matrix");
    if ( (filename.size()<1) ) return -1;
    ofstream fs(filename.c_str());
    if (!fs) { 
      cerr << "Could not open file " << filename << " for writing" << endl;
      return -1;
    }
    int retval = write_ascii_matrix(mat,fs,precision);
    fs.close();
    return retval;
  }

  int write_ascii_matrix(ofstream& fs, const Matrix& mat, 
			 int precision)
  {
    return write_ascii_matrix(mat, fs, precision);
  }
  
  int write_ascii_matrix(const Matrix& mat, ofstream& fs, int precision)
  {
    for (int i=1; i<=mat.Nrows(); i++) {
      for (int j=1; j<=mat.Ncols(); j++) {
	if (precision>0)  { 
	  fs.setf(ios::scientific | ios::showpos); 
	  fs.precision(precision+7);  
	  fs.precision(precision); } 
	fs << mat(i,j) << "  ";
      }
      fs << endl;
    }
    return 0;
  }
  
  int write_vest(string p_fname, const Matrix& x, int precision)
     { return write_vest(x,p_fname,precision); } 

  int write_vest(const Matrix& x, string p_fname, int precision)
  {
    ofstream out;
    out.open(p_fname.c_str(), ios::out);
    
    if(!out)
      {
	cerr << "Unable to open " << p_fname << endl;
	return -1;
      }

    out << "! VEST-Waveform File" << endl;
    out << "/NumWaves\t" << x.Ncols() << endl;
    out << "/NumPoints\t" << x.Nrows() << endl;
    out << "/Skip" << endl;
    out << endl << "/Matrix" << endl;

    int retval = write_ascii_matrix(x, out, precision);

    out.close();

    return retval;
  }


  int write_binary_matrix(const Matrix& mat, const string& filename)
  {
    Tracer tr("write_binary_matrix");
    if ( (filename.size()<1) ) return -1;
    ofstream fs(filename.c_str(), ios::out | ios::binary);
    if (!fs) { 
      cerr << "Could not open file " << filename << " for writing" << endl;
      return -1;
    }
    int retval = write_binary_matrix(mat,fs);
    fs.close();
    return retval;
  }


  int write_binary_matrix(const Matrix& mat, ofstream& fs)
  {
Christian Beckmann's avatar
Christian Beckmann committed

    ival = BINFLAG;
    fs.write((char*)&ival,sizeof(ival));
    ival = 0;  // padding (reserved for future use)
    fs.write((char*)&ival,sizeof(ival));
Christian Beckmann's avatar
Christian Beckmann committed
    ival = mat.Nrows();
    fs.write((char*)&ival,sizeof(ival));
    ival = mat.Ncols();
    fs.write((char*)&ival,sizeof(ival));

    nx = mat.Nrows();
    ny = mat.Ncols();

    double val;
    for (unsigned int y=1; y<=ny; y++) {
      for (unsigned int x=1; x<=nx; x++) {
Christian Beckmann's avatar
Christian Beckmann committed
	val = mat(x,y);
	fs.write((char*)&val,sizeof(val));
      }
    }

    return 0;
  }


  // General mathematical functions

  int round(int x) { return x; }

  int round(float x) 
    { 
      if (x>0.0) return ((int) (x+0.5));
      else       return ((int) (x-0.5));
    }

   int round(double x) 
   { 
     if (x>0.0) return ((int) (x+0.5));
     else       return ((int) (x-0.5));
Tim Behrens's avatar
Tim Behrens committed
  
  double rounddouble(double x){
    return ( floor(x+0.5));
  }
Christian Beckmann's avatar
Christian Beckmann committed
  int periodicclamp(int x, int x1, int x2)
   {
     if (x2<x1) return periodicclamp(x,x2,x1);
     int d = x2-x1+1;
     int xp = x-x1;
     if (xp>=0) {
       return (xp % d) + x1;
     } else {
       xp = xp + d + std::abs(xp/d)*d;
       assert(xp>0);
       return periodicclamp(xp + d + std::abs(xp/d)*d,x1,x2);
     }
   }

  ColumnVector cross(const ColumnVector& a, const ColumnVector& b)
    {
      Tracer tr("cross");
      ColumnVector ans(3);
      ans(1) = a(2)*b(3) - a(3)*b(2);
      ans(2) = a(3)*b(1) - a(1)*b(3);
      ans(3) = a(1)*b(2) - a(2)*b(1);
      return ans;
    }


  ColumnVector cross(const Real *a, const Real *b)
    {
      Tracer tr("cross");
      ColumnVector a1(3), b1(3);
      a1 << a;
      b1 << b;
      return cross(a1,b1);
    }


  double norm2(const ColumnVector& x)
    {
      return std::sqrt(x.SumSquare());
    }

  double norm2(double a, double b, double c)
    {
	return a*a + b*b + c*c;
    }

  float norm2(float a, float b, float c)
    {
	return a*a + b*b + c*c;
    }
Christian Beckmann's avatar
Christian Beckmann committed

  int Identity(Matrix& m)
    {
      Tracer tr("Identity");
      m=0.0;
      for (int j=1; j<=m.Nrows(); j++)
	m(j,j)=1.0;
      return 0;
    }

  ReturnMatrix Identity(int num)
    {
      Tracer tr("Identity");
      Matrix eye(num,num);
      Identity(eye);
      eye.Release();
      return eye;
    }


  int diag(Matrix& m, const float diagvals[])
    {
      Tracer tr("diag");
      m=0.0;
      for (int j=1; j<=m.Nrows(); j++)
	m(j,j)=diagvals[j-1];
      return 0;
    }


Mark Woolrich's avatar
Mark Woolrich committed
  int diag(DiagonalMatrix& m, const ColumnVector& diagvals)
    {
      Tracer tr("diag");

      m.ReSize(diagvals.Nrows());
      m=0.0;
      for (int j=1; j<=diagvals.Nrows(); j++)
	m(j)=diagvals(j);
      return 0;
    }

Christian Beckmann's avatar
Christian Beckmann committed
  int diag(Matrix& m, const ColumnVector& diagvals)
    {
      Tracer tr("diag");
Mark Woolrich's avatar
Mark Woolrich committed
      
      m.ReSize(diagvals.Nrows(),diagvals.Nrows());
Christian Beckmann's avatar
Christian Beckmann committed
      m=0.0;
Mark Woolrich's avatar
Mark Woolrich committed
      for (int j=1; j<=diagvals.Nrows(); j++)
Christian Beckmann's avatar
Christian Beckmann committed
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	m(j,j)=diagvals(j);
      return 0;
    }

  ReturnMatrix diag(const Matrix& Mat)
    {
      Tracer tr("diag");
      if(Mat.Ncols()==1){
	Matrix retmat(Mat.Nrows(),Mat.Nrows());
	diag(retmat,Mat);
	retmat.Release();
	return retmat;}
      else{
	int mindim = Min(Mat.Ncols(),Mat.Nrows());
	Matrix retmat(mindim,1);
	for(int ctr=1; ctr<=mindim;ctr++){
	  retmat(ctr,1)=Mat(ctr,ctr);
	}
	retmat.Release();
	return retmat;
      }
    }

  ReturnMatrix pinv(const Matrix& mat)
    {
      // calculates the psuedo-inverse using SVD
      Tracer tr("pinv");
      DiagonalMatrix D;
      Matrix U, V;
      SVD(mat,D,U,V);
      float tol;
      tol = MaximumAbsoluteValue(D) * Max(mat.Nrows(),mat.Ncols()) * 1e-16;
      for (int n=1; n<=D.Nrows(); n++) {
	if (fabs(D(n,n))>tol)  D(n,n) = 1.0/D(n,n);
      }
      Matrix pinv = V * D * U.t();
      pinv.Release();
      return pinv;
    }


  ReturnMatrix sqrtaff(const Matrix& mat)
    {
      Tracer tr("sqrtaff");
      Matrix matnew(4,4), rot(4,4), id4(4,4);
      Identity(rot);
      Identity(id4);
      ColumnVector params(12), centre(3), trans(4);
      centre = 0.0;
      // Quaternion decomposition -> params(1..3) = sin(theta/2)*(unit_axis_vec)
      // Want a new quaternion : q = sin(theta/4)*(unit_axis_vec)
      // Therefore factor of conversion is: factor = sin(theta/4)/sin(theta/2)
      //      = 1/(2  * cos(theta/4))   which is calculated below
      //  NB: t = theta/2
      decompose_aff(params,mat,centre,rotmat2quat);
      double sint;
      sint = std::sqrt(params(1)*params(1) + params(2)*params(2) + 
		  params(3)*params(3));
      double t = asin(sint);
      double factor = 1.0/(2.0*cos(0.5*t));
      params(1) = factor * params(1);
      params(2) = factor * params(2);
      params(3) = factor * params(3);
      params(7) = std::sqrt(params(7));
      params(8) = std::sqrt(params(8));
      params(9) = std::sqrt(params(9));
      params(10) = 0.5*params(10);
      params(11) = 0.5*params(11);
      params(12) = 0.5*params(12);

      construct_rotmat_quat(params,3,rot,centre);
      rot(1,4) = 0.0;
      rot(2,4) = 0.0;
      rot(3,4) = 0.0;
      
      Matrix scale(4,4);
      Identity(scale);
      scale(1,1)=params(7);
      scale(2,2)=params(8);
      scale(3,3)=params(9);

      Matrix skew(4,4);
      Identity(skew);
      skew(1,2)=params(10);
      skew(1,3)=params(11);
      skew(2,3)=params(12);

      trans(1) = params(4);
      trans(2) = params(5);
      trans(3) = params(6);
      trans(4) = 1.0;

      // The translation, being independent of the 3x3 submatrix, is
      //  calculated so that it will be equal for each of the two 
      //  halves of the approximate square root 
      //  (i.e. matnew and mat*matnew.i() have exactly the same translation)
      ColumnVector th(4);
      th = (mat*scale.i()*skew.i()*rot.i() + id4).SubMatrix(1,3,1,3).i() 
	* trans.SubMatrix(1,3,1,1);

      matnew = rot*skew*scale;
      matnew(1,4) = th(1);
      matnew(2,4) = th(2);
      matnew(3,4) = th(3);

      matnew.Release();
      return matnew;
    }


  //------------------------------------------------------------------------//

  // Handy MATLAB-like functions
  
  void reshape(Matrix& r, const Matrix& m, int nrows, int ncols)
    {
      Tracer tr("reshape");
      if (nrows*ncols != m.Nrows() * m.Ncols() ) {
	cerr << "WARNING: cannot reshape " << m.Nrows() << "x"
	     << m.Ncols() << " matrix into " << nrows << "x" 
	     << ncols << endl;
	cerr << " Returning original matrix instead" << endl;
	r = m;
	return;
      }
      r.ReSize(nrows,ncols);
      int rr = 1, rc = 1;
      for (int mc=1; mc<=m.Ncols(); mc++) {
	for (int mr=1; mr<=m.Nrows(); mr++) {
	  r(rr,rc) = m(mr,mc);
	  rr++;
	  if (rr>nrows) {
	    rc++;
	    rr=1;
	  }
	}
      }
    }

  ReturnMatrix reshape(const Matrix& m, int nrows, int ncols)
    {
      Tracer tr("reshape");
     
      Matrix r; 
      
      reshape(r,m,nrows,ncols);

      r.Release();
      return r;
    }

  //------------------------------------------------------------------------//


  // Spatial transformation functions (rotations and affine transforms)


  int construct_rotmat_euler(const ColumnVector& params, int n, Matrix& aff,
			     const ColumnVector& centre)
    {
      Tracer tr("construct_rotmat_euler");
      ColumnVector angl(3);
      Matrix newaff(4,4);
      Identity(aff);

      if (n<=0) return 0;
      // order of parameters is 3 rotation + 3 translation
      // angles are in radians 
      //  order of parameters is (Rx,Ry,Rz) and R = Rx.Ry.Rz
      angl=0.0;
      angl(1)=params(1);
      make_rot(angl,centre,newaff);
      aff = aff * newaff;
      if (n==1) return 0;

      angl=0.0;
      angl(2)=params(2);
      make_rot(angl,centre,newaff);
      aff = aff * newaff; 
      if (n==2) return 0;

      angl=0.0;
      angl(3)=params(3);
      make_rot(angl,centre,newaff);
      aff = aff * newaff;
      if (n==3) return 0;

      aff(1,4)+=params(4);
      if (n==4) return 0;
      aff(2,4)+=params(5);
      if (n==5) return 0;
      aff(3,4)+=params(6);
      if (n==6) return 0;

      return 1;
    }  

  int construct_rotmat_euler(const ColumnVector& params, int n, Matrix& aff)
    {
      Tracer tr("construct_rotmat_euler");
      ColumnVector centre(3);
      centre = 0.0;
      return construct_rotmat_euler(params,n,aff,centre);
    }


  int construct_rotmat_quat(const ColumnVector& params, int n, Matrix& aff,
			    const ColumnVector& centre)
    {
      Tracer tr("construct_rotmat_quat");
      Identity(aff);

      if (n<=0) return 0;
      // order of parameters is 3 rotation (last 3 quaternion components) 
      //  + 3 translation

      if ((n>=1) && (n<3)) { cerr<<"Can only do 3 or more, not "<< n <<endl; }
      float w, w2 = 1.0 - Sqr(params(1)) - Sqr(params(2)) - Sqr(params(3));
      if (w2 < 0.0) {
	cerr << "Parameters do not form a valid axis - greater than unity\n";
	return -1;
      }
      w = std::sqrt(w2);
      float x=params(1), y=params(2), z=params(3);
      aff(1,1) = 1 - 2*y*y - 2*z*z;
      aff(2,2) = 1 - 2*x*x - 2*z*z;
      aff(3,3) = 1 - 2*x*x - 2*y*y;
      aff(1,2) = 2*x*y - 2*w*z;
      aff(2,1) = 2*x*y + 2*w*z;
      aff(1,3) = 2*x*z + 2*w*y;
      aff(3,1) = 2*x*z - 2*w*y;
      aff(2,3) = 2*y*z - 2*w*x;
      aff(3,2) = 2*y*z + 2*w*x;

      // Given Rotation matrix R:  x' = Rx + (I-R)*centre
      ColumnVector trans(3);
      trans = aff.SubMatrix(1,3,1,3)*centre;
      aff.SubMatrix(1,3,4,4) = centre - trans;

      aff(1,4) += params(4);
      if (n==4) return 0;
      aff(2,4) += params(5);
      if (n==5) return 0;
      aff(3,4) += params(6);
      if (n==6) return 0;

      return 1;
    }  

  int construct_rotmat_quat(const ColumnVector& params, int n, Matrix& aff)
    {
      Tracer tr("construct_rotmat_quat");
      ColumnVector centre(3);
      centre = 0.0;
      return construct_rotmat_quat(params,n,aff,centre);
    }

  int make_rot(const ColumnVector& angl, const ColumnVector& centre, 
	       Matrix& rot)
    {
      // Matrix rot must be 4x4; angl and orig must be length 3
      Tracer tr("make_rot");
      Identity(rot);  // default return value
      float theta;
      theta = norm2(angl);
      if (theta<1e-8) {  // avoid round-off errors and return Identity
	return 0;
      }
      ColumnVector axis = angl/theta;
      ColumnVector x1(3), x2(3), x3(3);
      x1 = axis;
      x2(1) = -axis(2);  x2(2) = axis(1);  x2(3) = 0.0;
      if (norm2(x2)<=0.0) {
	x2(1) = 1.0;  x2(2) = 0.0;  x2(3) = 0.0;
      }
      x2 = x2/norm2(x2);
      x3 = cross(x1,x2);
      x3 = x3/norm2(x3);

      Matrix basischange(3,3);
      basischange.SubMatrix(1,3,1,1) = x2;
      basischange.SubMatrix(1,3,2,2) = x3;
      basischange.SubMatrix(1,3,3,3) = x1;

      Matrix rotcore(3,3);
      Identity(rotcore);
      rotcore(1,1)=cos(theta);
      rotcore(2,2)=cos(theta);
      rotcore(1,2)=sin(theta);
      rotcore(2,1)=-sin(theta);

      rot.SubMatrix(1,3,1,3) = basischange * rotcore * basischange.t();
  
      Matrix ident3(3,3);
      Identity(ident3);
      ColumnVector trans(3);
      trans = (ident3 - rot.SubMatrix(1,3,1,3))*centre;
      rot.SubMatrix(1,3,4,4)=trans;
      return 0;
    }


  int getrotaxis(ColumnVector& axis, const Matrix& rotmat)
    {
      Tracer tr("getrotaxis");
      Matrix residuals(3,3);
      residuals = rotmat*rotmat.t() - Identity(3);
      if (residuals.SumSquare() > 1e-4)
	{ cerr << "Failed orthogonality check!" << endl;  return -1; }
      Matrix u(3,3), v(3,3);
      DiagonalMatrix d(3);
      SVD(rotmat-Identity(3),d,u,v);
      // return column of V corresponding to minimum value of |S|
      for (int i=1; i<=3; i++) {
	if (fabs(d(i))<1e-4)  axis = v.SubMatrix(1,3,i,i);
      }
      return 0;
    }  
  

  int rotmat2euler(ColumnVector& angles, const Matrix& rotmat)
    {
      // uses the convention that R = Rx.Ry.Rz
      Tracer tr("rotmat2euler");
      float cz, sz, cy, sy, cx, sx;
      cy = std::sqrt(Sqr(rotmat(1,1)) + Sqr(rotmat(1,2)));
      if (cy < 1e-4) {
	//cerr << "Cos y is too small - Gimbal lock condition..." << endl;
	cx = rotmat(2,2);
	sx = -rotmat(3,2);
	sy = -rotmat(1,3);
	angles(1) = atan2(sx,cx);
	angles(2) = atan2(sy,(float)0.0);
	angles(3) = 0.0;
      } else {
	// choose by convention that cy > 0
	// get the same rotation if: sy stays same & all other values swap sign
	cz = rotmat(1,1)/cy;
	sz = rotmat(1,2)/cy;
	cx = rotmat(3,3)/cy;
	sx = rotmat(2,3)/cy;
	sy = -rotmat(1,3);
	//atan2(sin,cos)  (defined as atan2(y,x))
	angles(1) = atan2(sx,cx);
	angles(2) = atan2(sy,cy);
	angles(3) = atan2(sz,cz);
      }
      return 0;
    }


  int rotmat2quat(ColumnVector& quaternion, const Matrix& rotmat)
    {
      Tracer tr("rotmat2quat");

      float trace = rotmat.SubMatrix(1,3,1,3).Trace();
	
      if (trace > 0) {
	float w = std::sqrt((trace + 1.0)/4.0);
	quaternion(1) = (rotmat(3,2) - rotmat(2,3))/(4.0*w);
	quaternion(2) = (rotmat(1,3) - rotmat(3,1))/(4.0*w);
	quaternion(3) = (rotmat(2,1) - rotmat(1,2))/(4.0*w);
      } else if ((rotmat(1,1) > rotmat(2,2)) && (rotmat(1,1) > rotmat(3,3))) {
	// first col case
	float s = std::sqrt(1.0 + rotmat(1,1) - rotmat(2,2) - rotmat(3,3)) * 2.0;
	quaternion(1) = 0.5 / s;
	quaternion(2) = (-rotmat(1,2) - rotmat(1,2)) / s;
	quaternion(3) = (-rotmat(1,3) - rotmat(3,1)) / s;
      } else if ((rotmat(2,2) > rotmat(1,1)) && (rotmat(2,2) > rotmat(3,3))) {
	// 2nd col case
	float s = std::sqrt(1.0 + rotmat(2,2) - rotmat(1,1) - rotmat(3,3)) * 2.0;
	quaternion(1) = (-rotmat(1,2) - rotmat(2,1)) / s;
	quaternion(2) = 0.5 / s;
	quaternion(3) = (-rotmat(2,3) - rotmat(3,2)) / s;
      } else if ((rotmat(3,3) > rotmat(1,1)) && (rotmat(3,3) > rotmat(2,2))) {
	// 3rd col case
	float s = std::sqrt(1.0 + rotmat(3,3) - rotmat(1,1) - rotmat(2,2)) * 2.0;
	quaternion(1) = (-rotmat(1,3) - rotmat(3,1)) / s;
	quaternion(2) = (-rotmat(2,3) - rotmat(3,2)) / s;
	quaternion(3) = 0.5 / s;
      }
      return 0;
    }


  int decompose_aff(ColumnVector& params, const Matrix& affmat, 
		    const ColumnVector& centre,
		    int (*rotmat2params)(ColumnVector& , const Matrix& ))
    {
      // decomposes using the convention: mat = rotmat * skew * scale
      // order of parameters is 3 rotation + 3 translation + 3 scales + 3 skews
      // angles are in radians
      Tracer tr("decompose_aff");
      if (params. Nrows() < 12)
	params.ReSize(12);
      if (rotmat2params==0)  
	{ 
	  cerr << "No rotmat2params function specified" << endl;  
	  return -1; 
	}
      ColumnVector x(3), y(3), z(3);
      Matrix aff3(3,3);
      aff3 = affmat.SubMatrix(1,3,1,3);
      x = affmat.SubMatrix(1,3,1,1);
      y = affmat.SubMatrix(1,3,2,2);
      z = affmat.SubMatrix(1,3,3,3);
      float sx, sy, sz, a, b, c;
      sx = norm2(x);
      sy = std::sqrt( dot(y,y) - (Sqr(dot(x,y)) / Sqr(sx)) );
      a = dot(x,y)/(sx*sy);
      ColumnVector x0(3), y0(3);
      x0 = x/sx;
      y0 = y/sy - a*x0;
      sz = std::sqrt(dot(z,z) - Sqr(dot(x0,z)) - Sqr(dot(y0,z)));
      b = dot(x0,z)/sz;
      c = dot(y0,z)/sz;
      params(7) = sx;  params(8) = sy;  params(9) = sz;
      Matrix scales(3,3);
      float diagvals[] = {sx,sy,sz};
      diag(scales,diagvals);
      Real skewvals[] = {1,a,b,0 , 0,1,c,0 , 0,0,1,0 , 0,0,0,1}; 
      Matrix skew(4,4);
      skew  << skewvals;
      params(10) = a;  params(11) = b;  params(12) = c;
      Matrix rotmat(3,3);
      rotmat = aff3 * scales.i() * (skew.SubMatrix(1,3,1,3)).i();
      ColumnVector transl(3);
      //transl = affmat.SubMatrix(1,3,4,4);
      //transl = transl - (Identity(3) - rotmat)*centre;
      transl = affmat.SubMatrix(1,3,1,3)*centre + affmat.SubMatrix(1,3,4,4)
	         - centre;
      for (int i=1; i<=3; i++)  { params(i+3) = transl(i); }
      ColumnVector rotparams(3);
      (*rotmat2params)(rotparams,rotmat);
      for (int i=1; i<=3; i++)  { params(i) = rotparams(i); }
      return 0;
    }

  int decompose_aff(ColumnVector& params, const Matrix& affmat, 
		    int (*rotmat2params)(ColumnVector& , const Matrix& ))
    {
      Tracer tr("decompose_aff");
      ColumnVector centre(3);
      centre = 0.0;
      return decompose_aff(params,affmat,centre,rotmat2params);
    }



  int compose_aff(const ColumnVector& params, int n, const ColumnVector& centre,
		  Matrix& aff, 
		  int (*params2rotmat)(const ColumnVector& , int , Matrix& ,
			     const ColumnVector& ) )
    {
      Tracer tr("compose_aff");
      if (n<=0) return 0;
      // order of parameters is 3 rotation + 3 translation + 3 scales + 3 skews
      // angles are in radians

      (*params2rotmat)(params,n,aff,centre);
  
      if (n<=6)  return 0;
  
      Matrix scale(4,4);
      Identity(scale);
      if (n>=7) {
	scale(1,1)=params(7);
	if (n>=8) scale(2,2)=params(8);
	else      scale(2,2)=params(7);
	if (n>=9) scale(3,3)=params(9);
	else      scale(3,3)=params(7);
      }
      // fix the translation so that the centre is not moved
      ColumnVector strans(3);
      strans = centre - scale.SubMatrix(1,3,1,3)*centre;
      scale.SubMatrix(1,3,4,4) = strans;

      Matrix skew(4,4);
      Identity(skew);
      if (n>=10) {
	if (n>=10) skew(1,2)=params(10);
	if (n>=11) skew(1,3)=params(11);
	if (n>=12) skew(2,3)=params(12);
      }
      // fix the translation so that the centre is not moved
      ColumnVector ktrans(3);
      ktrans = centre - skew.SubMatrix(1,3,1,3)*centre;
      skew.SubMatrix(1,3,4,4) = ktrans;

      aff = aff * skew * scale;

      return 0;
    }


float rms_deviation(const Matrix& affmat1, const Matrix& affmat2, 
		    const ColumnVector& centre, const float rmax) 
{
  Tracer trcr("rms_deviation");
  Matrix isodiff(4,4);
  try {
    isodiff = affmat1*affmat2.i() - Identity(4);
  } catch(...) {
    cerr << "RMS_DEVIATION ERROR:: Could not invert matrix" << endl;  
    exit(-5); 
  }
  Matrix adiff(3,3);
  adiff = isodiff.SubMatrix(1,3,1,3);
  ColumnVector tr(3);
  tr = isodiff.SubMatrix(1,3,4,4) + adiff*centre;
  float rms = std::sqrt( (tr.t() * tr).AsScalar() + 
		    (rmax*rmax/5.0)*Trace(adiff.t()*adiff) );
  return rms;
}


float rms_deviation(const Matrix& affmat1, const Matrix& affmat2, 
		    const float rmax) 
{
  ColumnVector centre(3);