Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
const ColumnVector& centre, const float rmax)
{
Tracer trcr("rms_deviation");
Matrix isodiff(4,4);
try {
isodiff = affmat1*affmat2.i() - Identity(4);
} catch(...) {
cerr << "RMS_DEVIATION ERROR:: Could not invert matrix" << endl;
exit(-5);
}
Matrix adiff(3,3);
adiff = isodiff.SubMatrix(1,3,1,3);
ColumnVector tr(3);
tr = isodiff.SubMatrix(1,3,4,4) + adiff*centre;
float rms = std::sqrt( (tr.t() * tr).AsScalar() +
(rmax*rmax/5.0)*Trace(adiff.t()*adiff) );
return rms;
}
float rms_deviation(const Matrix& affmat1, const Matrix& affmat2,
const float rmax)
{
ColumnVector centre(3);
centre = 0;
return rms_deviation(affmat1,affmat2,centre,rmax);
}
// helper function - calls nifti, but with FSL default case
Mark Jenkinson
committed
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
Matrix Mat44ToNewmat(mat44 m)
{
Matrix r(4,4);
for(unsigned short i = 0; i < 4; ++i)
for(unsigned short j = 0; j < 4; ++j)
r(i+1, j+1) = m.m[i][j];
return r;
}
mat44 NewmatToMat44(const Matrix& m)
{
mat44 r;
for(unsigned short i = 0; i < 4; ++i)
for(unsigned short j = 0; j < 4; ++j)
r.m[i][j] = m(i+1, j+1);
return r;
}
void get_axis_orientations(const Matrix& sform_mat, int sform_code,
const Matrix& qform_mat, int qform_code,
int& icode, int& jcode, int& kcode)
Matrix vox2mm(4,4);
if (sform_code!=NIFTI_XFORM_UNKNOWN) {
vox2mm = sform_mat;
} else if (qform_code!=NIFTI_XFORM_UNKNOWN) {
vox2mm = qform_mat;
} else {
// ideally should be sampling_mat(), but for orientation it doesn't matter
vox2mm = Identity(4);
vox2mm(1,1) = -vox2mm(1,1);
mat44 v2mm;
for (int ii=0; ii<4; ii++) { for (int jj=0; jj<4; jj++) {
v2mm.m[ii][jj] = vox2mm(ii+1,jj+1);
} }
mat44_to_orientation(v2mm,&icode,&jcode,&kcode);
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
// Added by MWW
// int getdiag(ColumnVector& diagvals, const Matrix& m)
// {
// Tracer ts("MiscMaths::diag");
// int num = m.Nrows();
// diagvals.ReSize(num);
// for (int j=1; j<=num; j++)
// diagvals(j)=m(j,j);
// return 0;
// }
// float var(const ColumnVector& x)
// {
// float m = mean(x);
// float ssq = (x-m).SumSquare()/(x.Nrows()-1);
// return ssq;
// }
// float mean(const ColumnVector& x)
// {
// float m = x.Sum()/x.Nrows();
// return m;
// }
float median(const ColumnVector& x)
{
ColumnVector y = x;
SortAscending(y);
float m = y((int)(y.Nrows()/2));
return m;
}
void cart2sph(const ColumnVector& dir, float& th, float& ph)
Mark Jenkinson
committed
float mag=sqrt(dir(1)*dir(1)+dir(2)*dir(2)+dir(3)*dir(3));
if(mag==0){
ph=M_PI/2;
th=M_PI/2;
}
else{
if(dir(1)==0 && dir(2)>=0) ph=M_PI/2;
else if(dir(1)==0 && dir(2)<0) ph=-M_PI/2;
Mark Jenkinson
committed
else if(dir(1)>0) ph=atan(dir(2)/dir(1));
else if(dir(2)>0) ph=atan(dir(2)/dir(1))+M_PI;
else ph=atan(dir(2)/dir(1))-M_PI;
Mark Jenkinson
committed
else if(dir(3)>0) th=atan(sqrt(dir(1)*dir(1)+dir(2)*dir(2))/dir(3));
else th=atan(sqrt(dir(1)*dir(1)+dir(2)*dir(2))/dir(3))+M_PI;
}
}
void cart2sph(const Matrix& dir,ColumnVector& th,ColumnVector& ph)
{
if(th.Nrows()!=dir.Ncols()){
th.ReSize(dir.Ncols());
}
if(ph.Nrows()!=dir.Ncols()){
ph.ReSize(dir.Ncols());
}
Mark Jenkinson
committed
float mag=sqrt(dir(1,i)*dir(1,i)+dir(2,i)*dir(2,i)+dir(3,i)*dir(3,i));
if(mag==0){
ph(i)=M_PI/2;
th(i)=M_PI/2;
}
else{
if(dir(1,i)==0 && dir(2,i)>=0) ph(i)=M_PI/2;
else if(dir(1,i)==0 && dir(2,i)<0) ph(i)=-M_PI/2;
Mark Jenkinson
committed
else if(dir(1,i)>0) ph(i)=atan(dir(2,i)/dir(1,i));
else if(dir(2,i)>0) ph(i)=atan(dir(2,i)/dir(1,i))+M_PI;
else ph(i)=atan(dir(2,i)/dir(1,i))-M_PI;
Mark Jenkinson
committed
else if(dir(3,i)>0) th(i)=atan(sqrt(dir(1,i)*dir(1,i)+dir(2,i)*dir(2,i))/dir(3,i));
else th(i)=atan(sqrt(dir(1,i)*dir(1,i)+dir(2,i)*dir(2,i))/dir(3,i))+M_PI;
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
// Added by CFB --- Matlab style Matrix functions
ReturnMatrix ones(const int dim1, const int dim2)
{
int tdim = dim2;
if(tdim<0){tdim=dim1;}
Matrix res(dim1,tdim); res = 1.0;
res.Release();
return res;
}
ReturnMatrix zeros(const int dim1, const int dim2)
{
int tdim = dim2;
if(tdim<0){tdim=dim1;}
Matrix res(dim1,tdim); res = 0.0;
res.Release();
return res;
}
ReturnMatrix repmat(const Matrix &mat, const int rows, const int cols)
{
Matrix res = mat;
for(int ctr = 1; ctr < cols; ctr++){res |= mat;}
Matrix tmpres = res;
Mark Jenkinson
committed
for(int ctr = 1; ctr < rows; ctr++){res &= tmpres;}
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
res.Release();
return res;
}
ReturnMatrix dist2(const Matrix &mat1, const Matrix &mat2)
{
Matrix res(mat1.Ncols(),mat2.Ncols());
for(int ctr1 = 1; ctr1 <= mat1.Ncols(); ctr1++)
for(int ctr2 =1; ctr2 <= mat2.Ncols(); ctr2++)
{
ColumnVector tmp;
tmp=mat1.Column(ctr1)-mat2.Column(ctr2);
res(ctr1,ctr2) = std::sqrt(tmp.SumSquare());
}
res.Release();
return res;
}
ReturnMatrix abs(const Matrix& mat)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::abs(res(mr,mc));
}
}
res.Release();
return res;
}
ReturnMatrix sqrt(const Matrix& mat)
{
Matrix res = mat;
bool neg_flag = false;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
if(res(mr,mc)<0){ neg_flag = true; }
res(mr,mc)=std::sqrt(std::abs(res(mr,mc)));
}
}
if(neg_flag){
//cerr << " Matrix contained negative elements" << endl;
//cerr << " return sqrt(abs(X)) instead" << endl;
}
res.Release();
return res;
}
ReturnMatrix log(const Matrix& mat)
{
Matrix res = mat;
bool neg_flag = false;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
if(res(mr,mc)<0){ neg_flag = true; }
res(mr,mc)=std::log(std::abs(res(mr,mc)));
}
}
if(neg_flag){
// cerr << " Matrix contained negative elements" << endl;
// cerr << " return log(abs(X)) instead" << endl;
}
res.Release();
return res;
}
ReturnMatrix exp(const Matrix& mat)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::exp(res(mr,mc));
}
}
res.Release();
return res;
}
ReturnMatrix tanh(const Matrix& mat)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::tanh(res(mr,mc));
}
}
res.Release();
return res;
}
ReturnMatrix pow(const Matrix& mat, const double exp)
{
Matrix res = mat;
for (int mc=1; mc<=mat.Ncols(); mc++) {
for (int mr=1; mr<=mat.Nrows(); mr++) {
res(mr,mc)=std::pow(res(mr,mc),exp);
}
}
res.Release();
return res;
}
ReturnMatrix max(const Matrix& mat)
{
Matrix res;
if(mat.Nrows()>1){
res=zeros(1,mat.Ncols());
res=mat.Row(1);
for(int mc=1; mc<=mat.Ncols();mc++){
for(int mr=2; mr<=mat.Nrows();mr++){
if(mat(mr,mc)>res(1,mc)){res(1,mc)=mat(mr,mc);}
}
}
}
else{
res=zeros(1);
res=mat(1,1);
for(int mc=2; mc<=mat.Ncols(); mc++){
if(mat(1,mc)>res(1,1)){res(1,1)=mat(1,mc);}
}
}
res.Release();
return res;
}
ReturnMatrix max(const Matrix& mat,ColumnVector& index)
{
index.ReSize(mat.Nrows());
index=1;
Matrix res;
if(mat.Nrows()>1){
res=zeros(1,mat.Ncols());
res=mat.Row(1);
for(int mc=1; mc<=mat.Ncols();mc++){
for(int mr=2; mr<=mat.Nrows();mr++){
if(mat(mr,mc)>res(1,mc))
{
res(1,mc)=mat(mr,mc);
index(mr)=mc;
}
}
}
}
else{
res=zeros(1);
res=mat(1,1);
for(int mc=2; mc<=mat.Ncols(); mc++){
if(mat(1,mc)>res(1,1))
{
res(1,1)=mat(1,mc);
index(1)=mc;
}
}
}
res.Release();
return res;
}
ReturnMatrix min(const Matrix& mat)
{
Matrix res;
if(mat.Nrows()>1){
res=zeros(1,mat.Ncols());
res=mat.Row(1);
for(int mc=1; mc<=mat.Ncols();mc++){
for(int mr=2; mr<=mat.Nrows();mr++){
if(mat(mr,mc)<res(1,mc)){res(1,mc)=mat(mr,mc);}
}
}
}
else{
res=zeros(1);
res=mat(1,1);
for(int mc=2; mc<=mat.Ncols(); mc++){
if(mat(1,mc)<res(1,1)){res(1,1)=mat(1,mc);}
}
}
res.Release();
return res;
}
ReturnMatrix sum(const Matrix& mat, const int dim)
{
Matrix tmp;
if (dim == 1) {tmp=mat;}
else {tmp=mat.t();}
Matrix res(1,tmp.Ncols());
res = 0.0;
for (int mc=1; mc<=tmp.Ncols(); mc++) {
for (int mr=1; mr<=tmp.Nrows(); mr++) {
res(1,mc) += tmp(mr,mc);
}
}
if (!(dim == 1)) {res=res.t();}
res.Release();
return res;
}
ReturnMatrix mean(const Matrix& mat, const int dim)
{
Matrix tmp;
if (dim == 1) {tmp=mat;}
else {tmp=mat.t();}
int N = tmp.Nrows();
Matrix res(1,tmp.Ncols());
res = 0.0;
for (int mc=1; mc<=tmp.Ncols(); mc++) {
for (int mr=1; mr<=tmp.Nrows(); mr++) {
res(1,mc) += tmp(mr,mc)/N;
}
}
if (!(dim == 1)) {res=res.t();}
res.Release();
return res;
}
ReturnMatrix var(const Matrix& mat, const int dim)
{
Matrix tmp;
if (dim == 1) {tmp=mat;}
else {tmp=mat.t();}
int N = tmp.Nrows();
Matrix res(1,tmp.Ncols());
res = 0.0;
if(N>1){
tmp -= ones(tmp.Nrows(),1)*mean(tmp,1);
for (int mc=1; mc<=tmp.Ncols(); mc++)
for (int mr=1; mr<=tmp.Nrows(); mr++)
res(1,mc) += tmp(mr,mc) / (N-1) * tmp(mr,mc);
}
if (!(dim == 1)) {res=res.t();}
res.Release();
return res;
}
ReturnMatrix stdev(const Matrix& mat, const int dim)
{
return sqrt(var(mat,dim));
}
ReturnMatrix gt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) > mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix lt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) < mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix geqt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) >= mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix geqt(const Matrix& mat,const float a)
{
int ncols = mat.Ncols();
int nrows = mat.Nrows();
Matrix res(nrows,ncols);
res=0.0;
for (int ctr1 = 1; ctr1 <= nrows; ctr1++) {
for (int ctr2 =1; ctr2 <= ncols; ctr2++) {
if( mat(ctr1,ctr2) >= a){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix leqt(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) <= mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix eq(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) == mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
ReturnMatrix neq(const Matrix& mat1,const Matrix& mat2)
{
Mark Jenkinson
committed
int ctrcol = std::min(mat1.Ncols(),mat2.Ncols());
int ctrrow = std::min(mat1.Nrows(),mat2.Nrows());
Matrix res(ctrrow,ctrcol);
res=0.0;
for (int ctr1 = 1; ctr1 <= ctrrow; ctr1++) {
for (int ctr2 =1; ctr2 <= ctrcol; ctr2++) {
if( mat1(ctr1,ctr2) != mat2(ctr1,ctr2)){
res(ctr1,ctr2) = 1.0;
}
}
}
res.Release();
return res;
}
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
ReturnMatrix SD(const Matrix& mat1,const Matrix& mat2)
{
if((mat1.Nrows() != mat2.Nrows()) ||
(mat1.Ncols() != mat2.Ncols()) ){
cerr <<"MISCMATHS::SD - matrices are of different dimensions"<<endl;
exit(-1);
}
Matrix ret(mat1.Nrows(),mat1.Ncols());
for (int r = 1; r <= mat1.Nrows(); r++) {
for (int c =1; c <= mat1.Ncols(); c++) {
if( mat2(r,c)==0)
ret(r,c)=0;
else
ret(r,c) = mat1(r,c)/mat2(r,c);
}
}
ret.Release();
return ret;
}
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
ReturnMatrix vox_to_vox(const ColumnVector& xyz1,const ColumnVector& dims1,const ColumnVector& dims2,const Matrix& xfm){
ColumnVector xyz1_mm(4),xyz2_mm,xyz2(3);
xyz1_mm<<xyz1(1)*dims1(1)<<xyz1(2)*dims1(2)<<xyz1(3)*dims1(3)<<1;
xyz2_mm=xfm*xyz1_mm;
xyz2_mm=xyz2_mm/xyz2_mm(4);
xyz2<<xyz2_mm(1)/dims2(1)<<xyz2_mm(2)/dims2(2)<<xyz2_mm(3)/dims2(3);
xyz2.Release();
return xyz2;
}
ReturnMatrix mni_to_imgvox(const ColumnVector& mni,const ColumnVector& mni_origin,const Matrix& mni2img, const ColumnVector& img_dims){
ColumnVector mni_new_origin(4),img_mm;//homogeneous
ColumnVector img_vox(3);
mni_new_origin<<mni(1)+mni_origin(1)<<mni(2)+mni_origin(2)<<mni(3)+mni_origin(3)<<1;
img_mm=mni2img*mni_new_origin;
img_vox<<img_mm(1)/img_dims(1)<<img_mm(2)/img_dims(2)<<img_mm(3)/img_dims(3);
img_vox.Release();
return img_vox;
}
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
ReturnMatrix remmean(const Matrix& mat, const int dim)
{
Matrix res;
if (dim == 1) {res=mat;}
else {res=mat.t();}
Matrix Mean;
Mean = mean(res);
for (int ctr = 1; ctr <= res.Nrows(); ctr++) {
for (int ctr2 =1; ctr2 <= res.Ncols(); ctr2++) {
res(ctr,ctr2)-=Mean(1,ctr2);
}
}
if (dim != 1) {res=res.t();}
res.Release();
return res;
}
void remmean(const Matrix& mat, Matrix& demeanedmat, Matrix& Mean, const int dim)
{
if (dim == 1) {demeanedmat=mat;}
else {demeanedmat=mat.t();}
Mean = mean(demeanedmat);
for (int ctr = 1; ctr <= demeanedmat.Nrows(); ctr++) {
for (int ctr2 =1; ctr2 <= demeanedmat.Ncols(); ctr2++) {
demeanedmat(ctr,ctr2)-=Mean(1,ctr2);
}
}
if (dim != 1){demeanedmat = demeanedmat.t();Mean = Mean.t();}
}
ReturnMatrix cov(const Matrix& mat, const int norm)
{
SymmetricMatrix res;
Matrix tmp;
int N;
tmp=remmean(mat);
if (norm == 1) {N = mat.Nrows();}
else {N = mat.Nrows()-1;}
res << tmp.t()*tmp;
res = res/N;
res.Release();
return res;
}
ReturnMatrix corrcoef(const Matrix& mat, const int norm)
{
SymmetricMatrix res;
SymmetricMatrix C;
C = cov(mat,norm);
Matrix D;
D=diag(C);
D=pow(sqrt(D*D.t()),-1);
res << SP(C,D);
res.Release();
return res;
}
void symm_orth(Matrix &Mat)
{
SymmetricMatrix Metric;
Metric << Mat.t()*Mat;
Metric = Metric.i();
Matrix tmpE;
DiagonalMatrix tmpD;
EigenValues(Metric,tmpD,tmpE);
Mat = Mat * tmpE * sqrt(abs(tmpD)) * tmpE.t();
}
void powerspectrum(const Matrix &Mat1, Matrix &Result, bool useLog)
//calculates the powerspectrum for every column of Mat1
{
Matrix res;
for(int ctr=1; ctr <= Mat1.Ncols(); ctr++)
{
ColumnVector tmpCol;
tmpCol=Mat1.Column(ctr);
ColumnVector FtmpCol_real;
ColumnVector FtmpCol_imag;
ColumnVector tmpPow;
RealFFT(tmpCol,FtmpCol_real,FtmpCol_imag);
tmpPow = pow(FtmpCol_real,2)+pow(FtmpCol_imag,2);
tmpPow = tmpPow.Rows(2,tmpPow.Nrows());
if(useLog){tmpPow = log(tmpPow);}
if(res.Storage()==0){res= tmpPow;}else{res|=tmpPow;}
}
Result=res;
}
void element_mod_n(Matrix& Mat,double n)
{
//represent each element in modulo n (useful for wrapping phases (n=2*M_PI))
double tmp;
for( int j=1;j<=Mat.Ncols();j++){
tmp = ( Mat(i,j) - rounddouble(Mat(i,j)/n)*n );
Mat(i,j)= tmp > 0 ? tmp : tmp + n;
}
}
}
}
Mark Jenkinson
committed
return (int)pow(2,ceil(log(float(n))/log(float(2))));
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
}
void xcorr(const Matrix& p_ts, Matrix& ret, int lag, int p_zeropad)
{
Tracer tr("MISCMATHS::xcorr");
int sizeTS = p_ts.Nrows();
int numTS = p_ts.Ncols();
if(p_zeropad == 0)
p_zeropad = sizeTS;
if(lag == 0)
lag = sizeTS;
ColumnVector x(p_zeropad);
x = 0;
ColumnVector fft_real;
ColumnVector fft_im;
ColumnVector dummy(p_zeropad);
ColumnVector dummy2;
dummy = 0;
ColumnVector realifft(p_zeropad);
ret.ReSize(lag,numTS);
ret = 0;
for(int i = 1; i <= numTS; i++)
{
x.Rows(1,sizeTS) = p_ts.Column(i);
FFT(x, dummy, fft_real, fft_im);
for(int j = 1; j <= p_zeropad; j++)
{
// (x+iy)(x-iy) = x^2 + y^2
fft_real(j) = fft_real(j)*fft_real(j) + fft_im(j)*fft_im(j);
fft_im(j) = 0;
}
FFTI(fft_real, fft_im, realifft, dummy2);
float varx = var(x.Rows(1,sizeTS)).AsScalar();
ret.Column(i) = realifft.Rows(1,lag);
Mark Jenkinson
committed
for(int j = 1; j <= lag-1; j++)
{
// Correction to make autocorr unbiased and normalised
Mark Jenkinson
committed
ret(j,i) = ret(j,i)/((sizeTS-j)*varx);
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
}
}
}
ReturnMatrix xcorr(const Matrix& p_ts, int lag, int p_zeropad )
{
Matrix r;
xcorr(p_ts,r,lag,p_zeropad);
r.Release();
return r;
}
void detrend(Matrix& p_ts, int p_level)
{
Tracer trace("MISCMATHS::detrend");
int sizeTS = p_ts.Nrows();
// p_ts = b*a + e (OLS regression)
// e is detrended data
Matrix a(sizeTS, p_level+1);
// Create a
for(int t = 1; t <= sizeTS; t++)
{
for(int l = 0; l <= p_level; l++)
Mark Jenkinson
committed
a(t,l+1) = pow((float)t/sizeTS,l);
}
// Form residual forming matrix R:
Matrix R = Identity(sizeTS)-a*pinv(a);
Mark Jenkinson
committed
for(int t = 1; t <= sizeTS; t++)
Mark Jenkinson
committed
p_ts.Column(t) = R*p_ts.Column(t);
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
}
}
ReturnMatrix read_vest(string p_fname)
{
ifstream in;
in.open(p_fname.c_str(), ios::in);
if(!in)
{
//cerr << "Unable to open " << p_fname << endl;
throw Exception("Unable to open vest file");
}
int numWaves = 0;
int numPoints = 0;
string str;
while(true)
{
if(!in.good())
{
cerr << p_fname << "is not a valid vest file" << endl;
throw Exception("Not a valid vest file");
}
in >> str;
if(str == "/Matrix")
break;
else if(str == "/NumWaves")
{
in >> numWaves;
}
else if(str == "/NumPoints" || str == "/NumContrasts")
{
in >> numPoints;
}
}
Matrix p_mat(numPoints, numWaves);
for(int i = 1; i <= numPoints; i++)
{
for(int j = 1; j <= numWaves; j++)
{
in >> p_mat(i,j);
}
}
in.close();
p_mat.Release();
return p_mat;
}
void ols(const Matrix& data,const Matrix& des,const Matrix& tc, Matrix& cope,Matrix& varcope){
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
// ols
// data is t x v
// des is t x ev (design matrix)
// tc is cons x ev (contrast matrix)
// cope and varcope will be cons x v
// but will be resized if they are wrong
// hence may be passed in uninitialised
// TB 2004
if(data.Nrows() != des.Nrows()){
cerr <<"MISCMATHS::ols - data and design have different number of time points"<<endl;
exit(-1);
}
if(des.Ncols() != tc.Ncols()){
cerr <<"MISCMATHS::ols - design and contrast matrix have different number of EVs"<<endl;
exit(-1);
}
Matrix pdes = pinv(des);
Matrix prevar=diag(tc*pdes*pdes.t()*tc.t());
Matrix R=Identity(des.Nrows())-des*pdes;
float tR=R.Trace();
Matrix pe=pdes*data;
cope=tc*pe;
Matrix res=data-des*pe;
Matrix sigsq=sum(SP(res,res))/tR;
varcope=prevar*sigsq;
}
int ols_dof(const Matrix& des){
Matrix pdes = pinv(des);
Matrix R=Identity(des.Nrows())-des*pdes;
return int(R.Trace());
}
int conjgrad(ColumnVector& x, const Matrix& A, const ColumnVector& b, int maxit,
float reltol)
{
// solves: A * x = b (for x)
// implementation of algorithm in Golub and Van Loan (3rd ed, page 527)
ColumnVector rk1, rk2, pk, apk;
double betak, alphak, rk1rk1=0, rk2rk2, r00=0;
int k=0;
rk1 = b - A*x; // a *big* calculation
for (int n=1; n<=maxit; n++) {
k++;
if (k==1) {
pk = rk1;
rk1rk1 = (rk1.t() * rk1).AsScalar();
} else {
rk2rk2 = rk1rk1; // from before
rk1rk1 = (rk1.t() * rk1).AsScalar();
if (rk2rk2<1e-10*rk1rk1) {
cerr << "WARNING:: Conj Grad - low demoninator (rk2rk2)" << endl;
if (rk2rk2<=0) {
cerr << "Aborting conj grad ..." << endl;
return 1;
}
}
betak = rk1rk1 / rk2rk2;
pk = rk1 + betak * pk; // note RHS pk is p(k-1) in algorithm
}
// stop if sufficient accuracy is achieved
if (rk1rk1<reltol*reltol*r00) return 0;
apk = A * pk; // the *big* calculation in this algorithm
ColumnVector pap = pk.t() * apk;
if (pap.AsScalar()<0) {
cerr << "ERROR:: Conj Grad - negative eigenvector found (matrix must be symmetric and positive-definite)\nAborting ... " << endl;
return 2;
} else if (pap.AsScalar()<1e-10) {
cerr << "WARNING:: Conj Grad - nearly null eigenvector found (terminating early)" << endl;
return 1;
} else {
alphak = rk1rk1 / pap.AsScalar();
}
x = x + alphak * pk; // note LHS is x(k) and RHS is x(k-1) in algorithm
rk2 = rk1; // update prior to the next step
rk1 = rk1 - alphak * apk; // note LHS is r(k) in algorithm
}
return 0;
}
int conjgrad(ColumnVector& x, const Matrix& A, const ColumnVector& b, int maxit)
{
return conjgrad(x,A,b,maxit,1e-10);
}
float csevl(const float x, const ColumnVector& cs, const int n)
{
float b0 = 0;
float b1 = 0;
float b2 = 0;
const float twox=2*x;
for(int i=1; i<=n; i++)
{
b2=b1;
b1=b0;
b0=twox*b1-b2+cs(n+1-i);
}
return 0.5*(b0-b2);
}
float digamma(const float x)
{
int ntapsi(16);
int ntpsi(23);
ColumnVector psics(ntpsi);
ColumnVector apsics(ntapsi);
psics << -.038057080835217922E0<<