Newer
Older
/* kernel.cc
Mark Jenkinson, FMRIB Image Analysis Group
Copyright (C) 2001 University of Oxford */
/* CCOPYRIGHT */
Mark Jenkinson
committed
#include "miscmaths.h"
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
namespace MISCMATHS {
set<kernelstorage*, kernelstorage::comparer> kernel::existingkernels;
//////// Support function /////////
float kernelval(float x, int w, const ColumnVector& kernel)
{
// linearly interpolates to get the kernel at the point (x)
// given the half-width w
if (fabs(x)>w) return 0.0;
float halfnk = (kernel.Nrows()-1.0)/2.0;
float dn = x/w*halfnk + halfnk + 1.0;
int n = (int) floor(dn);
dn -= n;
if (n>(kernel.Nrows()-1)) return 0.0;
if (n<1) return 0.0;
return kernel(n)*(1.0-dn) + kernel(n+1)*dn;
}
inline bool in_bounds(ColumnVector data, int index)
{ return ( (index>=1) && (index<=data.Nrows())); }
inline bool in_bounds(ColumnVector data, float index)
{ return ( ((int)floor(index)>=1) && ((int)ceil(index)<=data.Nrows())); }
// Support Functions
float sincfn(float x)
{
if (fabs(x)<1e-7) { return 1.0-fabs(x); }
float y=M_PI*x;
return sin(y)/y;
}
float hanning(float x, int w)
{ // w is half-width
if (fabs(x)>w)
return 0.0;
else
return (0.5 + 0.5 *cos(M_PI*x/w));
}
float blackman(float x, int w)
{ // w is half-width
if (fabs(x)>w)
return 0.0;
else
return (0.42 + 0.5 *cos(M_PI*x/w) + 0.08*cos(2.0*M_PI*x/w));
}
float rectangular(float x, int w)
{ // w is half-width
if (fabs(x)>w)
return 0.0;
else
return 1.0;
}
ColumnVector sinckernel1D(const string& sincwindowtype, int w, int n)
{ // w is full-width
int nstore = n;
if (nstore<1) nstore=1;
ColumnVector ker(nstore);
int hw = (w-1)/2; // convert to half-width
// set x between +/- width
float halfnk = (nstore-1.0)/2.0;
Mark Jenkinson
committed
for (int n=1; n<=nstore; n++) {
float x=(n-halfnk-1)/halfnk*hw;
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
if ( (sincwindowtype=="hanning") || (sincwindowtype=="h") ) {
ker(n) = sincfn(x)*hanning(x,hw);
} else if ( (sincwindowtype=="blackman") || (sincwindowtype=="b") ) {
ker(n) = sincfn(x)*blackman(x,hw);
} else if ( (sincwindowtype=="rectangular") || (sincwindowtype=="r") ) {
ker(n) = sincfn(x)*rectangular(x,hw);
} else {
cerr << "ERROR: Unrecognised sinc window type - using Blackman" << endl;
ker = sinckernel1D("b",w,nstore);
return ker;
}
}
return ker;
}
kernel sinckernel(const string& sincwindowtype, int w, int nstore)
{
kernel sinck;
sinck = sinckernel(sincwindowtype,w,w,w,nstore);
return sinck;
}
kernel sinckernel(const string& sincwindowtype,
int wx, int wy, int wz, int nstore)
{ // widths are full-widths
kernel sinckern;
if (nstore<1) nstore=1;
// convert all widths to half-widths
int hwx = (wx-1)/2;
int hwy = (wy-1)/2;
int hwz = (wz-1)/2;
ColumnVector kx, ky, kz;
// calculate kernels
kx = sinckernel1D(sincwindowtype,wx,nstore);
ky = sinckernel1D(sincwindowtype,wy,nstore);
kz = sinckernel1D(sincwindowtype,wz,nstore);
sinckern.setkernel(kx,ky,kz,hwx,hwy,hwz);
return sinckern;
}
// dummy fn for now
float extrapolate_1d(const ColumnVector data, const int index)
{
float extrapval;
if (in_bounds(data, index))
extrapval = data(index);
else if (in_bounds(data, index-1))
extrapval = data(data.Nrows());
else if (in_bounds(data, index+1))
extrapval = data(1);
else
extrapval = mean(data).AsScalar();
return extrapval;
}
// basic trilinear call
float interpolate_1d(ColumnVector data, const float index)
{
float interpval;
int low_bound = (int)floor(index);
int high_bound = (int)ceil(index);
if (in_bounds(data, index))
interpval = data(low_bound) + (index - low_bound)*(data(high_bound) - data(low_bound));
else
interpval = extrapolate_1d(data, round(index));
return interpval;
}
//////// Spline Support /////////
float hermiteinterpolation_1d(ColumnVector data, int p1, int p4, float t)
{
// Q(t) = (2t^3 - 3t^2 + 1)P_1 + (-2t^3 + 3t^2)P_4 + (t^3 - 2t^2 + t)R_1 + (t^3 - t^2)R_4
// inputs: points P_1, P_4; tangents R_1, R_4; interpolation index t;
if (!in_bounds(data,p1) || !in_bounds(data,p4)) {
cerr << "Hermite Interpolation - ERROR: One or more indicies lie outside the data range. Returning ZERO" << endl;
retval = 0.0;
} else if ((t < 0) || (t > 1)) {
cerr << "Hermite Interpolation - ERROR: Interpolation index must lie between 0 and 1. Returning ZERO" << endl;
retval = 0.0;
/* } else if (t == 0.0) {
retval = data(p1);
} else if (t == 1.0) {
retval = data(p4);
*/
} else {
r1 = 0.5 * (extrapolate_1d(data, p1) - extrapolate_1d(data, p1 - 1)) + 0.5 * (extrapolate_1d(data, p1 + 1) - extrapolate_1d(data, p1));// tangent @ P_1
r4 = 0.5 * (extrapolate_1d(data, p4) - extrapolate_1d(data, p4 - 1)) + 0.5 * (extrapolate_1d(data, p4 + 1) - extrapolate_1d(data, p4));// tangent @ P_4
float t2 = t*t; float t3 = t2*t;
retval = (2*t3 - 3*t2 + 1)*data(p1) + (-2*t3 + 3*t2)*data(p4) + (t3 - 2*t2 + t)*r1 + (t3 - t2)*r4;
}
// cerr << "p1, p4, t, r1, r4 = " << p1 << ", " << p4 << ", " << t << ", " << r1 << ", " << r4 << endl;
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
return retval;
}
//////// Kernel Interpolation Call /////////
float kernelinterpolation_1d(ColumnVector data, float index, ColumnVector userkernel, int width)
{
int widthx = (width - 1)/2;
// kernel half-width (i.e. range is +/- w)
int wx= widthx;
ColumnVector kernelx = userkernel;
float *storex = new float[2*wx+1];
int ix0;
ix0 = (int) floor(index);
float convsum=0.0, interpval=0.0, kersum=0.0;
for (int d=-wx; d<=wx; d++) {
storex[d+wx] = kernelval((index-ix0+d),wx,kernelx);
}
int xj;
for (int x1=ix0-wx; x1<=ix0+wx; x1++) {
if (in_bounds(data, x1)) {
xj=ix0-x1+wx;
float kerfac = storex[xj];
// cerr << "x1 = " << x1 << endl;
// cerr << "data(x1) = " << data(x1) << endl;
convsum += data(x1) * kerfac;
kersum += kerfac;
}
}
delete(storex);
if ( (fabs(kersum)>1e-9) ) {
interpval = convsum / kersum;
} else {
interpval = (float) extrapolate_1d(data, ix0);
}
// cerr << "interpval = " << interpval << endl;
return interpval;
}
////// Kernel wrappers //////
float kernelinterpolation_1d(ColumnVector data, float index)
{
ColumnVector userkernel = sinckernel1D("hanning", 7, 1201);
return kernelinterpolation_1d(data, index, userkernel, 7);
}
float kernelinterpolation_1d(RowVector data, float index)
{
ColumnVector userkernel = sinckernel1D("hanning", 7, 1201);
return kernelinterpolation_1d(data.t(), index, userkernel, 7);
}
}