Newer
Older
//
// splinterpolator.h
//
// Jesper Andersson, FMRIB Image Analysis Group
//
// Copyright (C) 2008 University of Oxford
//
// CCOPYRIGHT
//
#ifndef splinterpolator_h
#define splinterpolator_h
#include <vector>
#include <string>
#include <cmath>
#include "newmat.h"
#include "miscmaths/miscmaths.h"
namespace SPLINTERPOLATOR {
enum ExtrapolationType {Zeros, Constant, Mirror, Periodic};
class SplinterpolatorException: public std::exception
{
private:
std::string m_msg;
public:
SplinterpolatorException(const std::string& msg) throw(): m_msg(msg) {}
virtual const char *what() const throw() {
return string("Splinterpolator::" + m_msg).c_str();
}
~SplinterpolatorException() throw() {}
};
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//
// Class Splinterpolator:
//
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
template<class T>
class Splinterpolator
{
public:
// Constructors
Splinterpolator() : _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0) {}
Splinterpolator(const T *data, const std::vector<unsigned int>& dim, const std::vector<ExtrapolationType>& et, unsigned int order=3, bool copy_low_order=true, double prec=1e-8) : _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0)
common_construction(data,dim,order,prec,et,copy_low_order);
Splinterpolator(const T *data, const std::vector<unsigned int>& dim, ExtrapolationType et=Zeros, unsigned int order=3, bool copy_low_order=true, double prec=1e-8) : _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0)
{
std::vector<ExtrapolationType> ett(dim.size(),et);
common_construction(data,dim,order,prec,ett,copy_low_order);
// Copy construction. May be removed in future
Splinterpolator(const Splinterpolator<T>& src) : _valid(false), _own_coef(false), _coef(0), _cptr(0), _ndim(0) { assign(src); }
~Splinterpolator() { if(_own_coef) delete [] _coef; }
Splinterpolator& operator=(const Splinterpolator& src) { if(_own_coef) delete [] _coef; assign(src); return(*this); }
// Set new data in Splinterpolator.
void Set(const T *data, const std::vector<unsigned int>& dim, const std::vector<ExtrapolationType>& et, unsigned int order=3, bool copy_low_order=true, double prec=1e-8)
if (_own_coef) delete [] _coef;
common_construction(data,dim,order,prec,et,copy_low_order);
void Set(const T *data, const std::vector<unsigned int>& dim, ExtrapolationType et, unsigned int order=3, bool copy_low_order=true, double prec=1e-8)
{
std::vector<ExtrapolationType> vet(dim.size(),Zeros);
Set(data,dim,vet,order,copy_low_order,prec);
}
// Return interpolated value
T operator()(const std::vector<float>& coord) const;
T operator()(double x, double y=0, double z=0, double t=0) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (_ndim>4 || (t && _ndim<4) || (z && _ndim<3) || (y && _ndim<2)) throw SplinterpolatorException("operator(): input has wrong dimensionality");
double coord[5] = {x,y,z,t,0.0};
return(value_at(coord));
}
// Return interpolated value along with first derivative in one direction (useful for distortion correction)
T operator()(const std::vector<float>& coord, unsigned int dd, T *dval) const;
T operator()(double x, double y, double z, unsigned int dd, T *dval) const;
T operator()(double x, double y, unsigned int dd, T *dval) const { return((*this)(x,y,0.0,dd,dval)); }
T operator()(double x, T *dval) const { return((*this)(x,0.0,0.0,0,dval)); }
// Return interpolated value along with selected derivatives
T ValAndDerivs(const std::vector<float>& coord, const std::vector<unsigned int>& deriv, std::vector<T>& rderiv) const;
T ValAndDerivs(const std::vector<float>& coord, std::vector<T>& rderiv) const
{
std::vector<unsigned int> deriv(_ndim,1);
return(ValAndDerivs(coord,deriv,rderiv));
}
T ValAndDerivs(double x, double y, double z, std::vector<T>& rderiv) const;
//
// The "useful" functionality pretty much ends here.
// Remaining functions are mainly for debugging/diagnostics.
//
unsigned int NDim() const { return(_ndim); }
unsigned int Order() const { return(_order); }
ExtrapolationType Extrapolation(unsigned int dim) const
{
if (dim >= _ndim) throw SplinterpolatorException("Extrapolation: Invalid dimension");
return(_et[dim]);
}
const std::vector<unsigned int>& Size() const { return(_dim); }
unsigned int Size(unsigned int dim) const { if (dim > 4) return(0); else return(_dim[dim]);}
T Coef(unsigned int x, unsigned int y=0, unsigned int z=0) const
{
std::vector<unsigned int> indx(3,0);
indx[0] = x; indx[1] = y; indx[2] = z;
return(Coef(indx));
}
T Coef(std::vector<unsigned int> indx) const;
NEWMAT::ReturnMatrix CoefAsNewmatMatrix() const;
NEWMAT::ReturnMatrix KernelAsNewmatMatrix(double sp=0.1, unsigned int deriv=0) const;
//
// Here we declare nested helper-class SplineColumn
//
class SplineColumn
{
public:
// Constructor
SplineColumn(unsigned int sz, unsigned int step) : _sz(sz), _step(step) { _col = new double[_sz]; }
// Destructor
~SplineColumn() { delete [] _col; }
// Extract a column from a volume
void Get(const T *dp)
{
for (unsigned int i=0; i<_sz; i++, dp+=_step) _col[i] = static_cast<double>(*dp);
}
// Insert column into volume
void Set(T *dp) const
{
T test = 1.5;
if (test == 1) { // If T is not float or double
for (unsigned int i=0; i<_sz; i++, dp+=_step) *dp = static_cast<T>(_col[i] + 0.5); // Round to nearest integer
}
else {
for (unsigned int i=0; i<_sz; i++, dp+=_step) *dp = static_cast<T>(_col[i]);
}
}
// Deconvolve column
void Deconv(unsigned int order, ExtrapolationType et, double prec);
private:
unsigned int _sz;
unsigned int _step;
double *_col;
unsigned int get_poles(unsigned int order, double *z, unsigned int *sf) const;
double init_bwd_sweep(double z, double lv, ExtrapolationType et, double prec) const;
double init_fwd_sweep(double z, ExtrapolationType et, double prec) const;
SplineColumn(const SplineColumn& sc); // Don't allow copy-construction
SplineColumn& operator=(const SplineColumn& sc); // Dont allow assignment
};
//
// Here ends nested helper-class SplineColumn
//
private:
bool _valid; // Decides if neccessary information has been set or not
bool _own_coef; // Decides if we "own" (have allocated) _coef
T *_coef; // Volume of spline coefficients
const T *_cptr; // Pointer to constant data. Used instead of _coef when we don't copy the data
unsigned int _order; // Order of splines
unsigned int _ndim; // # of non-singleton dimensions
double _prec; // Precision when dealing with edges
std::vector<unsigned int> _dim; // Dimensions of data
std::vector<ExtrapolationType> _et; // How to do extrapolation
//
// Private helper-functions
//
void common_construction(const T *data, const std::vector<unsigned int>& dim, unsigned int order, double prec, const std::vector<ExtrapolationType>& et, bool copy);
void assign(const Splinterpolator<T>& src);
bool calc_coef(const T *data, bool copy);
void deconv_along(unsigned int dim);
T coef(int *indx) const;
const T* coef_ptr() const {if (_own_coef) return(_coef); else return(_cptr); }
unsigned int indx2indx(int indx, unsigned int d) const;
unsigned int indx2linear(int k, int l, int m) const;
unsigned int add2linear(unsigned int lin, int j) const;
double value_at(const double *coord) const;
double value_and_derivatives_at(const double *coord, const unsigned int *deriv, double *dval) const;
unsigned int get_start_indicies(const double *coord, int *sinds) const;
unsigned int get_wgts(const double *coord, const int *sinds, double **wgts) const;
unsigned int get_dwgts(const double *coord, const int *sinds, const unsigned int *deriv, double **dwgts) const;
double get_wgt(double x) const;
double get_dwgt(double x) const;
void get_dwgt1(const double * const *wgts, const double * const *dwgts, const unsigned int *dd, unsigned int nd,
unsigned int k, unsigned int l, unsigned int m, double wgt1, double *dwgt1) const;
std::pair<double,double> range() const;
bool should_be_zero(const double *coord) const;
unsigned int n_nonzero(const unsigned int *vec) const;
bool odd(unsigned int i) const {return(static_cast<bool>(i%2));}
bool even(unsigned int i) const {return(!odd(i));}
//
// Disallowed member functions
//
// Splinterpolator(const Splinterpolator& s); // Don't allow copy-construction
// Splinterpolator& operator=(const Splinterpolator& s); // Don't allow assignment
/////////////////////////////////////////////////////////////////////
//
// Here starts public member functions for Splinterpolator
//
/////////////////////////////////////////////////////////////////////
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value at location coord.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::operator()(const std::vector<float>& coord) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (coord.size() != _ndim) throw SplinterpolatorException("operator(): coord has wrong length");
double dcoord[5] = {0.0,0.0,0.0,0.0,0.0};
for (unsigned int i=0; i<coord.size(); i++) dcoord[i] = coord[i];
return(static_cast<T>(value_at(dcoord)));
}
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and a single derivative at location coord.
// The derivative should be specified as the # of the dimension
// (starting at zero) that you want it along.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::operator()(const std::vector<float>& coord, unsigned int dd, T *dval) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (coord.size() != _ndim) throw SplinterpolatorException("operator(): coord has wrong length");
if (dd > (_ndim-1)) throw SplinterpolatorException("operator(): derivative specified for invalid direction");
double dcoord[5] = {0.0,0.0,0.0,0.0,0.0};
for (unsigned int i=0; i<coord.size(); i++) dcoord[i] = coord[i];
unsigned int deriv[5] = {0,0,0,0,0};
deriv[dd] = 1;
double ddval = 0.0;
T rval;
rval = static_cast<T>(value_and_derivatives_at(dcoord,deriv,&ddval));
*dval = static_cast<T>(ddval);
return(rval);
}
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and a single derivative at location
// given by x, y and . The derivative should be specified as the #
// of the dimension (starting at zero) that you want it along.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::operator()(double x, double y, double z, unsigned int dd, T *dval) const
{
if (!_valid) throw SplinterpolatorException("operator(): Cannot interpolate un-initialized object");
if (_ndim>3 || (z && _ndim<3) || (y && _ndim<2)) throw SplinterpolatorException("operator(): input has wrong dimensionality");
if (dd > (_ndim-1)) throw SplinterpolatorException("operator(): derivative specified for invalid direction");
double coord[5] = {x,y,z,0.0,0.0};
unsigned int deriv[5] = {0,0,0,0,0};
deriv[dd] = 1;
double ddval = 0.0;
T rval;
rval = static_cast<T>(value_and_derivatives_at(coord,deriv,&ddval));
*dval = static_cast<T>(ddval);
return(rval);
}
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and selected (by deriv) derivatives
// at location given by coord. The interpolated value is the return
// value and the derivatives are returned in rderiv. The input
// deriv should be an _ndim long vector where a 1 indicates that
// the derivative is required in that direction and a zero that it
// is not.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::ValAndDerivs(const std::vector<float>& coord, const std::vector<unsigned int>& deriv, std::vector<T>& rderiv) const
{
if (!_valid) throw SplinterpolatorException("ValAndDerivs: Cannot interpolate un-initialized object");
if (coord.size() != _ndim || deriv.size() != _ndim) throw SplinterpolatorException("ValAndDerivs: input has wrong dimensionality");
double lcoord[5] = {0.0,0.0,0.0,0.0,0.0};
unsigned int lderiv[5] = {0,0,0,0,0};
unsigned int nd = 0;
for (unsigned int i=0; i<coord.size(); i++) { lcoord[i] = coord[i]; nd += (lderiv[i]=(deriv[i])?1:0); }
if (rderiv.size()!=nd) SplinterpolatorException("ValAndDerivs: mismatch between deriv and rderiv");
double dval[5];
T rval = static_cast<T>(value_and_derivatives_at(lcoord,lderiv,dval));
for (unsigned int i=0; i<nd; i++) rderiv[i] = static_cast<T>(dval[i]);
return(rval);
}
/////////////////////////////////////////////////////////////////////
//
// Returns interpolated value and derivatives in the x, y and z
// directions at a location given by x, y and z. The interpolated
// value is the return value and the derivatives are returned in rderiv.
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::ValAndDerivs(double x, double y, double z, std::vector<T>& rderiv) const
{
if (!_valid) throw SplinterpolatorException("ValAndDerivs: Cannot interpolate un-initialized object");
if (_ndim != 3 || rderiv.size() != _ndim) throw SplinterpolatorException("ValAndDerivs: input has wrong dimensionality");
double coord[5] = {x,y,z,0.0,0.0};
unsigned int deriv[5] = {1,1,1,0,0};
double dval[3];
T rval = static_cast<T>(value_and_derivatives_at(coord,deriv,dval));
for (unsigned int i=0; i<3; i++) rderiv[i] = static_cast<T>(dval[i]);
return(rval);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the value of the coefficient given by indx (zero-offset)
//
/////////////////////////////////////////////////////////////////////
template<class T>
T Splinterpolator<T>::Coef(std::vector<unsigned int> indx) const
{
if (!_valid) throw SplinterpolatorException("Coef: Cannot get coefficients for un-initialized object");
if (!indx.size()) throw SplinterpolatorException("Coef: indx has zeros dimensions");
if (indx.size() > 5) throw SplinterpolatorException("Coef: indx has more than 5 dimensions");
for (unsigned int i=0; i<indx.size(); i++) if (indx[i] >= _dim[i]) throw SplinterpolatorException("Coef: indx out of range");
unsigned int lindx=indx[indx.size()-1];
for (int i=indx.size()-2; i>=0; i--) lindx = _dim[i]*lindx + indx[i];
}
/////////////////////////////////////////////////////////////////////
//
// Returns the values of all coefficients as a Newmat matrix. If
// _ndim==1 it will return a row-vector, if _ndim==2 it will return
// a matrix, if _ndim==3 it will return a tiled matrix where the n
// first rows (where n is the number of rows in one slice) pertain to
// the first slice, the next n rows to the second slice, etc. And
// correspondingly for 4- and 5-D.
//
/////////////////////////////////////////////////////////////////////
template<class T>
NEWMAT::ReturnMatrix Splinterpolator<T>::CoefAsNewmatMatrix() const
{
if (!_valid) throw SplinterpolatorException("CoefAsNewmatMatrix: Cannot get coefficients for un-initialized object");
NEWMAT::Matrix mat(_dim[1]*_dim[2]*_dim[3]*_dim[4],_dim[0]);
std::vector<unsigned int> cindx(5,0);
unsigned int r=0;
for (cindx[4]=0; cindx[4]<_dim[4]; cindx[4]++) {
for (cindx[3]=0; cindx[3]<_dim[3]; cindx[3]++) {
for (cindx[2]=0; cindx[2]<_dim[2]; cindx[2]++) {
for (cindx[1]=0; cindx[1]<_dim[1]; cindx[1]++, r++) {
for (cindx[0]=0; cindx[0]<_dim[0]; cindx[0]++) {
mat.element(r,cindx[0]) = Coef(cindx);
}
}
}
}
}
mat.Release();
return(mat);
}
/////////////////////////////////////////////////////////////////////
//
// Return the kernel matrix to verify its correctness.
//
/////////////////////////////////////////////////////////////////////
template<class T>
NEWMAT::ReturnMatrix Splinterpolator<T>::KernelAsNewmatMatrix(double sp, // Distance (in ksp) between points
unsigned int deriv) const // Derivative (only 0/1 implemented).
if (!_valid) throw SplinterpolatorException("KernelAsNewmatMatrix: Cannot get kernel for un-initialized object");
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
if (deriv > 1) throw SplinterpolatorException("KernelAsNewmatMatrix: only 1st derivatives implemented");
std::pair<double,double> rng = range();
unsigned int i=0;
for (double x=rng.first; x<=rng.second; x+=sp, i++) ; // Intentional
NEWMAT::Matrix kernel(i,2);
for (double x=rng.first, i=0; x<=rng.second; x+=sp, i++) {
kernel.element(i,0) = x;
kernel.element(i,1) = (deriv) ? get_dwgt(x) : get_wgt(x);
}
kernel.Release();
return(kernel);
}
/////////////////////////////////////////////////////////////////////
//
// Here starts public member functions for SplineColumn
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// This function implements the forward and backwards sweep
// as defined by equation 2.5 in Unsers paper:
//
// B-spline signal processing. II. Efficiency design and applications
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::SplineColumn::Deconv(unsigned int order, ExtrapolationType et, double prec)
{
double z[3] = {0.0, 0.0, 0.0}; // Poles
unsigned int np = 0; // # of poles
unsigned int sf; // Scale-factor
np = get_poles(order,z,&sf);
for (unsigned int p=0; p<np; p++) {
_col[0] = init_fwd_sweep(z[p],et,prec);
double lv = _col[_sz-1];
// Forward sweep
double *ptr=&_col[1];
for (unsigned int i=1; i<_sz; i++, ptr++) *ptr += z[p] * *(ptr-1);
_col[_sz-1] = init_bwd_sweep(z[p],lv,et,prec);
// Backward sweep
ptr = &_col[_sz-2];
for (int i=_sz-2; i>=0; i--, ptr--) *ptr = z[p]*(*(ptr+1) - *ptr);
}
double *ptr=_col;
for (unsigned int i=0; i<_sz; i++, ptr++) *ptr *= sf;
}
/////////////////////////////////////////////////////////////////////
//
// Here starts private member functions for Splinterpolator
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// Returns the interpolated value at location given by coord.
// coord must be a pointer to an array of indicies with _ndim
// values.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::value_at(const double *coord) const
{
if (should_be_zero(coord)) return(0.0);
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
int inds[5];
unsigned int ni = 0;
ni = get_start_indicies(coord,inds);
get_wgts(coord,inds,wgts);
double val=0.0;
for (int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
for (int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
double wgt2 = wgt1*wgts[1][j];
for (int i=0; i<static_cast<int>(ni); i++) {
int cindx[] = {inds[0]+i,inds[1]+j,inds[2]+k,inds[3]+l,inds[4]+m};
val += coef(cindx)*wgts[0][i]*wgt2;
}
}
}
}
}
return(val);
}
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
*/
template<class T>
double Splinterpolator<T>::value_at(const double *coord) const
{
if (should_be_zero(coord)) return(0.0);
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
int inds[5];
unsigned int ni = 0;
const T *cptr = coef_ptr();
ni = get_start_indicies(coord,inds);
get_wgts(coord,inds,wgts);
double val=0.0;
for (unsigned int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (unsigned int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (unsigned int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
unsigned int linear1 = indx2linear(inds[2]+k,inds[3]+l,inds[4]+m);
for (unsigned int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
double wgt2 = wgt1*wgts[1][j];
int linear2 = add2linear(linear1,inds[1]+j);
double *iiwgt=iwgt;
for (unsigned int i=0; i<ni; i++, iiwgt++) {
val += cptr[linear2+indx2indx(inds[0]+i,0)]*(*iiwgt)*wgt2;
}
}
}
}
}
return(val);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the interpolated value and selected derivatives at a
// location given by coord. coord must be a pointer to an array
// of voxel indicies with _ndim values. deriv must be a pointer
// to an _ndim long array of 0/1 specifying if the derivative is
// requested in that direction or not.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::value_and_derivatives_at(const double *coord,
const unsigned int *deriv,
double *dval)
const
{
if (should_be_zero(coord)) { memset(dval,n_nonzero(deriv)*sizeof(double),0); return(0.0); }
double iwgt[8], jwgt[8], kwgt[8], lwgt[8], mwgt[8];
double *wgts[] = {iwgt, jwgt, kwgt, lwgt, mwgt};
double diwgt[8], djwgt[8], dkwgt[8], dlwgt[8], dmwgt[8];
double *dwgts[] = {diwgt, djwgt, dkwgt, dlwgt, dmwgt};
double dwgt1[5];
double dwgt2[5];
int inds[5];
unsigned int dd[5];
unsigned int nd = 0;
unsigned int ni = 0;
const T *cptr = coef_ptr();
ni = get_start_indicies(coord,inds);
get_wgts(coord,inds,wgts);
get_dwgts(coord,inds,deriv,dwgts);
for (unsigned int i=0; i<_ndim; i++) if (deriv[i]) { dd[nd] = i; dval[nd++] = 0.0; }
double val=0.0;
for (unsigned int m=0, me=(_ndim>4)?ni:1; m<me; m++) {
for (unsigned int l=0, le=(_ndim>3)?ni:1; l<le; l++) {
for (unsigned int k=0, ke=(_ndim>2)?ni:1; k<ke; k++) {
double wgt1 = wgts[4][m]*wgts[3][l]*wgts[2][k];
get_dwgt1(wgts,dwgts,dd,nd,k,l,m,wgt1,dwgt1);
unsigned int linear1 = indx2linear(inds[2]+k,inds[3]+l,inds[4]+m);
for (unsigned int j=0, je=(_ndim>1)?ni:1; j<je; j++) {
double wgt2 = wgt1*wgts[1][j];
for (unsigned int d=0; d<nd; d++) dwgt2[d] = (dd[d]==1) ? dwgt1[d]*dwgts[1][j] : dwgt1[d]*wgts[1][j];
int linear2 = add2linear(linear1,inds[1]+j);
double *iiwgt=iwgt;
for (unsigned int i=0; i<ni; i++, iiwgt++) {
double c = cptr[linear2+indx2indx(inds[0]+i,0)];
val += c*(*iiwgt)*wgt2;
for (unsigned int d=0; d<nd; d++) {
double add = (dd[d]==0) ? c*diwgt[i]*dwgt2[d] : c*(*iiwgt)*dwgt2[d];
dval[d] += add;
}
}
}
}
}
}
return(val);
}
/////////////////////////////////////////////////////////////////////
//
// Returns (in sinds) the indicies of the first coefficient in all
// _ndim directions with a non-zero weight for the location given
// by coord. The caller is responsible for coord and sinds being
// valid pointers to arrays of 5 values.
// The return-value gives the total # of non-zero weights.
//
/////////////////////////////////////////////////////////////////////
template<class T>
unsigned int Splinterpolator<T>::get_start_indicies(const double *coord, int *sinds) const
{
unsigned int ni = _order+1;
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
if (odd(ni)) {
for (unsigned int i=0; i<_ndim; i++) {
sinds[i] = static_cast<int>(coord[i]+0.5) - ni/2;
}
}
else {
for (unsigned int i=0; i<_ndim; i++) {
int ix = static_cast<int>(coord[i]+0.5);
if (ix < coord[i]) sinds[i] = ix - (ni-1)/2;
else sinds[i] = ix -ni/2;
}
}
for (unsigned int i=_ndim; i<5; i++) sinds[i] = 0;
return(ni);
}
/////////////////////////////////////////////////////////////////////
//
// Returns (in wgts) the weights for the coefficients given by sinds
// for the location given by coord.
//
/////////////////////////////////////////////////////////////////////
template<class T>
unsigned int Splinterpolator<T>::get_wgts(const double *coord, const int *sinds, double **wgts) const
{
unsigned int ni = _order+1;
for (unsigned int dim=0; dim<_ndim; dim++) {
for (unsigned int i=0; i<ni; i++) {
wgts[dim][i] = get_wgt(coord[dim]-(sinds[dim]+i));
}
}
for (unsigned int dim=_ndim; dim<5; dim++) wgts[dim][0] = 1.0;
return(ni);
}
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
template<class T>
unsigned int Splinterpolator<T>::get_dwgts(const double *coord, const int *sinds, const unsigned int *deriv, double **dwgts) const
{
unsigned int ni = _order+1;
for (unsigned int dim=0; dim<_ndim; dim++) {
if (deriv[dim]) {
switch (_order) {
case 0:
throw SplinterpolatorException("get_dwgts: invalid order spline");
break;
case 1:
dwgts[dim][0] = -1; dwgts[dim][1] = 1; // Not correct on original gridpoints
break;
case 2: case 3: case 4: case 5: case 6: case 7:
for (unsigned int i=0; i<ni; i++) {
dwgts[dim][i] = get_dwgt(coord[dim]-(sinds[dim]+i));
}
break;
default:
throw SplinterpolatorException("get_dwgts: invalid order spline");
}
}
}
return(ni);
}
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
/////////////////////////////////////////////////////////////////////
//
// Returns the weight for a spline at coordinate x, where x is relative
// to the centre of the spline.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::get_wgt(double x) const
{
double val = 0.0;
double ax = abs(x); // Kernels all symmetric
switch (_order) {
case 0:
if (ax < 0.5) val = 1.0;
break;
case 1:
if (ax < 1) val = 1-ax;;
break;
case 2:
if (ax < 0.5) val = 0.75-ax*ax;
else if (ax < 1.5) val = 0.5*(1.5-ax)*(1.5-ax);
break;
case 3:
if (ax < 1) val = 2.0/3.0 + 0.5*ax*ax*(ax-2);
else if (ax < 2) { ax = 2-ax; val = (1.0/6.0)*(ax*ax*ax); }
break;
case 4:
if (ax < 0.5) { ax *= ax; val = (115.0/192.0) + ax*((2.0*ax-5.0)/8.0); }
else if (ax < 1.5) val = (55.0/96.0) + ax*(ax*(ax*((5.0-ax)/6.0) - 1.25) + 5.0/24.0);
else if (ax < 2.5) { ax -= 2.5; ax *= ax; val = (1.0/24.0)*ax*ax; }
break;
case 5:
if (ax < 1) { double xx = ax*ax; val = 0.55 + xx*(xx*((3.0-ax)/12.0) - 0.5); }
else if (ax < 2) val = 0.425 + ax*(ax*(ax*(ax*((ax-9.0)/24.0) + 1.25) - 1.75) + 0.625);
else if (ax < 3) { ax = 3-ax; double xx = ax*ax; val = (1.0/120.0)*ax*xx*xx; }
break;
case 6:
if (ax < 0.5) { ax *= ax; val = (5887.0/11520.0) + ax*(ax*((21.0-4.0*ax)/144.0) -77.0/192.0); }
else if (ax < 1.5) val = 7861.0/15360.0 + ax*(ax*(ax*(ax*(ax*((ax - 7.0)/48.0) + 0.328125) - 35.0/288.0) - 91.0/256.0) -7.0/768.0);
else if (ax < 2.5) val = 1379.0/7680.0 + ax*(ax*(ax*(ax*(ax*((14.0-ax)/120.0) - 0.65625) + 133.0/72.0) - 2.5703125) + 1267.0/960.0);
else if (ax < 3.5) { ax -= 3.5; ax *= ax*ax; val = (1.0/720.0) * ax*ax; }
break;
case 7:
if (ax < 1) { double xx = ax*ax; val = 151.0/315.0 + xx*(xx*(xx*((ax-4.0)/144.0) + 1.0/9.0) - 1.0/3.0); }
else if (ax < 2) val = 103.0/210.0 + ax*(ax*(ax*(ax*(ax*(ax*((12.0-ax)/240.0) -7.0/30.0) + 0.5) - 7.0/18.0) - 0.1) -7.0/90.0);
else if (ax < 3) val = ax*(ax*(ax*(ax*(ax*(ax*((ax-20.0)/720.0) + 7.0/30.0) - 19.0/18.0) + 49.0/18.0) - 23.0/6.0) + 217.0/90.0) - 139.0/630.0;
else if (ax < 4) { ax = 4-ax; double xxx=ax*ax*ax; val = (1.0/5040.0)*ax*xxx*xxx; }
break;
default:
throw SplinterpolatorException("get_wgt: invalid order spline");
break;
}
return(val);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the weight for the first derivative of a spline at
// coordinate x, where x is relative to the centre of the spline.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::get_dwgt(double x) const
{
double val = 0.0;
double ax = abs(x); // Kernels all anti-symmetric
int sign = (ax) ? x/ax : 1; // Arbitrary choice for when x=0
switch (_order) {
throw SplinterpolatorException("get_dwgt: invalid order spline");
break;
case 2:
if (ax < 0.5) val = sign * -2.0*ax;
else if (ax < 1.5) val = sign * (-1.5 + ax);
break;
case 3:
if (ax < 1) val = sign * (1.5*ax*ax - 2.0*ax);
else if (ax < 2) { ax = 2-ax; val = sign * -0.5*ax*ax; }
break;
case 4:
if (ax < 0.5) val = sign * (ax*ax*ax - 1.25*ax);
else if (ax < 1.5) val = sign * (5.0/24.0 - ax*(2.5 - ax*(2.5 - (2.0/3.0)*ax)));
else if (ax < 2.5) { ax -= 2.5; val = sign * (1.0/6.0)*ax*ax*ax; }
break;
case 5:
if (ax < 1) val = sign * ax*(ax*(ax*(1-(5.0/12.0)*ax)) - 1);
else if (ax < 2) val = sign * (0.625 - ax*(3.5 - ax*(3.75 - ax*(1.5 - (5.0/24.0)*ax))));
else if (ax < 3) { ax -= 3; ax = ax*ax; val = sign * (-1.0/24.0)*ax*ax; }
break;
case 6:
if (ax < 0.5) { double xx = ax*ax; val = sign * ax*(xx*((7.0/12) - (1.0/6.0)*xx) - (77.0/96.0)); }
else if (ax < 1.5) {double xx = ax*ax; val = sign * (ax*(xx*(0.1250*xx + 1.3125) - 0.7109375) - xx*((35.0/48.0)*xx + (35.0/96.0)) - (7.0/768.0)); }
else if (ax < 2.5) { double xx = ax*ax; val = sign * ((1267.0/960.0) - ax*(xx*(0.05*xx + (21.0/8.0)) + (329.0/64.0)) + xx*((7.0/12.0)*xx + (133.0/24.0))); }
else if (ax < 3.5) { ax -= 3.5; double xx = ax*ax; val = sign * (1.0/120.0)*xx*xx*ax; }
break;
case 7:
if (ax < 1) { double xx = ax*ax; val = sign * ax*(xx*(xx*((7.0/144.0)*ax - (1.0/6.0)) + 4.0/9.0) - 2.0/3.0); }
else if (ax < 2) { double xx = ax*ax; val = sign * (ax*(xx*(xx*0.3 + 2.0) - 0.2) - xx*(xx*(xx*(7.0/240.0) + (7.0/6.0)) + (7.0/6.0)) - (7.0/90.0)); }
else if (ax < 3) { double xx = ax*ax; val = sign * (1.0/720.0)*(xx - 4.0*ax + 2.0)*(7.0*xx*xx - 92.0*xx*ax + 458.0*xx - 1024.0*ax + 868.0); }
else if (ax < 4) { ax = 4-ax; ax = ax*ax*ax; val = sign * (-1.0/720.0)*ax*ax; }
break;
default:
throw SplinterpolatorException("get_dwgt: invalid order spline");
break;
}
return(val);
}
template<class T>
inline void Splinterpolator<T>::get_dwgt1(const double * const *wgts, const double * const *dwgts,
const unsigned int *dd, unsigned int nd, unsigned int k,
unsigned int l, unsigned int m, double wgt1, double *dwgt1) const
{
for (unsigned int i=0; i<nd; i++) {
switch (dd[i]) {
case 2:
dwgt1[i] = wgts[4][m] * wgts[3][l] * dwgts[2][k];
break;
case 3:
dwgt1[i] = wgts[4][m] * dwgts[3][l] * wgts[2][k];
break;
case 4:
dwgt1[i] = dwgts[4][m] * wgts[3][l] * wgts[2][k];
break;
default:
dwgt1[i] = wgt1;
break;
}
}
}
template<class T>
inline std::pair<double,double> Splinterpolator<T>::range() const
{
std::pair<double,double> rng(0.0,0.0);
rng.second = static_cast<double>(_order+1.0)/2.0;
rng.first = - rng.second;
return(rng);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the value of the coefficient indexed by indx. Unlike the
// public Coef() this routine allows indexing outside the valid
// volume, returning values that are dependent on the extrapolation
// model when these are encountered.
//
// N.B. May change value of input index N.B.
//
/////////////////////////////////////////////////////////////////////
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
template<class T>
inline unsigned int Splinterpolator<T>::indx2indx(int indx, unsigned int d) const
{
if (d > (_ndim-1)) return(0);
if (indx < 0) {
switch (_et[d]) {
case Constant:
return(0);
break;
case Zeros: case Mirror:
return(1-indx);
break;
case Periodic:
return(_dim[d]+indx);
break;
default:
break;
}
}
else if (indx >= static_cast<int>(_dim[d])) {
switch (_et[d]) {
case Constant:
return(_dim[d]-1);
break;
case Zeros: case Mirror:
return(2*_dim[d]-indx-1);
break;
case Periodic:
return(indx-_dim[d]);
break;
default:
break;
}
}
return(indx);
}
template<class T>
unsigned int Splinterpolator<T>::indx2linear(int k, int l, int m) const
{
if (_ndim < 3) return(0);
int lindx = 0;
if (_ndim>4) lindx = indx2indx(m,4);
if (_ndim>3) lindx = _dim[3]*lindx + indx2indx(l,3);
lindx = _dim[0]*_dim[1]*(_dim[2]*lindx + indx2indx(k,2));
return(lindx);
}
template<class T>
inline unsigned int Splinterpolator<T>::add2linear(unsigned int lin, int j) const
{
if (_ndim < 2) return(lin);
else return(lin + _dim[0]*indx2indx(j,1));
}
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
template<class T>
T Splinterpolator<T>::coef(int *indx) const
{
// First fix any outside-volume indicies
for (unsigned int i=0; i<_ndim; i++) {
if (indx[i] < 0) {
switch (_et[i]) {
case Zeros:
return(static_cast<T>(0));
break;
case Constant:
indx[i] = 0;
break;
case Mirror:
indx[i] = 1-indx[i];
break;
case Periodic:
indx[i] = _dim[i]+indx[i];
break;
default:
break;
}
}
else if (indx[i] >= static_cast<int>(_dim[i])) {
switch (_et[i]) {
case Zeros:
return(static_cast<T>(0));
break;
case Constant:
indx[i] = _dim[i]-1;
break;
case Mirror:
indx[i] = 2*_dim[i]-indx[i]-1;
break;
case Periodic:
indx[i] = indx[i]-_dim[i];
break;
default:
break;
}
}
}
// Now make linear index
unsigned int lindx=indx[_ndim-1];
for (int i=_ndim-2; i>=0; i--) lindx = _dim[i]*lindx + indx[i];
return(coef_ptr()[lindx]);
}
template<class T>
bool Splinterpolator<T>::should_be_zero(const double *coord) const
{
for (unsigned int i=0; i<_ndim; i++) {
if (_et[i] == Zeros && (coord[i] < 0 || coord[i] > (_dim[i]-1))) return(true);
}
return(false);
}
template<class T>
unsigned int Splinterpolator<T>::n_nonzero(const unsigned int *vec) const
{
unsigned int n=0;
for (unsigned int i=0; i<_ndim; i++) if (vec[i]) n++;
return(n);
}
/////////////////////////////////////////////////////////////////////
//
// Takes care of the "common" tasks when constructing a
// Splinterpolator object. Called by constructors and by .Set()
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::common_construction(const T *data, const std::vector<unsigned int>& dim, unsigned int order, double prec, const std::vector<ExtrapolationType>& et, bool copy)
{
if (!dim.size()) throw SplinterpolatorException("common_construction: data has zeros dimensions");
if (!dim.size() > 5) throw SplinterpolatorException("common_construction: data cannot have more than 5 dimensions");
if (dim.size() != et.size()) throw SplinterpolatorException("common_construction: dim and et must have the same size");
for (unsigned int i=0; i<dim.size(); i++) if (!dim[i]) throw SplinterpolatorException("common_construction: data cannot have zeros size in any direction");
if (order > 7) throw SplinterpolatorException("common_construction: spline order must be lesst than 7");
if (!data) throw SplinterpolatorException("common_construction: zero data pointer");
_order = order;
_prec = prec;
_dim.resize(5);
_ndim = dim.size();
for (unsigned int i=0; i<5; i++) _dim[i] = (i < dim.size()) ? dim[i] : 1;
_own_coef = calc_coef(data,copy);
_valid = true;
}
/////////////////////////////////////////////////////////////////////
//
// Takes care of the "common" tasks when copy-constructing
// and when assigning.
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::assign(const Splinterpolator<T>& src)
{
_valid = src._valid;
_own_coef = src._own_coef;