Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
switch (_order) {
case 0:
if (ax < 0.5) val = 1.0;
break;
case 1:
if (ax < 1) val = 1-ax;;
break;
case 2:
if (ax < 0.5) val = 0.75-ax*ax;
else if (ax < 1.5) val = 0.5*(1.5-ax)*(1.5-ax);
break;
case 3:
if (ax < 1) val = 2.0/3.0 + 0.5*ax*ax*(ax-2);
else if (ax < 2) { ax = 2-ax; val = (1.0/6.0)*(ax*ax*ax); }
break;
case 4:
if (ax < 0.5) { ax *= ax; val = (115.0/192.0) + ax*((2.0*ax-5.0)/8.0); }
else if (ax < 1.5) val = (55.0/96.0) + ax*(ax*(ax*((5.0-ax)/6.0) - 1.25) + 5.0/24.0);
else if (ax < 2.5) { ax -= 2.5; ax *= ax; val = (1.0/24.0)*ax*ax; }
break;
case 5:
if (ax < 1) { double xx = ax*ax; val = 0.55 + xx*(xx*((3.0-ax)/12.0) - 0.5); }
else if (ax < 2) val = 0.425 + ax*(ax*(ax*(ax*((ax-9.0)/24.0) + 1.25) - 1.75) + 0.625);
else if (ax < 3) { ax = 3-ax; double xx = ax*ax; val = (1.0/120.0)*ax*xx*xx; }
break;
case 6:
if (ax < 0.5) { ax *= ax; val = (5887.0/11520.0) + ax*(ax*((21.0-4.0*ax)/144.0) -77.0/192.0); }
else if (ax < 1.5) val = 7861.0/15360.0 + ax*(ax*(ax*(ax*(ax*((ax - 7.0)/48.0) + 0.328125) - 35.0/288.0) - 91.0/256.0) -7.0/768.0);
else if (ax < 2.5) val = 1379.0/7680.0 + ax*(ax*(ax*(ax*(ax*((14.0-ax)/120.0) - 0.65625) + 133.0/72.0) - 2.5703125) + 1267.0/960.0);
else if (ax < 3.5) { ax -= 3.5; ax *= ax*ax; val = (1.0/720.0) * ax*ax; }
break;
case 7:
if (ax < 1) { double xx = ax*ax; val = 151.0/315.0 + xx*(xx*(xx*((ax-4.0)/144.0) + 1.0/9.0) - 1.0/3.0); }
else if (ax < 2) val = 103.0/210.0 + ax*(ax*(ax*(ax*(ax*(ax*((12.0-ax)/240.0) -7.0/30.0) + 0.5) - 7.0/18.0) - 0.1) -7.0/90.0);
else if (ax < 3) val = ax*(ax*(ax*(ax*(ax*(ax*((ax-20.0)/720.0) + 7.0/30.0) - 19.0/18.0) + 49.0/18.0) - 23.0/6.0) + 217.0/90.0) - 139.0/630.0;
else if (ax < 4) { ax = 4-ax; double xxx=ax*ax*ax; val = (1.0/5040.0)*ax*xxx*xxx; }
break;
default:
throw SplinterpolatorException("get_wgt: invalid order spline");
}
return(val);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the weight for the first derivative of a spline at
// coordinate x, where x is relative to the centre of the spline.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::get_dwgt(double x) const
{
double val = 0.0;
double ax = abs(x); // Kernels all anti-symmetric
int sign = (ax) ? static_cast<int>(x/ax) : 1; // Arbitrary choice for when x=0
switch (_order) {
throw SplinterpolatorException("get_dwgt: invalid order spline");
case 2:
if (ax < 0.5) val = sign * -2.0*ax;
else if (ax < 1.5) val = sign * (-1.5 + ax);
break;
case 3:
if (ax < 1) val = sign * (1.5*ax*ax - 2.0*ax);
else if (ax < 2) { ax = 2-ax; val = sign * -0.5*ax*ax; }
break;
case 4:
if (ax < 0.5) val = sign * (ax*ax*ax - 1.25*ax);
else if (ax < 1.5) val = sign * (5.0/24.0 - ax*(2.5 - ax*(2.5 - (2.0/3.0)*ax)));
else if (ax < 2.5) { ax -= 2.5; val = sign * (1.0/6.0)*ax*ax*ax; }
break;
case 5:
if (ax < 1) val = sign * ax*(ax*(ax*(1-(5.0/12.0)*ax)) - 1);
else if (ax < 2) val = sign * (0.625 - ax*(3.5 - ax*(3.75 - ax*(1.5 - (5.0/24.0)*ax))));
else if (ax < 3) { ax -= 3; ax = ax*ax; val = sign * (-1.0/24.0)*ax*ax; }
break;
case 6:
if (ax < 0.5) { double xx = ax*ax; val = sign * ax*(xx*((7.0/12) - (1.0/6.0)*xx) - (77.0/96.0)); }
else if (ax < 1.5) {double xx = ax*ax; val = sign * (ax*(xx*(0.1250*xx + 1.3125) - 0.7109375) - xx*((35.0/48.0)*xx + (35.0/96.0)) - (7.0/768.0)); }
else if (ax < 2.5) { double xx = ax*ax; val = sign * ((1267.0/960.0) - ax*(xx*(0.05*xx + (21.0/8.0)) + (329.0/64.0)) + xx*((7.0/12.0)*xx + (133.0/24.0))); }
else if (ax < 3.5) { ax -= 3.5; double xx = ax*ax; val = sign * (1.0/120.0)*xx*xx*ax; }
break;
case 7:
if (ax < 1) { double xx = ax*ax; val = sign * ax*(xx*(xx*((7.0/144.0)*ax - (1.0/6.0)) + 4.0/9.0) - 2.0/3.0); }
else if (ax < 2) { double xx = ax*ax; val = sign * (ax*(xx*(xx*0.3 + 2.0) - 0.2) - xx*(xx*(xx*(7.0/240.0) + (7.0/6.0)) + (7.0/6.0)) - (7.0/90.0)); }
else if (ax < 3) { double xx = ax*ax; val = sign * (1.0/720.0)*(xx - 4.0*ax + 2.0)*(7.0*xx*xx - 92.0*xx*ax + 458.0*xx - 1024.0*ax + 868.0); }
else if (ax < 4) { ax = 4-ax; ax = ax*ax*ax; val = sign * (-1.0/720.0)*ax*ax; }
break;
default:
throw SplinterpolatorException("get_dwgt: invalid order spline");
}
return(val);
}
template<class T>
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
inline void Splinterpolator<T>::get_dwgt1(const double * const *wgts, const double * const *dwgts,
const unsigned int *dd, unsigned int nd, unsigned int k,
unsigned int l, unsigned int m, double wgt1, double *dwgt1) const
{
for (unsigned int i=0; i<nd; i++) {
switch (dd[i]) {
case 2:
dwgt1[i] = wgts[4][m] * wgts[3][l] * dwgts[2][k];
break;
case 3:
dwgt1[i] = wgts[4][m] * dwgts[3][l] * wgts[2][k];
break;
case 4:
dwgt1[i] = dwgts[4][m] * wgts[3][l] * wgts[2][k];
break;
default:
dwgt1[i] = wgt1;
break;
}
}
}
template<class T>
inline std::pair<double,double> Splinterpolator<T>::range() const
{
std::pair<double,double> rng(0.0,0.0);
rng.second = static_cast<double>(_order+1.0)/2.0;
rng.first = - rng.second;
return(rng);
}
/////////////////////////////////////////////////////////////////////
//
// Returns the value of the coefficient indexed by indx. Unlike the
// public Coef() this routine allows indexing outside the valid
// volume, returning values that are dependent on the extrapolation
// model when these are encountered.
//
// N.B. May change value of input index N.B.
//
/////////////////////////////////////////////////////////////////////

Jesper Andersson
committed
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
template<class T>
inline unsigned int Splinterpolator<T>::indx2indx(int indx, unsigned int d) const
{
if (d > (_ndim-1)) return(0);
// cout << "indx in = " << indx << endl;
if (indx < 0) {
switch (_et[d]) {
case Constant:
indx = 0;
break;
case Zeros: case Mirror:
indx = (indx%int(_dim[d])) ? -indx%int(_dim[d]) : 0;
break;
case Periodic:
indx = (indx%int(_dim[d])) ? _dim[d]+indx%int(_dim[d]) : 0;
break;
default:
break;
}
}
else if (indx >= static_cast<int>(_dim[d])) {
switch (_et[d]) {
case Constant:
indx = _dim[d]-1;
break;
case Zeros: case Mirror:
indx = 2*_dim[d] - (_dim[d]+indx%int(_dim[d])) - 2;
break;
case Periodic:
indx = indx%int(_dim[d]);
break;
default:
break;
}
}
// cout << "indx out = " << indx << endl;
return(indx);
}
// The next routine is defunct and will be moved out of this file.
/*
template<class T>
inline unsigned int Splinterpolator<T>::indx2indx(int indx, unsigned int d) const
{
if (d > (_ndim-1)) return(0);
if (indx < 0) {
switch (_et[d]) {
case Constant:
return(0);
break;
case Zeros: case Mirror:

Jesper Andersson
committed
return((indx%int(_dim[d])) ? -1-indx%int(_dim[d]) : _dim[d]-1);
return((indx%int(_dim[d])) ? _dim[d]+indx%int(_dim[d]) : 0);
break;
default:
break;
}
}
else if (indx >= static_cast<int>(_dim[d])) {
switch (_et[d]) {
case Constant:
return(_dim[d]-1);
break;
case Zeros: case Mirror:
return(2*_dim[d] - (_dim[d]+indx%int(_dim[d])) - 1);
return(indx%int(_dim[d]));
break;
default:
break;
}
}
return(indx);
}

Jesper Andersson
committed
*/
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
template<class T>
unsigned int Splinterpolator<T>::indx2linear(int k, int l, int m) const
{
if (_ndim < 3) return(0);
int lindx = 0;
if (_ndim>4) lindx = indx2indx(m,4);
if (_ndim>3) lindx = _dim[3]*lindx + indx2indx(l,3);
lindx = _dim[0]*_dim[1]*(_dim[2]*lindx + indx2indx(k,2));
return(lindx);
}
template<class T>
inline unsigned int Splinterpolator<T>::add2linear(unsigned int lin, int j) const
{
if (_ndim < 2) return(lin);
else return(lin + _dim[0]*indx2indx(j,1));
}
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
template<class T>
T Splinterpolator<T>::coef(int *indx) const
{
// First fix any outside-volume indicies
for (unsigned int i=0; i<_ndim; i++) {
if (indx[i] < 0) {
switch (_et[i]) {
case Zeros:
return(static_cast<T>(0));
case Constant:
indx[i] = 0;
break;
case Mirror:
indx[i] = 1-indx[i];
break;
case Periodic:
indx[i] = _dim[i]+indx[i];
break;
default:
break;
}
}
else if (indx[i] >= static_cast<int>(_dim[i])) {
switch (_et[i]) {
case Zeros:
return(static_cast<T>(0));
case Constant:
indx[i] = _dim[i]-1;
break;
case Mirror:
indx[i] = 2*_dim[i]-indx[i]-1;
break;
case Periodic:
indx[i] = indx[i]-_dim[i];
break;
default:
break;
}
}
}
// Now make linear index
unsigned int lindx=indx[_ndim-1];
for (int i=_ndim-2; i>=0; i--) lindx = _dim[i]*lindx + indx[i];
return(coef_ptr()[lindx]);
}
template<class T>
bool Splinterpolator<T>::should_be_zero(const double *coord) const
{
for (unsigned int i=0; i<_ndim; i++) {
if (_et[i] == Zeros && (coord[i] < 0 || coord[i] > (_dim[i]-1))) return(true);
}
return(false);
}
template<class T>
unsigned int Splinterpolator<T>::n_nonzero(const unsigned int *vec) const
{
unsigned int n=0;
for (unsigned int i=0; i<_ndim; i++) if (vec[i]) n++;
return(n);
}
/////////////////////////////////////////////////////////////////////
//
// Takes care of the "common" tasks when constructing a
// Splinterpolator object. Called by constructors and by .Set()
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::common_construction(const T *data, const std::vector<unsigned int>& dim, unsigned int order, double prec, const std::vector<ExtrapolationType>& et, bool copy)
{
if (!dim.size()) throw SplinterpolatorException("common_construction: data has zeros dimensions");
if (!dim.size() > 5) throw SplinterpolatorException("common_construction: data cannot have more than 5 dimensions");
if (dim.size() != et.size()) throw SplinterpolatorException("common_construction: dim and et must have the same size");
for (unsigned int i=0; i<dim.size(); i++) if (!dim[i]) throw SplinterpolatorException("common_construction: data cannot have zeros size in any direction");
if (order > 7) throw SplinterpolatorException("common_construction: spline order must be lesst than 7");
if (!data) throw SplinterpolatorException("common_construction: zero data pointer");
_order = order;
_prec = prec;
_dim.resize(5);
_ndim = dim.size();
for (unsigned int i=0; i<5; i++) _dim[i] = (i < dim.size()) ? dim[i] : 1;
_own_coef = calc_coef(data,copy);
_valid = true;
}
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
/////////////////////////////////////////////////////////////////////
//
// Takes care of the "common" tasks when copy-constructing
// and when assigning.
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::assign(const Splinterpolator<T>& src)
{
_valid = src._valid;
_own_coef = src._own_coef;
_cptr = src._cptr;
_order = src._order;
_ndim = src._ndim;
_prec = src._prec;
_dim = src._dim;
_et = src._et;
if (_own_coef) { // If we need to do a deep copy
unsigned int ts = 1;
for (unsigned int i=0; i<_ndim; i++) ts *= _dim[i];
_coef = new T[ts];
memcpy(_coef,src._coef,ts*sizeof(T));
}
}
/////////////////////////////////////////////////////////////////////
//
// Performs deconvolution, converting signal to spline coefficients.
//
/////////////////////////////////////////////////////////////////////
template<class T>
bool Splinterpolator<T>::calc_coef(const T *data, bool copy)
if (_order < 2 && !copy) { _cptr = data; return(false); }
// Allocate memory and put the original data into _coef
unsigned int ts=1;
for (unsigned int i=0; i<_dim.size(); i++) ts *= _dim[i];
memcpy(_coef,data,ts*sizeof(T));
if (_order < 2) return(true); // If nearest neighbour or linear, that's all we need
// Loop over all non-singleton dimensions and deconvolve along them
//
std::vector<unsigned int> tdim(_dim.size()-1,0);
for (unsigned int cdir=0; cdir<_dim.size(); cdir++) {
if (_dim[cdir] > 1) deconv_along(cdir);
/////////////////////////////////////////////////////////////////////
//
// Performs deconvolution along one of the dimensions, visiting
// all points along the other dimensions.
//
/////////////////////////////////////////////////////////////////////
template<class T>
void Splinterpolator<T>::deconv_along(unsigned int dim)
{
// Set up to reflect "missing" dimension
//
std::vector<unsigned int> rdim(4,1); // Sizes along remaining dimensions
std::vector<unsigned int> rstep(4,1); // Step-sizes (in "volume") of remaining dimensions
unsigned int mdim = 1; // Size along "missing" dimension
unsigned int mstep = 1; // Step-size along "missing" dimension
for (unsigned int i=0, j=0, ss=1; i<5; i++) {
if (i == dim) { // If it is our "missing" dimension
mdim = _dim[i];
mstep = ss;
}
else {
rdim[j] = _dim[i];
rstep[j++] = ss;
}
ss *= _dim[i];
}
SplineColumn col(mdim,mstep); // Column helps us do the job
for (unsigned int l=0; l<rdim[3]; l++) {
for (unsigned int k=0; k<rdim[2]; k++) {
for (unsigned int j=0; j<rdim[1]; j++) {
T *dp = _coef + l*rstep[3] + k*rstep[2] + j*rstep[1];
for (unsigned int i=0; i<rdim[0]; i++, dp+=rstep[0]) {
col.Get(dp); // Extract a column from the volume
col.Deconv(_order,_et[dim],_prec); // Deconvolve it
col.Set(dp); // Put back the deconvolved column
}
}
}
}
return;
}
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
/////////////////////////////////////////////////////////////////////
//
// Here starts private member functions for SplineColumn
//
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
//
// This function returns the poles and scale-factors for splines
// of order 2--7. The values correspond to those found in
// table 1 in Unsers 1993 paper:
// B-spline signal processing. II. Efficiency design and applications
//
// The actual values have been taken from
// http://bigwww.epfl.ch/thevenaz/interpolation/coeff.c
//
/////////////////////////////////////////////////////////////////////
template<class T>
unsigned int Splinterpolator<T>::SplineColumn::get_poles(unsigned int order, double *z, unsigned int *sf) const
{
unsigned int np = 0; // # of poles
switch (order) {
case 2:
np = 1;
z[0] = 2.0*sqrt(2.0) - 3.0;
*sf = 8;
break;
case 3:
np = 1;
z[0] = sqrt(3.0) - 2.0;
*sf = 6;
break;
case 4:
np = 2;
z[0] = sqrt(664.0 - sqrt(438976.0)) + sqrt(304.0) - 19.0;
z[1] = sqrt(664.0 + sqrt(438976.0)) - sqrt(304.0) - 19.0;
*sf = 384;
break;
case 5:
np = 2;
z[0] = sqrt(135.0 / 2.0 - sqrt(17745.0 / 4.0)) + sqrt(105.0 / 4.0) - 13.0 / 2.0;
z[1] = sqrt(135.0 / 2.0 + sqrt(17745.0 / 4.0)) - sqrt(105.0 / 4.0) - 13.0 / 2.0;
*sf = 120;
break;
case 6:
np = 3;
z[0] = -0.48829458930304475513011803888378906211227916123938;
z[1] = -0.081679271076237512597937765737059080653379610398148;
z[2] = -0.0014141518083258177510872439765585925278641690553467;
*sf = 46080;
break;
case 7:
np = 3;
z[0] = -0.53528043079643816554240378168164607183392315234269;
z[1] = -0.12255461519232669051527226435935734360548654942730;
z[2] = -0.0091486948096082769285930216516478534156925639545994;
*sf = 5040;
break;
default:
throw SplinterpolatorException("SplineColumn::get_poles: invalid order of spline");
}
return(np);
}
/////////////////////////////////////////////////////////////////////
//
// Initialises the first value for the forward sweep. The initialisation
// will always be an approximation (this is where the "infinite" in IIR
// breaks down) so the value will be calculated to a predefined precision.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::SplineColumn::init_fwd_sweep(double z, ExtrapolationType et, double prec) const
{
//
// Move logs away from here after debugging
//
unsigned int n = static_cast<unsigned int>((log(prec)/log(abs(z))) + 1.5);
n = (n > _sz) ? _sz : n;
double iv = _col[0];
if (et == Periodic) {
double *ptr=&_col[_sz-1];
double z2i=z;
for (unsigned int i=1; i<n; i++, ptr--, z2i*=z) iv += z2i * *ptr;
}
else {
double z2i=z;
for (unsigned int i=1; i<n; i++, ptr++, z2i*=z) iv += z2i * *ptr;
}
return(iv);
}
/////////////////////////////////////////////////////////////////////
//
// Initialises the first value for the backward sweep. The initialisation
// will always be an approximation (this is where the "infinite" in IIR
// breaks down) so the value will be calculated to a predefined precision.
//
/////////////////////////////////////////////////////////////////////
template<class T>
double Splinterpolator<T>::SplineColumn::init_bwd_sweep(double z, double lv, ExtrapolationType et, double prec) const
{
double iv = 0.0;
unsigned int n = static_cast<unsigned int>((log(prec)/log(abs(z))) + 1.5);
n = (n > _sz) ? _sz : n;
iv = z * _col[_sz-1];
double z2i = z*z;
double *ptr=_col;
for (unsigned int i=1; i<n; i++, ptr++, z2i*=z) {
iv += z2i * *ptr;
}
iv /= (z2i-1.0);
}
else {
iv = -z/(1.0-z*z) * (2.0*_col[_sz-1] - lv);
}
return(iv);
}
} // End namespace SPLINTERPOLATOR
#endif // End #ifndef splinterpolator.h