Skip to content
Snippets Groups Projects
optimise.cc 9.06 KiB
Newer Older
Christian Beckmann's avatar
Christian Beckmann committed
/*  optimise.cc

    Mark Jenkinson, FMRIB Image Analysis Group

    Copyright (C) 1999-2000 University of Oxford  */

/*  CCOPYRIGHT  */

// Mathematical optimisation functions


#include <iostream>
#include <cmath>
David Flitney's avatar
David Flitney committed
#include "optimise.h"
#include "miscmaths.h"
Christian Beckmann's avatar
Christian Beckmann committed

namespace MISCMATHS {

  // The following lines are ignored by the current SGI compiler
  //  (version egcs-2.91.57)
  // A temporary fix of including the std:: in front of all abs() etc
  //  has been done for now
  using std::abs;
  using std::sqrt;
  using std::exp;
  using std::log;
Christian Beckmann's avatar
Christian Beckmann committed
  bool estquadmin(float &xnew, float x1, float xmid, float x2, 
		   float y1, float ymid, float y2)
  {
    // Finds the estimated quadratic minimum's position
    float ad=0.0, bd=0.0, det=0.0;
    ad = (xmid - x2)*(ymid - y1) - (xmid - x1)*(ymid - y2);
    bd = -(xmid*xmid - x2*x2)*(ymid - y1) + (xmid*xmid - x1*x1)*(ymid - y2);
    det = (xmid - x2)*(x2 -x1)*(x1 - xmid);
    if ((fabs(det)>1e-15) && (ad/det < 0)) {  // quadratic only has a maxima
      xnew = 0.0;
      return false;
    }
    if (fabs(ad)>1e-15) {
      xnew = -bd/(2*ad);
      return true;
    } else {  // near linear condition -> get closer to an end point
      xnew = 0.0;
      return false;
    }
    return false;
  }


  float extrapolatept(float x1, float xmid, float x2)
  {
    // xmid must be between x1 and x2
    // use the golden ratio (scale similar result)
    const float extensionratio = 0.3819660;
    float xnew;
    if (fabs(x2-xmid)>fabs(x1-xmid)) {
      xnew = extensionratio * x2 + (1 - extensionratio) * xmid;
    } else {
      xnew = extensionratio * x1 + (1 - extensionratio) * xmid;
    }
    return xnew;
  }
  


  float nextpt(float x1, float xmid, float x2, float y1, float ymid, float y2)
  {
    // x1 and x2 are the bounds, xmid is between them

    float xnew;
    bool quadok=false;
    quadok = estquadmin(xnew,x1,xmid,x2,y1,ymid,y2);

    // check to see that the quadratic result is in the range
    if ((!quadok) || (xnew < Min(x1,x2)) || (xnew > Max(x1,x2))) {
      xnew = extrapolatept(x1,xmid,x2);
    }
    return xnew;
  }

      

  void findinitialbound(float &x1, float &xmid, float &x2, 
			float &y1, float &ymid, float &y2, 
			float (*func)(const ColumnVector &),
			const ColumnVector &unitdir, const ColumnVector &pt)
  {
    const float extrapolationfactor = 1.6;
    const float maxextrap = extrapolationfactor*2;
    if (y1==0)  y1 = (*func)(x1*unitdir + pt);
    if (ymid==0)  ymid = (*func)(xmid*unitdir + pt);
    if (y1<ymid) {   // swap a and b if this is the case
      float tempx = x1, tempy = y1;
      x1 = xmid;     y1 = ymid;
      xmid = tempx;  ymid = tempy;
    }

    float newx2 = 0.0, newy2=0.0, maxx2=0.0;
    float dir=1.0;
    if (xmid<x1) dir=-1.0;

    bool quadok;

    x2 = xmid + extrapolationfactor*(xmid - x1);
    y2 = (*func)(x2*unitdir + pt);

    while (ymid > y2) {  // note: must maintain y1 >= ymid
	
      // cout << "    <" << Min(x1,x2) << "," << xmid 
      //   << "," << Max(x1,x2) << ">" << endl;
      maxx2 = xmid + maxextrap*(x2 - xmid);
      quadok = estquadmin(newx2,x1,xmid,x2,y1,ymid,y2);
      if ((!quadok) || ((newx2 - x1)*dir<0) || ((newx2 - maxx2)*dir>0)) {
	newx2 = xmid + extrapolationfactor*(x2-x1);
      }
      
      newy2 = (*func)(newx2*unitdir + pt);

      if ((newx2 - xmid)*(newx2 - x1)<0) {  // newx2 is between x1 and xmid
	if (newy2 < ymid) {  // found a bracket!
	  x2 = xmid;  y2 = ymid;
	  xmid = newx2;  ymid = newy2;
	  break;
	} else {  // can use newx2 as a new value for x1 (as newy2 >= ymid)
	  x1 = newx2;  y1 = newy2;
	}
      } else {  // newx2 is between xmid and maxx2
	if (newy2 > ymid) { // found a bracket!
	  x2 = newx2;  y2 = newy2;
	  break;
	} else if ((newx2 - x2)*dir<0) {  // newx2 closer to xmid than old x2
	  x1 = xmid;  y1 = ymid;
	  xmid = newx2;  ymid = newy2;
	} else {
	  x1 = xmid;  y1 = ymid;
	  xmid = x2;  ymid = y2;
	  x2 = newx2;  y2 = newy2;
	}
      }
	
    }

    if ( (y2<ymid) || (y1<ymid) ) {
      cerr << "findinitialbound failed to bracket: current triplet is" << endl;
    }
  }
  

  float optimise1d(ColumnVector &pt, const ColumnVector dir, 
		  const ColumnVector tol, int &iterations_done, 
		  float (*func)(const ColumnVector &), int max_iter,
Mark Jenkinson's avatar
Mark Jenkinson committed
		  float &init_value, float boundguess) 
Christian Beckmann's avatar
Christian Beckmann committed
  {
    // Golden Search Routine
    // Must pass in the direction vector in N-space (dir), the initial
    //  N-dim point (pt), the acceptable tolerance (tol) and other
    //  stuff
    // Note that the length of the direction vector is unimportant

    float y1,y2,ymid;
    float x1,x2,xmid;

    // Calculate dot product of dir by tol
    //  st (x1-x2)*dir_tol = average number of tolerances between x1 and x2
    float dir_tol = 0.0;
    ColumnVector unitdir;
    unitdir = dir/std::sqrt(dir.SumSquare());
    for (int n=1; n<=tol.Nrows(); n++) {
      if (fabs(tol(n))>1e-15) {
	dir_tol += fabs(unitdir(n)/tol(n));
      }
    }
    float unittol = fabs(1/dir_tol);

    // set up initial points
    xmid = 0.0;
    x1 = boundguess * unittol;  // initial guess (bound)
Mark Jenkinson's avatar
Mark Jenkinson committed
    if (init_value==0.0) { init_value = (*func)(xmid*unitdir + pt); }
    ymid = init_value;
Christian Beckmann's avatar
Christian Beckmann committed
    y1 = (*func)(x1*unitdir + pt);
    findinitialbound(x1,xmid,x2,y1,ymid,y2,func,unitdir,pt);

    // cout << "(" << x1 << "," << y1 << ")  ";
    // cout << "(" << xmid << "," << ymid << ")  ";
    // cout << "(" << x2 << "," << y2 << ")" << endl;

    float min_dist = 0.1 * unittol;
    float xnew, ynew;
    int it=0;
    while ( ((++it)<=max_iter) && (fabs((x2-x1)/unittol)>1.0) )
      {
	// cout << "  [" << Min(x1,x2) << "," << Max(x1,x2) << "]" << endl;

	if (it>0) {
	  xnew = nextpt(x1,xmid,x2,y1,ymid,y2);
	} else {
	  xnew = extrapolatept(x1,xmid,x2);
	}

	float dirn=1.0;
	if (x2<x1) dirn=-1.0;

	if (fabs(xnew - x1)<min_dist) {
	  xnew = x1 + dirn*min_dist;
	}

	if (fabs(xnew - x2)<min_dist) {
	  xnew = x2 - dirn*min_dist;
	}

	if (fabs(xnew - xmid)<min_dist) {
	  xnew = extrapolatept(x1,xmid,x2);
	}

	if (fabs(xmid - x1)<0.4*unittol) {
	  xnew = xmid + dirn*0.5*unittol;
	}

	if (fabs(xmid - x2)<0.4*unittol) {
	  xnew = xmid - dirn*0.5*unittol;
	}

	ynew = (*func)(xnew*unitdir + pt);

	if ((xnew - xmid)*(x2 - xmid) > 0) {  // is xnew between x2 and xmid ?
	  // swap x1 and x2 so that xnew is between x1 and xmid
	  float xtemp = x1;  x1 = x2;  x2 = xtemp;
	  float ytemp = y1;  y1 = y2;  y2 = ytemp;
	}
	if (ynew < ymid) {
	  // new interval is [xmid,x1] with xnew as best point in the middle
	  x2 = xmid;  y2 = ymid;
	  xmid = xnew;  ymid = ynew;
	} else {
	  // new interval is  [x2,xnew] with xmid as best point still
	  x1 = xnew;  y1 = ynew;
	}
      }
    iterations_done = it;
    pt = xmid*unitdir + pt;
    return ymid;
  }



  
  float optimise(ColumnVector &pt, int numopt, const ColumnVector &tol, 
		 float (*func)(const ColumnVector &), int &iterations_done, 
Mark Jenkinson's avatar
Mark Jenkinson committed
		 int max_iter, const ColumnVector& boundguess, 
		 const string type)
Christian Beckmann's avatar
Christian Beckmann committed
  {
Mark Jenkinson's avatar
Mark Jenkinson committed
    // Note that numopt can be less than pt.Nrows() - e.g. 6 dof optimisation
    //  but with a 12 dimensional vector

Christian Beckmann's avatar
Christian Beckmann committed
    // Calculate dot product of dir by tol
    //  st (x1-x2)*dir_tol = average number of tolerances between x1 and x2
    ColumnVector inv_tol(tol.Nrows());
    inv_tol = 0.0;
    for (int n=1; n<=tol.Nrows(); n++) {
      if (fabs(tol(n))>1e-15) {
	inv_tol(n) = fabs(1.0/tol(n));
      }
    }
    inv_tol /= (float) tol.Nrows();

Mark Jenkinson's avatar
Mark Jenkinson committed
    Matrix dirs(pt.Nrows(),pt.Nrows());
    dirs = IdentityMatrix(pt.Nrows());
    ColumnVector dir(pt.Nrows()), initpt, deltaf(pt.Nrows());
    deltaf=0.0f;
Christian Beckmann's avatar
Christian Beckmann committed
    int lit=0, littot=0, it=0;
Mark Jenkinson's avatar
Mark Jenkinson committed
    float fval=0.0, fval2=0.0, bndguess, finit=0.0, fend=0.0, fextrap=0.0;
Christian Beckmann's avatar
Christian Beckmann committed
    while ((++it)<=max_iter)
      {
	initpt = pt;
	bndguess = boundguess(Min(it,boundguess.Nrows()));  // ceiling of nrows
	for (int n=1; n<=numopt; n++) {
Mark Jenkinson's avatar
Mark Jenkinson committed
	  for (int m=1; m<=pt.Nrows(); m++) { dir(m) = dirs(m,n); }
	  fval2 = optimise1d(pt,dir,tol,lit,func,100,fval,bndguess);
	  deltaf(n)=fval2-fval;
	  if (n==1) { finit = fval; }
	  fval=fval2;
	  littot += lit;
Christian Beckmann's avatar
Christian Beckmann committed
	}
Christian Beckmann's avatar
Christian Beckmann committed
	// check to see if the point has moved more than one average tolerance
	float avtol = SP((initpt - pt),inv_tol).SumAbsoluteValue();
	if (avtol < 1.0) break;
Mark Jenkinson's avatar
Mark Jenkinson committed

	// if continuing then change the directions if using Powell's method
	if (type=="powell") 
	  {
	    // find direction of maximal change
	    int bestm=1;
	    for (int m=1; m<=numopt; m++) { 
	      if (deltaf(m)<deltaf(bestm)) bestm=m; 
	    }
	    fend=fval;
	    fextrap=(*func)(initpt + 2*(pt-initpt));
	    float df=fabs(deltaf(bestm));
	    if ( (2 * (finit-2*fend+fextrap) * (finit-fend-df)*(finit-fend-df)) < ( (finit-fextrap)*(finit-fextrap)*df ) ) {
	      if (fextrap<finit) {
Matthew Webster's avatar
Matthew Webster committed
		cout << "Applying POWELL correction" << endl;
		cout << "finit, fend, fextrap = " << finit << " , " << fend << " , " << fextrap << endl;
Mark Jenkinson's avatar
Mark Jenkinson committed
		// do another minimisation
		fval2 = optimise1d(pt,pt-initpt,tol,lit,func,100,fval,bndguess);
		fval=fval2;
Matthew Webster's avatar
Matthew Webster committed
		cout << "fval = " << fval << endl;
Mark Jenkinson's avatar
Mark Jenkinson committed
		littot += lit;
		// replace direction of maximum change with pt-initpt
		for (int m=1; m<=pt.Nrows(); m++) {
		  dirs(m,bestm)=pt(m)-initpt(m);
		}
	      }
	    }
	  }
	
Christian Beckmann's avatar
Christian Beckmann committed
      }
    // cout << endl << "Major iterations = " << it << endl;
    iterations_done = littot;
    return fval;
  }


}