Newer
Older
Mark Jenkinson & Mark Woolrich & Christian Beckmann & Tim Behrens, FMRIB Image Analysis Group
Copyright (C) 1999-2000 University of Oxford */
/* CCOPYRIGHT */
// Miscellaneous maths functions
#if !defined(__miscmaths_h)
#define __miscmaths_h
#include <cmath>
#include <vector>
#include <iostream>
#include <assert.h>
#include <fstream>
#include <strstream>
#include <string>
#include "kernel.h"
//#pragma interface
using namespace NEWMAT;
using namespace std;
namespace MISCMATHS {
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define OUT(t) cout<<#t "="<<t<<endl;
// IO/string stuff
template <class T> string num2str(T n, int width=-1);
string size(const Matrix& mat);
bool isnum(const string& str);
ReturnMatrix read_ascii_matrix(const string& filename, int nrows, int ncols);
ReturnMatrix read_ascii_matrix(int nrows, int ncols, const string& filename);
ReturnMatrix read_ascii_matrix(const string& filename);
ReturnMatrix read_vest(string p_fname);
ReturnMatrix read_binary_matrix(const string& filename);
int write_ascii_matrix(const Matrix& mat, const string& filename,
int precision=-1);
int write_ascii_matrix(const string& filename, const Matrix& mat,
int precision=-1);
int write_vest(const Matrix& x, string p_fname, int precision=-1);
int write_vest(string p_fname, const Matrix& x, int precision=-1);
int write_binary_matrix(const Matrix& mat, const string& filename);
// more basic IO calls
string skip_alpha(ifstream& fs);
ReturnMatrix read_ascii_matrix(ifstream& fs, int nrows, int ncols);
ReturnMatrix read_ascii_matrix(int nrows, int ncols, ifstream& fs);
ReturnMatrix read_ascii_matrix(ifstream& fs);
ReturnMatrix read_binary_matrix(ifstream& fs);
int write_ascii_matrix(const Matrix& mat, ofstream& fs, int precision=-1);
int write_ascii_matrix(ofstream& fs, const Matrix& mat, int precision=-1);
int write_binary_matrix(const Matrix& mat, ofstream& fs);
// General maths
int round(int x);
int round(float x);
int round(double x);
inline int sign(int x){ if (x>0) return 1; else { if (x<0) return -1; else return 0; } }
inline int sign(float x){ if (x>0) return 1; else { if (x<0) return -1; else return 0; } }
inline int sign(double x){ if (x>0) return 1; else { if (x<0) return -1; else return 0; } }
inline double pow(double x, float y) { return std::pow(x,(double) y); }
inline double pow(float x, double y) { return std::pow((double) x,y); }
inline double pow(double x, int y) { return std::pow(x,(double) y); }
inline float pow(float x, int y) { return std::pow(x,(float) y); }
inline double pow(int x, double y) { return std::pow((double)x, y); }
inline float pow(int x, float y) { return std::pow((float)x, y); }
inline double sqrt(int x) { return std::sqrt((double) x); }
inline double log(int x) { return std::log((double) x); }
float Sinc(const float x);
double Sinc(const double x);
int periodicclamp(int x, int x1, int x2);
template<class S, class T>
inline T Min(const S &a, const T &b) { if (a<b) return (T) a; else return b; }
template<class S, class T>
inline T Max(const S &a, const T &b) { if (a>b) return (T) a; else return b; }
template<class T>
inline T Sqr(const T& x) { return x*x; }
ColumnVector cross(const ColumnVector& a, const ColumnVector& b);
ColumnVector cross(const Real *a, const Real *b);
inline float dot(const ColumnVector& a, const ColumnVector& b)
{ return Sum(SP(a,b)); }
double norm2(const ColumnVector& x);
double norm2(double a, double b, double c);
float norm2(float a, float b, float c);
int Identity(Matrix& m);
ReturnMatrix Identity(int num);
int diag(Matrix& m, const float diagvals[]);
int diag(Matrix& m, const ColumnVector& diagvals);
int diag(DiagonalMatrix& m, const ColumnVector& diagvals);
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
ReturnMatrix diag(const Matrix& mat);
ReturnMatrix pinv(const Matrix& mat);
ReturnMatrix sqrtaff(const Matrix& mat);
void reshape(Matrix& r, const Matrix& m, int nrows, int ncols);
ReturnMatrix reshape(const Matrix& m, int nrows, int ncols);
int construct_rotmat_euler(const ColumnVector& params, int n, Matrix& aff);
int construct_rotmat_euler(const ColumnVector& params, int n, Matrix& aff,
const ColumnVector& centre);
int construct_rotmat_quat(const ColumnVector& params, int n, Matrix& aff);
int construct_rotmat_quat(const ColumnVector& params, int n, Matrix& aff,
const ColumnVector& centre);
int make_rot(const ColumnVector& angl, const ColumnVector& centre,
Matrix& rot);
int getrotaxis(ColumnVector& axis, const Matrix& rotmat);
int rotmat2euler(ColumnVector& angles, const Matrix& rotmat);
int rotmat2quat(ColumnVector& quaternion, const Matrix& rotmat);
int decompose_aff(ColumnVector& params, const Matrix& affmat,
int (*rotmat2params)(ColumnVector& , const Matrix& ));
int decompose_aff(ColumnVector& params, const Matrix& affmat,
const ColumnVector& centre,
int (*rotmat2params)(ColumnVector& , const Matrix& ));
int compose_aff(const ColumnVector& params, int n, const ColumnVector& centre,
Matrix& aff,
int (*params2rotmat)(const ColumnVector& , int , Matrix& ,
const ColumnVector& ) );
float rms_deviation(const Matrix& affmat1, const Matrix& affmat2,
const ColumnVector& centre, const float rmax);
float rms_deviation(const Matrix& affmat1, const Matrix& affmat2,
const float rmax=80.0);
float median(const ColumnVector& x);
void cart2sph(const ColumnVector& dir, float& th, float& ph);// cartesian to sperical polar coordinates
void cart2sph(const Matrix& dir,ColumnVector& th,ColumnVector& ph);//ditto
// returns the first P such that 2^P >= abs(N).
int nextpow2(int n);
// Auto-correlation function estimate of columns of p_ts
// gives unbiased estimate - scales the raw correlation by 1/(N-abs(lags))
void xcorr(const Matrix& p_ts, Matrix& ret, int lag = 0, int p_zeropad = 0);
ReturnMatrix xcorr(const Matrix& p_ts, int lag = 0, int p_zeropad = 0);
// removes trend from columns of p_ts
// if p_level==0 it just removes the mean
// if p_level==1 it removes linear trend
// if p_level==2 it removes quadratic trend
void detrend(Matrix& p_ts, int p_level=1);
ReturnMatrix zeros(const int dim1, const int dim2 = -1);
ReturnMatrix ones(const int dim1, const int dim2 = -1);
ReturnMatrix repmat(const Matrix& mat, const int rows = 1, const int cols = 1);
ReturnMatrix dist2(const Matrix& mat1, const Matrix& mat2);
ReturnMatrix abs(const Matrix& mat);
ReturnMatrix sqrt(const Matrix& mat);
ReturnMatrix log(const Matrix& mat);
ReturnMatrix exp(const Matrix& mat);
ReturnMatrix tanh(const Matrix& mat);
ReturnMatrix pow(const Matrix& mat, const double exp);
ReturnMatrix sum(const Matrix& mat, const int dim = 1);
ReturnMatrix mean(const Matrix& mat, const int dim = 1);
ReturnMatrix var(const Matrix& mat, const int dim = 1);
ReturnMatrix max(const Matrix& mat);
ReturnMatrix max(const Matrix& mat,ColumnVector& index);
ReturnMatrix min(const Matrix& mat);
ReturnMatrix gt(const Matrix& mat1,const Matrix& mat2);
ReturnMatrix lt(const Matrix& mat1,const Matrix& mat2);
ReturnMatrix geqt(const Matrix& mat1,const Matrix& mat2);
ReturnMatrix leqt(const Matrix& mat1,const Matrix& mat2);
ReturnMatrix eq(const Matrix& mat1,const Matrix& mat2);
ReturnMatrix neq(const Matrix& mat1,const Matrix& mat2);
ReturnMatrix SD(const Matrix& mat1,const Matrix& mat2); // Schur (element-wise) divide
ReturnMatrix vox_to_vox(const ColumnVector& xyz1,const ColumnVector& dims1,const ColumnVector& dims2,const Matrix& xfm);
ReturnMatrix mni_to_imgvox(const ColumnVector& mni,const ColumnVector& mni_origin,const Matrix& mni2img, const ColumnVector& img_dims);
void remmean(const Matrix& mat, Matrix& demeanedmat, Matrix& Mean, const int dim = 1);
ReturnMatrix remmean(const Matrix& mat, const int dim = 1);
ReturnMatrix stdev(const Matrix& mat, const int dim = 1);
ReturnMatrix cov(const Matrix& mat, const int norm = 0);
ReturnMatrix corrcoef(const Matrix& mat, const int norm = 0);
void symm_orth(Matrix &Mat);
void powerspectrum(const Matrix &Mat1, Matrix &Result, bool useLog);
void element_mod_n(Matrix& Mat,double n); //represent each element in modulo n (useful for wrapping phases (n=2*M_PI))
// ols
// data is t x v
// des is t x ev (design matrix)
// tc is cons x ev (contrast matrix)
// cope and varcope will be cons x v
// but will be resized if they are wrong
void ols(const Matrix& data,const Matrix& des,const Matrix& tc, Matrix& cope,Matrix& varcope);
// Conjugate Gradient methods to solve for x in: A * x = b
// A must be symmetric and positive definite
int conjgrad(ColumnVector& x, const Matrix& A, const ColumnVector& b,
int maxit=3);
// allow specification of reltol = relative tolerance of residual error
// (stops when error < reltol * initial error)
int conjgrad(ColumnVector& x, const Matrix& A, const ColumnVector& b,
int maxit, float reltol);
float csevl(const float x, const ColumnVector& cs, const int n);
float digamma(const float x);
void glm_vb(const Matrix& X, const ColumnVector& Y, ColumnVector& B, SymmetricMatrix& ilambda_B, int niters=20);
vector<float> ColumnVector2vector(const ColumnVector& col);
///////////////////////////////////////////////////////////////////////////
Mark Jenkinson
committed
// Uninteresting byte swapping functions
void Swap_2bytes ( int n , void *ar ) ;
void Swap_4bytes ( int n , void *ar ) ;
void Swap_8bytes ( int n , void *ar ) ;
void Swap_16bytes( int n , void *ar ) ;
void Swap_Nbytes ( int n , int siz , void *ar ) ;
///////////////////////////////////////////////////////////////////////////
Mark Jenkinson
committed
///////////////////////////////////////////////////////////////////////////
template<class t> ReturnMatrix vector2ColumnVector(const vector<t>& vec)
{
ColumnVector col(vec.size());
for(unsigned int c = 0; c < vec.size(); c++)
col(c+1) = vec[c];
col.Release();
return col;
}
template<class t> void write_vector(const string& fname, const vector<t>& vec)
{
ofstream out;
out.open(fname.c_str(), ios::out);
copy(vec.begin(), vec.end(), ostream_iterator<t>(out, " "));
}
template<class t> void write_vector(const vector<t>& vec, const string& fname)
{
write_vector(fname,vec);
}
template <class T>
string num2str(T n, int width)
{
ostrstream os;
if (width>0) {
os.fill('0');
os.width(width);
os.setf(ios::internal, ios::adjustfield);
}
os << n << '\0';
return os.str();
}
}
#endif