Skip to content
Snippets Groups Projects
SpMat.h 31.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
//
//  Implements bare-bones sparse matrix class. 
//  Main considerations has been efficiency when constructing
//  from Compressed Column format, when multiplying with vector,
//  transposing and multiplying with a vector and when concatenating.
//  Other operations which have not been prioritised such as 
//  for example inserting elements in a random order may be
//  a bit slow.  
//
//  You will notice that some "obvious" functionality like e.g.
//  transpose is missing. Instead I have supplied functionality
//  like A.trans_mult(x) which is equivalent to A.t()*x in NEWMAT
//  lingo. The reason for this is partly to supply an api that is
//  consistent with that expected by IML++. But more so because I
//  believe that when a matrix is unwieldily enough to warrant
//  the use of a sparse matrix class, then one should not attempt
//  to represent both the matrix and its transpose.
//

#ifndef SpMat_h
#define SpMat_h

#include <vector>
#include <boost/shared_ptr.hpp>
#include "newmat.h"
#include "cg.h"
#include "bicg.h"

namespace MISCMATHS {

class SpMatException: public std::exception
{
private:
  std::string m_msg;
public:
  SpMatException(const std::string& msg) throw(): m_msg(msg) {}

  virtual const char * what() const throw() {
    return string("SpMat::" + m_msg).c_str();
  }

  ~SpMatException() throw() {}
};

enum MatrixType {UNKNOWN, ASYM, SYM, SYM_POSDEF};

template<class T>
class Preconditioner;

template<class T>
class Accumulator;


//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//
// Class SpMat:
// Interface includes:
// Multiplication with scalar:  A*=s, B=s*A, B=A*s, A and B SpMat
// Multiplication with vector:  b=A*x, A SpMat, b and x ColumnVector
// Transpose and mul with vector: b=A.trans_mult(x), A SpMat, b and x ColumnVector
// Multiplication with sparse matrix: C=A*B, A, B and C SpMat
// Addition with sparse matrix: A+=B, C=A+B, A, B and C SpMat
// Horisontal concatenation: A|=B, C=A|B, A, B and C SpMat
// Vertical concatenation: A&=B, C=A&B, A, B and C SpMat
//
// Multiplications and addition with NEWMAT matrices are
// accomplished through type-conversions. For example
// A = B*SpMat(C), A and B SpMat, C NEWMAT
// A = B.AsNewmat()*C, B SpMat, A and C NEWMAT
//
// Important implementation detail:
// _nz or .NZ() isn't strictly speaking the # of non-zero elements,
// but rather the number of elements that has an explicit 
// representation, where that representation may in principle
// be 0. This is in contrast to e.g. Matlab which chooses
// not to represent an element when its value is zero. I have
// chosen this variant because of my main use of the class where 
// it is very convenient if e.g. my Hessian and the Gibbs form
// of membrane energy has the same sparsity pattern.
// For most users this is of no consequence and they will 
// never explicitly represent a zero.
//
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

template<class T>
class SpMat
{
public:
  SpMat() : _m(0), _n(0), _nz(0), _ri(0), _val(0) {}
  SpMat(unsigned int m, unsigned int n) : _m(m), _n(n), _nz(0), _ri(n), _val(n) {}
  SpMat(unsigned int m, unsigned int n, const unsigned int *irp, const unsigned int *jcp, const double *sp);
  SpMat(const NEWMAT::GeneralMatrix& M);

  unsigned int Nrows() const {return(_m);}
  unsigned int Ncols() const {return(_n);}
  unsigned int NZ() const {return(_nz);}

  NEWMAT::ReturnMatrix AsNEWMAT() const;

  T Peek(unsigned int r, unsigned int c) const;
  T operator()(unsigned int r, unsigned int c) const {return(Peek(r,c));}    // Read-only

  void Set(unsigned int r, unsigned int c, const T& v) {here(r,c) = v;}
  void AddTo(unsigned int r, unsigned int c, const T& v) {here(r,c) += v;}

  SpMat<T>& operator+=(const SpMat& M) 
  {
    if (same_sparsity(M)) return(add_same_sparsity_mat_to_me(M,1)); 
    else return(add_diff_sparsity_mat_to_me(M,1));
  }
  SpMat<T>& operator-=(const SpMat& M) 
  {
    if (same_sparsity(M)) return(add_same_sparsity_mat_to_me(M,-1)); 
    else return(add_diff_sparsity_mat_to_me(M,-1));
  }
  const NEWMAT::ReturnMatrix operator*(const NEWMAT::ColumnVector& x) const;       // Multiplication with column vector
  const NEWMAT::ReturnMatrix trans_mult(const NEWMAT::ColumnVector& x) const;      // Multiplication of transpose with column vector
  const NEWMAT::ReturnMatrix TransMult(const NEWMAT::ColumnVector& x) const {
    return(trans_mult(x));                                                         // Duplication for compatibility with IML++
  }
  const SpMat<T> TransMult(const SpMat<T>& B) const;                               // Multiplication of transpose(*this) with sparse matrix B
  SpMat<T>& operator*=(double s);                                                  // Multiplication of self with scalar
  SpMat<T> operator-(const SpMat<T>& M) const {return(SpMat<T>(M) *= -1.0);}       // Unary minus
  SpMat<T>& operator|=(const SpMat<T>& rh);                                        // Hor concat to right
  SpMat<T>& operator&=(const SpMat<T>& bh);                                        // Vert concat below

  const SpMat<T> TransMultSelf() const {return(TransMult(*this));}                 // Returns transpose(*this)*(*this)
  
  friend class Accumulator<T>; 

  template<class TT>
  friend const SpMat<TT> operator*(const SpMat<TT>& lh, const SpMat<TT>& rh);      // Multiplication of two sparse matrices

  NEWMAT::ReturnMatrix SolveForx(const NEWMAT::ColumnVector&           b,          // Solve for x in b=(*this)*x
                                 MatrixType                            type = UNKNOWN,
                                 double                                tol = 1e-4, 
                                 unsigned int                          miter = 200,
				 boost::shared_ptr<Preconditioner<T> > C = boost::shared_ptr<Preconditioner<T> >()) const;
   
private:
  unsigned int                              _m;
  unsigned int                              _n;
  unsigned long                             _nz;
  std::vector<std::vector<unsigned int> >   _ri;
  std::vector<std::vector<T> >              _val;

  bool found(const std::vector<unsigned int>&  ri, unsigned int key, int& pos) const;
  T& here(unsigned int r, unsigned int c);
  void insert(std::vector<unsigned int>& vec, int indx, unsigned int val);
  void insert(std::vector<T>& vec, int indx, const T& val);
  bool same_sparsity(const SpMat<T>& M) const;
  SpMat<T>& add_same_sparsity_mat_to_me(const SpMat<T>& M, double s);
  SpMat<T>& add_diff_sparsity_mat_to_me(const SpMat<T>& M, double s);
};

//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//
// Class Preconditioner:
//
// I haven't used conditioner for close to 20 years now, so writing
// this class was a special treat for me. A preconditioner is used
// to render the coefficient-matrix corresponding to some set of
// linear equations better conditioned. A concrete example would be
// when some set of columns/rows have a different scale than the 
// others, resulting in poor convergence of for example a conjugate
// gradient search. The simplest form of preconditioner might then 
// be inv(diag(A)), where A is the original matrix. It simply scales
// the columns of A with the inverse of the diagonal elements. This
// simple conditioning works fine when A is diagonal domninant, which
// i typically the case with e.g. Hessians in spatial normalisation.
// If not, a more sophisticated version like incomplete Cholesky
// decomposition might be needed.
// As of yet only diagonal preconditioners have been implemented.
//
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

template<class T>
class Preconditioner
{
public:
  Preconditioner(const SpMat<T>& M) : _m(M.Nrows())
  {
    if (M.Nrows() != M.Ncols()) throw SpMatException("Preconditioner: Matrix to condition must be square");
  }
  virtual ~Preconditioner() {}
  unsigned int Nrows() const {return(_m);}
  virtual NEWMAT::ReturnMatrix solve(const NEWMAT::ColumnVector& x) const = 0;
  virtual NEWMAT::ReturnMatrix trans_solve(const NEWMAT::ColumnVector& x) const = 0;
private:
  unsigned int     _m;
};

template<class T>
class DiagPrecond: public Preconditioner<T>
{
public:
  DiagPrecond(const SpMat<T>& M) : Preconditioner<T>(M), _diag(M.Nrows())
  {
    for (unsigned int i=0; i<Preconditioner<T>::Nrows(); i++) {
      _diag[i] = M(i+1,i+1);
      if (_diag[i] == 0.0) throw SpMatException("DiagPrecond: Cannot condition singular matrix");
    }
  }
  ~DiagPrecond() {}
  NEWMAT::ReturnMatrix solve(const NEWMAT::ColumnVector& x) const
  {
    if (x.Nrows() != int(Preconditioner<T>::Nrows())) throw SpMatException("DiagPrecond::solve: Vector x has incompatible size");

    NEWMAT::ColumnVector  b(Preconditioner<T>::Nrows());
    double                *bptr = static_cast<double *>(b.Store());
    double                *xptr = static_cast<double *>(x.Store());
    for (unsigned int i=0; i<Preconditioner<T>::Nrows(); i++) bptr[i] = xptr[i]/static_cast<double>(_diag[i]);
    b.Release();

    return(b);
  }
  NEWMAT::ReturnMatrix trans_solve(const NEWMAT::ColumnVector& x) const {return(solve(x));}

private:
  std::vector<T>   _diag;
};  
  

//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//
// Class Accumulator:
//
// The concept of an accumulator was "borrowed" from Gilbert et al. 
// 92. It is intended as a helper class for SpMat and is used to
// hold the content of one column of a matrix C where C is a 
// sparse matrix resulting from C=A*B where A and B are sparse
// matrices.
//
//@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

template<class T>
class Accumulator
{
public:
  Accumulator(unsigned int sz) : _no(0), _sz(sz), _sorted(true), _occ(new bool [sz]), _val(new T [sz]), _occi(new unsigned int [sz]) 
  {
    for (unsigned int i=0; i<_sz; i++) {_occ[i]=false; _val[i]=static_cast<T>(0.0);}
  }
  ~Accumulator() {delete [] _occ; delete [] _val; delete [] _occi;}
  void Reset() {for (unsigned int i=0; i<_no; i++) {_occ[_occi[i]]=false; _val[_occi[i]]=static_cast<T>(0.0);} _no=0;}
  T& operator()(unsigned int i);
  unsigned int NO() const {return(_no);}
  unsigned int ri(unsigned int i) {                             // Index of i'th non-zero value.
    if (!_sorted) {sort(_occi,&(_occi[_no])); _sorted=true;}
    return(_occi[i]);
  }
  const T& val(unsigned int i) {                                // i'th non-zero value. Call ri(i) to find what index that corresponds to
    if (!_sorted) {sort(_occi,&(_occi[_no])); _sorted=true;}    
    return(_val[_occi[i]]);
  }
  const T& val_at(unsigned int i) const {return(_val[i]);}      // Value for index i (or i+1)
  const bool& occ_at(unsigned int i) const {return(_occ[i]);}   // Is value for index i non-zero
  
  const Accumulator<T>& ExtractCol(const SpMat<T>& M, unsigned int c);
  
private:
  unsigned int                   _no;       // Number of occupied positions
  unsigned int                   _sz;       // Max size of accumulated vector
  bool                           _sorted;   // True if _occi is ordered
  bool                           *_occ;     // True if position is "occupied"  
  T                              *_val;     // "Value" in position
  unsigned int                   *_occi;    // Unordered list of occupied indicies
};

/////////////////////////////////////////////////////////////////////
//
// Constructs sparse matrix from Compressed Column Storage representation
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>::SpMat(unsigned int m, unsigned int n, const unsigned int *irp, const unsigned int *jcp, const double *sp)
: _m(m), _n(n), _nz(0), _ri(n), _val(n)
{
  _nz = jcp[n];
  unsigned long nz = 0;
  for (unsigned int c=0; c<_n; c++) {
    if (int len = jcp[c+1]-jcp[c]) {
      std::vector<unsigned int>&  ri = _ri[c];
      std::vector<T>&             val = _val[c];
      const unsigned int          *iptr = &(irp[jcp[c]]);
      const double                *vptr = &(sp[jcp[c]]);
      ri.resize(len);
      val.resize(len);
      for (int i=0; i<len; i++) {
        ri[i] = iptr[i];
        val[i] = static_cast<T>(vptr[i]);
        nz++;
      }
    }
  }
  if (nz != _nz) throw SpMatException("SpMat: Compressed column input not self consistent");
}

/////////////////////////////////////////////////////////////////////
//
// Constructs sparse matrix from NEWMAT Matrix or Vector
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>::SpMat(const NEWMAT::GeneralMatrix& M)
: _m(M.Nrows()), _n(M.Ncols()), _nz(0), _ri(M.Ncols()), _val(M.Ncols())
{
  double *m = static_cast<double *>(M.Store());

  for (unsigned int c=0; c<_n; c++) {
    // First find # of non-zeros elements in column
    unsigned int cnz = 0;
    for (unsigned int i=0; i<_m; i++) {
      if (m[i*_n+c]) cnz++;
    }
    if (cnz) {
      std::vector<unsigned int>&   ri = _ri[c];
      std::vector<T>&              val = _val[c];
      ri.resize(cnz);
      val.resize(cnz);
      for (unsigned int rii=0, i=0; i<_m; i++) {
        if (double v = m[i*_n+c]) {
          ri[rii] = i;
          val[rii] = v;
          rii++;
	}
      }
      _nz += cnz;
    }
  }  
}

/////////////////////////////////////////////////////////////////////
//
// Returns matrix in NEWMAT matrix format. Useful for debugging
//
/////////////////////////////////////////////////////////////////////

template<class T>
NEWMAT::ReturnMatrix SpMat<T>::AsNEWMAT() const
{
  NEWMAT::Matrix M(_m,_n);
  M = 0.0;
  for (unsigned int c=0; c<_n; c++) {
    if (_ri[c].size()) {
      const std::vector<unsigned int>&    ri = _ri[c];
      const std::vector<T>&               val = _val[c];
      for (unsigned int i=0; i<ri.size(); i++) {
        M(ri[i]+1,c+1) = static_cast<double>(val[i]);
      }
    }
  }
  M.Release();
  return(M);
}

/////////////////////////////////////////////////////////////////////
//
// Solves for x in expression b=(*this)*x. Uses the IML++ templates
// to obtain an iterative solution. It is presently a little stupid
// when a matrix of UNKNOWN type is passed. It will then assume worst
// case (asymmetric) rather than testing for symmetry and positive
// definiteness. That really should be changed, but at the moment
// I don't have the time.
//
/////////////////////////////////////////////////////////////////////

template<class T>
NEWMAT::ReturnMatrix SpMat<T>::SolveForx(const NEWMAT::ColumnVector&            b,
			                 MatrixType                             type,
			                 double                                 tol,
			                 unsigned int                           miter,
					 boost::shared_ptr<Preconditioner<T> >  C) const
{
  if (_m != _n) throw SpMatException("SolveForx: Matrix must be square");
  if (int(_m) != b.Nrows()) throw SpMatException("SolveForx: Mismatch between matrix and vector");

  NEWMAT::ColumnVector  x(_n);
  x = 0.0;
  int                   status = 0;
  int                   liter = int(miter);
  double                ltol = tol;
  // Use diagonal conditioner if no user-specified one
  boost::shared_ptr<Preconditioner<T> > M = boost::shared_ptr<Preconditioner<T> >();
  if (!C) M = boost::shared_ptr<Preconditioner<T> >(new DiagPrecond<T>(*this));
  else M = C;

  switch (type) {
  case SYM_POSDEF:
    status = CG(*this,x,b,*M,liter,tol);
    break;
  case SYM:
  case ASYM:
  case UNKNOWN:
    status = BiCG(*this,x,b,*M,liter,tol);
    break;
  default:
    throw SpMatException("SolveForx: No idea how you got here. But you shouldn't be here, punk.");
  }

  if (status) {
    cout << "SpMat::SolveForx: Warning requested tolerence not obtained." << endl;
    cout << "Requested tolerance was " << ltol << ", and achieved tolerance was " << tol << endl;
    cout << "This may or may not be a problem in your application, but you should look into it" << endl;
  }
  
  x.Release();
  return(x);
}
/////////////////////////////////////////////////////////////////////
//
// Returns value at position i,j (one offset)
//
/////////////////////////////////////////////////////////////////////

template<class T>
T SpMat<T>::Peek(unsigned int r, unsigned int c) const
{
  if (r<1 || r>_m || c<1 || c>_n) throw SpMatException("Peek: index out of range");

  int i=0;
  if (found(_ri[c-1],r-1,i)) return(_val[c-1][i]);

  return(static_cast<T>(0.0));
}

/////////////////////////////////////////////////////////////////////
//
// Multiply with vector x returning vector b (b = A*x)
//
/////////////////////////////////////////////////////////////////////

template<class T>
const NEWMAT::ReturnMatrix SpMat<T>::operator*(const NEWMAT::ColumnVector& x) const
{
  if (_n != static_cast<unsigned int>(x.Nrows())) throw SpMatException("operator*: # of rows in vector must match # of columns in matrix");
  NEWMAT::ColumnVector b(_m);
  b = 0.0;
  const double *xp = static_cast<double *>(x.Store());
  double       *bp = static_cast<double *>(b.Store());

  for (unsigned int c=0; c<_n; c++) {
    if (_ri[c].size()) {
      double                            wgt = xp[c];
      const std::vector<unsigned int>&  ri = _ri[c];
      const std::vector<T>&             val = _val[c];
      for (unsigned int i=0; i<ri.size(); i++) {
        bp[ri[i]] += static_cast<double>(wgt*val[i]);
      }
    }
  }
  b.Release();
  return(b);
}  

/////////////////////////////////////////////////////////////////////
//
// Multiply transpose with sparse matrix B returning matrix C (C = A'*B)
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> SpMat<T>::TransMult(const SpMat<T>& B) const
{
  if (_m != B._m) throw SpMatException("TransMult(SpMat& ): Left hand matrix must have same # of rows as right hand");
  
  SpMat<T>        C(_n,B._n);
  Accumulator<T>  outacc(_n);
  Accumulator<T>  Bcol(B._m);

  for (unsigned int Bc=0; Bc<B._n; Bc++) {
    outacc.Reset();
    Bcol.Reset();
    Bcol.ExtractCol(B,Bc);
    for (unsigned int Ac=0; Ac<_n; Ac++) {
      const std::vector<unsigned int>&   ri = _ri[Ac];
      const std::vector<T>&              val = _val[Ac];
      T tmp = static_cast<T>(0);
      for (unsigned int i=0; i<ri.size(); i++) {
        if (Bcol.occ_at(ri[i])) {
          tmp += val[i] * Bcol.val_at(ri[i]);
	}
      }
      if (tmp) outacc(Ac) += tmp;
    }
    C._ri[Bc].resize(outacc.NO());
    C._val[Bc].resize(outacc.NO());
    std::vector<unsigned int>&   Cri = C._ri[Bc];
    std::vector<T>&              Cval = C._val[Bc];
    for (unsigned int i=0; i<outacc.NO(); i++) {
      Cri[i] = outacc.ri(i);
      Cval[i] = outacc.val(i);
    }
    C._nz += outacc.NO();
  }
 
  return(C);
}

/////////////////////////////////////////////////////////////////////
//
// Multiply transpose with vector x returning vector b (b = A'*x)
//
/////////////////////////////////////////////////////////////////////

template<class T>
const NEWMAT::ReturnMatrix SpMat<T>::trans_mult(const NEWMAT::ColumnVector& x) const
{
  if (_m != static_cast<unsigned int>(x.Nrows())) throw SpMatException("trans_mult: # of rows in vector must match # of columns in transpose of matrix");
  NEWMAT::ColumnVector b(_n);
  const double *xp = static_cast<double *>(x.Store());
  double       *bp = static_cast<double *>(b.Store());

  for (unsigned int c=0; c<_n; c++) {
    double                            res = 0.0;
    if (_ri[c].size()) {
      const std::vector<unsigned int>&  ri = _ri[c];
      const std::vector<T>&             val = _val[c];
      for (unsigned int i=0; i<ri.size(); i++) {
        res += val[i]*xp[ri[i]];
      }
    }
    bp[c] = res;
  }
  b.Release();
  return(b);
}  

/////////////////////////////////////////////////////////////////////
//
// Multiplication of self with scalar
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>& SpMat<T>::operator*=(double s)
{
  for (unsigned int c=0; c<_n; c++) {
    if (_val[c].size()) {
      std::vector<T>&             val = _val[c];
      for (unsigned int i=0; i<val.size(); i++) val[i] *= s;
    }
  }
  return(*this);  
}
      
/////////////////////////////////////////////////////////////////////
//
// Concatenates rh to right of *this
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>& SpMat<T>::operator|=(const SpMat<T>& rh)
{
  if (_m != rh._m) throw SpMatException("operator|=: Matrices must have same # of rows");
  
  _ri.resize(_n+rh._n);
  _val.resize(_n+rh._n);
  for (unsigned int c=0; c<rh._n; c++) {
    _ri[_n+c] = rh._ri[c];
    _val[_n+c] = rh._val[c];
  }
  _n += rh._n;
  _nz += rh._nz;
  
  return(*this);    
}

/////////////////////////////////////////////////////////////////////
//
// Concatenates bh below *this
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>& SpMat<T>::operator&=(const SpMat<T>& bh)
{
  if (_n != bh._n) throw SpMatException("operator&=: Matrices must have same # of columns");

  for (unsigned int c=0; c<_n; c++) {
    if ((bh._ri[c]).size()) {
      std::vector<unsigned int>&        ri = _ri[c];
      const std::vector<unsigned int>&  bhri = bh._ri[c];
      std::vector<T>&                   val = _val[c];
      const std::vector<T>&             bhval = bh._val[c];
      unsigned int                      os = ri.size();
      unsigned int                      len = bhri.size();
      ri.resize(os+len);
      val.resize(os+len);
      for (unsigned int i=0; i<len; i++) {
        ri[os+i] = _m + bhri[i];
        val[os+i] = bhval[i];
      }
    }
  }
  _m += bh._m;
  _nz += bh._nz;

  return(*this);
}

/*###################################################################
##
## Here starts global functions
##
###################################################################*/

/////////////////////////////////////////////////////////////////////
//
// Global function for multiplication of two SpMat matrices
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator*(const SpMat<T>& lh, const SpMat<T>& rh)
{
  if (lh._n != rh._m) throw SpMatException("operator*: Left hand matrix must have same # of columns as right hand has rows");

  SpMat<T>              out(lh._m,rh._n);
  Accumulator<T>        acc(lh._m);
  
  for (unsigned int cr=0; cr<rh._n; cr++) {
    acc.Reset();
    if (rh._ri[cr].size()) {
      const std::vector<unsigned int>&   rri = rh._ri[cr];
      const std::vector<T>&             rval = rh._val[cr];
      for (unsigned int i=0; i<rri.size(); i++) {
        if (lh._ri[rri[i]].size()) {
          double wgt = rval[i];
          const std::vector<unsigned int>&   lri = lh._ri[rri[i]];
          const std::vector<T>&             lval = lh._val[rri[i]];
          for (unsigned int j=0; j<lri.size(); j++) {
            acc(lri[j]) += wgt*lval[j];
	  }
	}
      }
    }
    out._ri[cr].resize(acc.NO());
    out._val[cr].resize(acc.NO());
    std::vector<unsigned int>&  ori = out._ri[cr];
    std::vector<T>&            oval = out._val[cr];
    for (unsigned int i=0; i<acc.NO(); i++) {
      ori[i] = acc.ri(i);
      oval[i] = acc.val(i);
    }
    out._nz += acc.NO();
  }
               
  return(out);     
}

/////////////////////////////////////////////////////////////////////
//
// Global functions for left and right multiplication with scalar
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator*(double s, const SpMat<T>& rh)
{
  return(SpMat<T>(rh) *= s);
}

template<class T>
const SpMat<T> operator*(const SpMat<T>& lh, double s)
{
  return(SpMat<T>(lh) *= s);
}

/////////////////////////////////////////////////////////////////////
//
// Global function for adding two sparse matrices
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator+(const SpMat<T>& lh, const SpMat<T>& rh)
{
  return(SpMat<T>(lh) += rh);
}

/////////////////////////////////////////////////////////////////////
//
// Global function for subtracting sparse from sparse matrix
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator-(const SpMat<T>& lh, const SpMat<T>& rh)
{
  return(SpMat<T>(lh) -= rh);
}

/////////////////////////////////////////////////////////////////////
//
// Global functions for horisontally concatenating sparse-sparse,
// full-sparse, sparse-full
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator|(const SpMat<T>& lh, const SpMat<T>& rh)
{
  return(SpMat<T>(lh) |= rh);
}

template<class T>
const SpMat<T> operator|(const NEWMAT::GeneralMatrix& lh, const SpMat<T>& rh)
{
  return(SpMat<T>(lh) |= rh);
}

template<class T>
const SpMat<T> operator|(const SpMat<T>& lh, const NEWMAT::GeneralMatrix& rh)
{
  return(SpMat<T>(lh) |= SpMat<T>(rh));
}

/////////////////////////////////////////////////////////////////////
//
// Global function for vertically concatenating sparse-sparse,
// full-sparse and sparse-full
//
/////////////////////////////////////////////////////////////////////

template<class T>
const SpMat<T> operator&(const SpMat<T>& th, const SpMat<T>& bh)
{
  return(SpMat<T>(th) &= bh);
}

template<class T>
const SpMat<T> operator&(const NEWMAT::GeneralMatrix& th, const SpMat<T>& bh)
{
  return(SpMat<T>(th) &= bh);
}

template<class T>
const SpMat<T> operator&(const SpMat<T>& th, const NEWMAT::GeneralMatrix& bh)
{
  return(SpMat<T>(th) &= SpMat<T>(bh));
}

/*###################################################################
##
## Here starts hidden functions
##
###################################################################*/

/////////////////////////////////////////////////////////////////////
//
// Binary search. Returns true if key already exists. pos contains
// current position of key, or position to insert it in if key does
// not already exist.
//
/////////////////////////////////////////////////////////////////////

template<class T>
bool SpMat<T>::found(const std::vector<unsigned int>&  ri, unsigned int key, int& pos) const
{
  if (!ri.size() || key<ri[0]) {pos=0; return(false);}
  else if (key>ri.back()) {pos=ri.size(); return(false);}
  else {
    int mp=0;
    int ll=-1;       
    pos=int(ri.size());
    while ((pos-ll) > 1) {
      mp = (pos+ll) >> 1;   // Possibly faster than /2. Bit geeky though.
      if (key > ri[mp]) ll = mp;
      else pos = mp;
    }
  }
  if (ri[pos] == key) return(true);
  return(false);
} 

/////////////////////////////////////////////////////////////////////
//
// Return read/write reference to position i,j (one offset)
// N.B. should _not_ be used for read-only referencing since
// it will insert a value (0.0) at position i,j
//
/////////////////////////////////////////////////////////////////////

template<class T>
T& SpMat<T>::here(unsigned int r, unsigned int c)
{
  if (r<1 || r>_m || c<1 || c>_n) throw SpMatException("here: index out of range");
  
  int i = 0;
  if (!found(_ri[c-1],r-1,i)) {
    insert(_ri[c-1],i,r-1);
    insert(_val[c-1],i,static_cast<T>(0.0));
    _nz++;
  }
  return(_val[c-1][i]);
}

/////////////////////////////////////////////////////////////////////
//
// Open gap in vec at indx and fill with val. 
// Should have been templated, but I couldn't figure out how
// to, and still hide it inside SpMat
//
/////////////////////////////////////////////////////////////////////

template<class T>
void SpMat<T>::insert(std::vector<unsigned int>& vec, int indx, unsigned int val)
{
  vec.resize(vec.size()+1);
  for (int j=vec.size()-1; j>indx; j--) {
    vec[j] = vec[j-1];
  }
  vec[indx] = val;
}

template<class T>
void SpMat<T>::insert(std::vector<T>& vec, int indx, const T& val)
{
  vec.resize(vec.size()+1);
  for (int j=vec.size()-1; j>indx; j--) {
    vec[j] = vec[j-1];
  }
  vec[indx] = val;
}

/////////////////////////////////////////////////////////////////////
//
// Returns true if M has the same sparsity pattern as *this
//
/////////////////////////////////////////////////////////////////////

template<class T>
bool SpMat<T>::same_sparsity(const SpMat<T>& M) const
{
  if (_m != M._m || _n != M._n) return(false);
  for (unsigned int c=0; c<_n; c++) {
    if (_ri[c].size() != M._ri[c].size()) return(false);
  }
  for (unsigned int c=0; c<_n; c++) {
    const std::vector<unsigned int>& ri = _ri[c];
    const std::vector<unsigned int>& Mri = M._ri[c];
    for (unsigned int i=0; i<ri.size(); i++) {
      if (ri[i] != Mri[i]) return(false);
    }
  }
  return(true);
}

/////////////////////////////////////////////////////////////////////
//
// Adds a matrix to *this assuming identical sparsity patterns
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>& SpMat<T>::add_same_sparsity_mat_to_me(const SpMat<T>& M, double s)
{
  for (unsigned int c=0; c<_n; c++) {
    if (_val[c].size()) {
      std::vector<T>&          val = _val[c];
      const std::vector<T>&    Mval = M._val[c];
      for (unsigned int i=0; i<val.size(); i++) {
        val[i] += s*Mval[i];
      }
    }
  }
  return(*this);
}

/////////////////////////////////////////////////////////////////////
//
// Adds a matrix to *this assuming non-identical sparsity patterns
//
/////////////////////////////////////////////////////////////////////

template<class T>
SpMat<T>& SpMat<T>::add_diff_sparsity_mat_to_me(const SpMat<T>& M, double s)
{
  if (_m != M._m || _n != M._n) throw SpMatException("add_diff_sparsity_mat_to_me: Size mismatch between matrices");

  Accumulator<T> acc(_m);

  _nz = 0;
  for (unsigned int c=0; c<_n; c++) {
    acc.Reset();
    if (M._ri[c].size()) {
      const std::vector<unsigned int>&        Mri = M._ri[c];
      const std::vector<T>&                   Mval = M._val[c];
      for (unsigned int i=0; i<Mri.size(); i++) {
        acc(Mri[i]) += s*Mval[i];
      }
      std::vector<unsigned int>&        ri = _ri[c];
      std::vector<T>&                   val = _val[c];
      for (unsigned int i=0; i<ri.size(); i++) {
        acc(ri[i]) += s*val[i];
      }
      ri.resize(acc.NO());
      val.resize(acc.NO());
      for (unsigned int i=0; i<acc.NO(); i++) {
        ri[i] = acc.ri(i);
        val[i] = acc.val(i);
      }
      _nz += acc.NO();
    }
  }
  return(*this);
}

/*
template<class T>
SpMat<T>& SpMat<T>::add_diff_sparsity_mat_to_me(const SpMat<T>& M, double s)
{
  if (_m != M._m || _n != M._n) throw SpMatException("add_diff_sparsity_mat_to_me: Size mismatch between matrices");

  for (unsigned int c=0; c<_n; c++) {
    if (M._ri[c].size()) {
      const std::vector<unsigned int>&        Mri = M._ri[c];
      const std::vector<T>&                   Mval = M._val[c];
      for (unsigned int i=0; i<Mri.size(); i++) {
        AddTo(Mri[i]+1,c+1,s*Mval[i]);
      }
    }
  }
  return(*this);
}
*/

/*###################################################################
##
## Here starts functions for helper class Accumulator
##
###################################################################*/

template<class T>
T& Accumulator<T>::operator()(unsigned int i)
{
  if (!_occ[i]) {
    if (_sorted && i < _occi[_no-1]) _sorted = false;
    _occ[i] = true;
    _occi[_no++] = i;
  }
  return(_val[i]);
}

template<class T>
const Accumulator<T>& Accumulator<T>::ExtractCol(const SpMat<T>& M, unsigned int c)
{
  if (_sz != M._m) throw ;
  if (c<0 || c>(M._n-1)) throw ;
  if (_no) Reset();
  const std::vector<unsigned int>&      ri = M._ri[c];
  const std::vector<T>&                 val = M._val[c];
  for (unsigned int i=0; i<ri.size(); i++) {
    _occ[ri[i]] = true;
    _val[ri[i]] = val[i];
    _occi[_no++] = ri[i];
  }
  _sorted = true;  // Assuming M is sorted (should be)

  return(*this);
}

} // End namespace MISCMATHS

#endif // End #ifndef SpMat_h