Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
miscmaths
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FSL
miscmaths
Commits
323502d7
Commit
323502d7
authored
11 years ago
by
Jesper Andersson
Browse files
Options
Downloads
Patches
Plain Diff
Declares a class used to implement Nelder-Mead minimisation
parent
1b951a74
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Simplex.cpp
+202
-0
202 additions, 0 deletions
Simplex.cpp
Simplex.h
+93
-0
93 additions, 0 deletions
Simplex.h
with
295 additions
and
0 deletions
Simplex.cpp
0 → 100644
+
202
−
0
View file @
323502d7
/*! \file Simplex.cpp
\brief Contains definitions of Simplex class that can be used for Nelder-Mead simplex minimisation.
\author Jesper Andersson
\version 1.0b, Oct., 2013.
*/
// Contains definitions of Simplex class that can
// be used for Nelder-Mead simplex minimisation.
//
// Simplex.cpp
//
// Jesper Andersson, FMRIB Image Analysis Group
//
// Copyright (C) 2013 University of Oxford
//
#include
<iostream>
#include
<cfloat>
#include
<cmath>
#include
<string>
#include
<vector>
#include
"newmat.h"
#include
"miscmaths.h"
#include
"nonlin.h"
#include
"Simplex.h"
using
namespace
MISCMATHS
;
/****************************************************************//**
*
* Constructs a Simplex object given a vector of starting guesses
* and a cost-function object derived from the NonlinCF base class.
* The simplex is created by placing n points at a distance 0.1p
* from the nx1 start guess. If p is zero along any dimension the
* corresponding point is placed at unity distance instead.
* \param p Starting guess for the parameters.
* \param cf Cost-function object of a class derived from the virtual
* NonlinCF base class.
*
********************************************************************/
Simplex
::
Simplex
(
const
NEWMAT
::
ColumnVector
&
p
,
const
MISCMATHS
::
NonlinCF
&
cf
)
:
_cf
(
cf
),
_sp
(
p
)
{
NEWMAT
::
ColumnVector
l
(
_sp
.
Nrows
());
for
(
int
i
=
0
;
i
<
l
.
Nrows
();
i
++
)
{
l
(
i
+
1
)
=
(
p
(
i
+
1
))
?
0.1
*
p
(
i
+
1
)
:
1.0
;
}
setup_simplex
(
l
);
UpdateRankIndicies
();
}
/****************************************************************//**
*
* Constructs a Simplex object given a vector of starting guesses,
* a cost-function object derived from the NonlinCF base class and
* a vector of perturbations used to build the simplex.
* \param p Starting guess for the parameters.
* \param cf Cost-function object of a class derived from the virtual
* NonlinCF base class.
* \param l Perturbations used to create the nodes of the simplex.
* On initialisation the ith point of the simplex will be
* smplx[i] = p; smplx[i](i) += l(i);
*
********************************************************************/
Simplex
::
Simplex
(
const
NEWMAT
::
ColumnVector
&
p
,
const
MISCMATHS
::
NonlinCF
&
cf
,
const
NEWMAT
::
ColumnVector
&
l
)
:
_cf
(
cf
),
_sp
(
p
)
{
if
(
l
.
Nrows
()
!=
_sp
.
Nrows
())
throw
;
setup_simplex
(
l
);
UpdateRankIndicies
();
}
/****************************************************************//**
*
* Minimises the simplex, i.e. it will find the set of parameters
* that minimmises the NonlinCF cost-function that the Simplex
* object was constructed with.
* Suggested use:
* \code
* Simplex my_simplex(my_guess_par,my_cost_func);
* if (my_simplex(my_tol,1000)) {
* ColumnVector optimal_par = my_simplex.BestPar();
* }
* else { cout << "bugger" << endl; }
* \endcode
*
* \param ftol Fractional cost-function tolerance for convergence.
* \param miter Maximum allowed number of iterations.
*
********************************************************************/
bool
Simplex
::
Minimise
(
double
ftol
,
unsigned
int
miter
)
{
UpdateRankIndicies
();
// Make sure it is ready for use
for
(
unsigned
int
i
=
0
;
i
<
miter
;
i
++
)
{
if
(
HasConverged
(
ftol
))
return
(
true
);
// Check for convergence
double
newf
=
Reflect
();
// Attempt reflexion
// Extend into an expansion if reflexion very successful
if
(
newf
<=
BestFuncVal
())
{
Expand
();
// Attempt expansion
}
else
if
(
newf
>=
SecondWorstFuncVal
())
{
double
worst_fval
=
WorstFuncVal
();
newf
=
Contract
();
// Do a contraction towards plane of "better" points
if
(
newf
>=
worst_fval
)
{
// Didn't work. Contract towards best point
MultiContract
();
}
}
UpdateRankIndicies
();
}
return
(
false
);
}
double
Simplex
::
Reflect
()
{
calculate_reflexion_point
(
_wrsti
);
// Updates _rp
NEWMAT
::
ColumnVector
newp
=
2.0
*
_rp
-
_smx
[
_wrsti
];
double
newf
=
_cf
.
cf
(
newp
);
if
(
newf
<
_fv
[
_wrsti
])
{
_smx
[
_wrsti
]
=
newp
;
_fv
[
_wrsti
]
=
newf
;
}
return
(
newf
);
}
double
Simplex
::
Expand
()
{
NEWMAT
::
ColumnVector
newp
=
2.0
*
_smx
[
_wrsti
]
-
_rp
;
double
newf
=
_cf
.
cf
(
newp
);
if
(
newf
<
_fv
[
_wrsti
])
{
_smx
[
_wrsti
]
=
newp
;
_fv
[
_wrsti
]
=
newf
;
}
return
(
newf
);
}
double
Simplex
::
Contract
()
{
NEWMAT
::
ColumnVector
newp
=
0.5
*
(
_smx
[
_wrsti
]
+
_rp
);
double
newf
=
_cf
.
cf
(
newp
);
if
(
newf
<
_fv
[
_wrsti
])
{
_smx
[
_wrsti
]
=
newp
;
_fv
[
_wrsti
]
=
newf
;
}
return
(
newf
);
}
void
Simplex
::
MultiContract
()
{
for
(
unsigned
int
i
=
0
;
i
<
_smx
.
size
();
i
++
)
{
if
(
i
!=
_bsti
)
{
_smx
[
i
]
=
0.5
*
(
_smx
[
i
]
+
_smx
[
_bsti
]);
_fv
[
i
]
=
_cf
.
cf
(
_smx
[
i
]);
}
}
return
;
}
void
Simplex
::
UpdateRankIndicies
()
{
double
minv
=
std
::
numeric_limits
<
double
>::
max
();
double
maxv
=
std
::
numeric_limits
<
double
>::
min
();
for
(
unsigned
int
i
=
0
;
i
<
_fv
.
size
();
i
++
)
{
if
(
_fv
[
i
]
<
minv
)
{
minv
=
_fv
[
i
];
_bsti
=
i
;
}
if
(
_fv
[
i
]
>
maxv
)
{
maxv
=
_fv
[
i
];
_wrsti
=
i
;
}
}
maxv
=
std
::
numeric_limits
<
double
>::
min
();
for
(
unsigned
int
i
=
0
;
i
<
_fv
.
size
();
i
++
)
{
if
(
i
!=
_wrsti
)
{
if
(
_fv
[
i
]
>
maxv
)
{
maxv
=
_fv
[
i
];
_nwsti
=
i
;
}
}
}
return
;
}
void
Simplex
::
setup_simplex
(
const
NEWMAT
::
ColumnVector
&
l
)
{
_smx
.
resize
(
_sp
.
Nrows
()
+
1
);
_fv
.
resize
(
_smx
.
size
());
_smx
[
0
]
=
_sp
;
_fv
[
0
]
=
_cf
.
cf
(
_smx
[
0
]);
for
(
int
i
=
1
;
i
<=
_sp
.
Nrows
();
i
++
)
{
_smx
[
i
]
=
_sp
;
_smx
[
i
](
i
)
+=
l
(
i
);
_fv
[
i
]
=
_cf
.
cf
(
_smx
[
i
]);
}
return
;
}
void
Simplex
::
calculate_reflexion_point
(
unsigned
int
ii
)
{
if
(
_rp
.
Nrows
()
!=
_sp
.
Nrows
())
_rp
.
ReSize
(
_sp
.
Nrows
());
_rp
=
0.0
;
for
(
unsigned
int
i
=
0
;
i
<
_smx
.
size
();
i
++
)
{
if
(
i
!=
ii
)
_rp
+=
_smx
[
i
];
}
_rp
/=
static_cast
<
double
>
(
_rp
.
Nrows
());
}
This diff is collapsed.
Click to expand it.
Simplex.h
0 → 100644
+
93
−
0
View file @
323502d7
/*! \file Simplex.h
\brief Contains declaration of Simplex class that can be used for Nelder-Mead simplex minimisation.
\author Jesper Andersson
\version 1.0b, Oct., 2013.
*/
// Contains declaration of Simplex class that can
// be used for Nelder-Mead simplex minimisation.
//
// Simplex.h
//
// Jesper Andersson, FMRIB Image Analysis Group
//
// Copyright (C) 2013 University of Oxford
//
#ifndef Simplex_h
#define Simplex_h
#include
<iostream>
#include
<cfloat>
#include
<cmath>
#include
<string>
#include
<vector>
#include
"newmat.h"
#include
"miscmaths.h"
#include
"nonlin.h"
namespace
MISCMATHS
{
/****************************************************************//**
*
* \brief Class used for implementing Nelder-Mead minimisation.
*
* Implements a class for implementing Nelder-Mead downhill slope
* simplex minimisation. It implements the full minimisation through
* its member function Minimise, but it also provides a set of utility
* functions for anyone wanting to provide a slightly different
* implementation.
*
********************************************************************/
class
Simplex
{
public:
Simplex
(
const
NEWMAT
::
ColumnVector
&
p
,
const
MISCMATHS
::
NonlinCF
&
cf
);
Simplex
(
const
NEWMAT
::
ColumnVector
&
p
,
const
MISCMATHS
::
NonlinCF
&
cf
,
const
NEWMAT
::
ColumnVector
&
l
);
~
Simplex
()
{}
/// Minimises the costunction until the fractional difference between points in simplex is < ftol
bool
Minimise
(
double
ftol
,
unsigned
int
miter
);
/// Checks if the fractional difference between points in simplex is < ftol
bool
HasConverged
(
double
ftol
)
const
{
return
(
2.0
*
std
::
abs
(
WorstFuncVal
()
-
BestFuncVal
())
<
ftol
*
(
std
::
abs
(
BestFuncVal
())
+
std
::
abs
(
WorstFuncVal
())));
}
/// Returns the number of parameters
unsigned
int
NoPar
()
const
{
return
(
static_cast
<
unsigned
int
>
(
_sp
.
Nrows
()));
}
/// Returns the "best" (lowest function value) parameters in the simplex
const
NEWMAT
::
ColumnVector
&
BestPar
()
const
{
return
(
_smx
[
_bsti
]);
}
/// Returns the "best" (lowest) function value in the simplex
double
BestFuncVal
()
const
{
return
(
_fv
[
_bsti
]);
}
/// Returns the 2nd to worst (highest) function value in the simplex
double
SecondWorstFuncVal
()
const
{
return
(
_fv
[
_nwsti
]);
}
/// Returns the worst (highest) function value in the simplex
double
WorstFuncVal
()
const
{
return
(
_fv
[
_wrsti
]);
}
/// Reflects the worst point through the average of the remaining points
double
Reflect
();
/// Expands upon a previous reflexion
double
Expand
();
/// Contracts the worst point half-way towards the average of the remaining points
double
Contract
();
/// Contracts all except the best point half-way towards the best point
void
MultiContract
();
/// Update the indicies for best, worst and 2nd to worst points.
void
UpdateRankIndicies
();
private
:
const
MISCMATHS
::
NonlinCF
&
_cf
;
const
NEWMAT
::
ColumnVector
_sp
;
std
::
vector
<
NEWMAT
::
ColumnVector
>
_smx
;
std
::
vector
<
double
>
_fv
;
unsigned
int
_bsti
;
// Best (lowest function value) point
unsigned
int
_wrsti
;
// Worst (highest function value) point
unsigned
int
_nwsti
;
// Second worst (2nd highest function value) point
NEWMAT
::
ColumnVector
_rp
;
// Latest reflexion point
void
setup_simplex
(
const
NEWMAT
::
ColumnVector
&
l
);
void
calculate_reflexion_point
(
unsigned
int
ii
);
};
}
// End namespace MISCMATHS
#endif // End #ifndef Simplex_h
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment