Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pyfeeds-tests
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FSL
pyfeeds-tests
Commits
eb103a10
Commit
eb103a10
authored
5 years ago
by
Michiel Cottaar
Browse files
Options
Downloads
Patches
Plain Diff
ENH: testing DTI (no kurtosis)
single- and multi-shell exact fit (no noise)
parent
39d2c4e0
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
unit_tests/fdt/dtifit/feedsRun
+158
-0
158 additions, 0 deletions
unit_tests/fdt/dtifit/feedsRun
with
158 additions
and
0 deletions
unit_tests/fdt/dtifit/feedsRun
0 → 100755
+
158
−
0
View file @
eb103a10
#!/usr/bin/env fslpython
"""
Generates data following the diffusion tensor model
"""
import sys
import os
from subprocess import run
import numpy as np
from numpy import testing
import nibabel as nib
OUTDIR = sys.argv[0]
def gen_data():
"""
Populates given directory with diffusion data
:yield: directories containing reference noiseless data with the eigen-vectors and eigen-values used to generate the data
"""
directory = 'dti'
# eigen vectors vary along x-axis
eigen_vectors = np.array([
[(1., 0, 0), (0, 1, 0), (0, 0, 1)],
[(1., 0, 0), (0, np.sqrt(0.5), np.sqrt(0.5)), (0, np.sqrt(0.5), -np.sqrt(0.5))],
[(np.sqrt(0.5), -np.sqrt(0.5), 0), (np.sqrt(0.25), np.sqrt(0.25), np.sqrt(0.5)),
(np.sqrt(0.25), np.sqrt(0.25), -np.sqrt(0.5))],
])[:, None, None, :, :]
for idx1 in range(3):
for idx2 in range(3):
testing.assert_allclose((eigen_vectors[..., idx1, :] * eigen_vectors[..., idx2, :]).sum(-1),
1 if idx1 == idx2 else 0., atol=1e-8)
# eigen-values vary along y-axis
# eigen-values can not be the same or eigen-vectors will be ill-defined
eigen_values = np.array([
[1.2, 1., 0.8],
[1., 0.5, 0.],
[2., 1.9, 1.8],
])[None, :, None, :, None] * 1e-3
# S0 varies along the z-axis
S0 = np.array([1., 1.5])[None, None, :, None, None] * 1000.
eigen_vectors, eigen_values, S0 = np.broadcast_arrays(eigen_vectors, eigen_values, S0)
S0 = S0[:, :, :, 0, 0]
diffusion_tensor = (eigen_values[..., None] * eigen_vectors[..., None, :] * eigen_vectors[..., :, None]).sum(-3)
for multi_shell in (False, True): # we should get the same results for single or multi-shell data
directory += '_multi' if multi_shell else '_single'
for kurt in (0, ):#1, 2): # 0: no kurtosis; 1: single kurtosis; 2: parallel and perpendicular kurtosis
if kurt != 0 and not multi_shell:
continue
directory += ['', '_kurt', '_kurtdir'][kurt]
bvals = np.full(50, 1000.)
if multi_shell:
bvals[25:] = 2000.
bvals[::10] = 0.
run(['gps', '--ndir=50', '--out=bvecs'], check=True)
bvecs = np.genfromtxt('bvecs')
assert bvecs.shape == (50, 3), f"GPS produced bvecs-file with shape {bvecs.shape} rather than the expected (50, 3)"
testing.assert_allclose((bvecs ** 2).sum(-1), 1.)
kurt_val = np.array([
[0, 0, 0.],
[1., 1., 1.],
[1., 0.5, 0.5],
][kurt])
data = S0[..., None] * np.exp(np.sum(
-(bvals[:, None] * eigen_values[..., None, :, 0] +
kurt_val * eigen_values[..., None, :, 0] ** 2 * bvals[:, None] ** 2) *
np.sum(bvecs[:, None, :] * eigen_vectors[..., None, :, :], -1) ** 2, axis=-1
))
if (data / S0[..., None]).min() < 0.01:
raise ValueError("dtifit rounds attenuations below 0.01 up to 0.01, "
"so these low values should not be in the test data")
for flipped in (False, True):
if flipped:
directory += '_flipped'
if not os.path.isdir(directory):
os.mkdir(directory)
if flipped:
np.savetxt(f'{directory}/bvals', bvals[:, None])
np.savetxt(f'{directory}/bvecs', bvecs.T)
else:
np.savetxt(f'{directory}/bvals', bvals[None, :])
np.savetxt(f'{directory}/bvecs', bvecs)
affine = np.eye(4) * 1.25
affine[-1, -1] = 1.
for idx in range(3):
nib.Nifti1Image(eigen_vectors[..., idx, :], affine=affine).to_filename(f'{directory}/ref_V{idx + 1}.nii.gz')
nib.Nifti1Image(eigen_values[..., idx, 0], affine=affine).to_filename(f'{directory}/ref_L{idx + 1}.nii.gz')
nib.Nifti1Image(S0, affine=affine).to_filename(f'{directory}/ref_S0.nii.gz')
nib.Nifti1Image(data, affine=affine).to_filename(f'{directory}/ref_data.nii.gz')
nib.Nifti1Image(np.ones(data.shape[:3], dtype=int), affine=affine).to_filename(f'{directory}/nodif_brain_mask.nii.gz')
tensor_components = diffusion_tensor[:, :, :, [0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2]]
nib.Nifti1Image(tensor_components, affine=affine).to_filename(f'{directory}/ref_tensor.nii.gz')
yield directory, kurt
def fit_data(directory, kurt=0):
for wls in (False, True): # in this noise-free data the --wls flag should not matter
base_output = f'{directory}/dti{"_wls" if wls else ""}'
cmd = [
'dtifit',
'-k', f'{directory}/ref_data.nii.gz',
'-m', f'{directory}/nodif_brain_mask.nii.gz',
'-r', f'{directory}/bvecs',
'-b', f'{directory}/bvals',
'-o', base_output,
'--sse',
'--save_tensor',
]
if wls:
cmd += ['--wls']
if kurt == 1:
cmd += ['--kurt']
if kurt == 2:
cmd += ['--kurt']
run(cmd, check=True)
yield base_output
for directory, kurt in gen_data():
for base_output in fit_data(directory, kurt):
def compare(name):
ref = nib.load(f'{directory}/ref_{name}.nii.gz').get_fdata()
fit = nib.load(f'{base_output}_{name}.nii.gz').get_fdata()
assert ref.shape == fit.shape, f'incorrect NIFTI image shape for {name}'
testing.assert_allclose(ref, fit, atol=1e-8,
err_msg=f'mismatch in {name}')
compare('S0')
compare('tensor')
for idx in (3, 2, 1):
compare(f'L{idx}')
ref = nib.load(f'{directory}/ref_V{idx}.nii.gz').get_fdata()
fit = nib.load(f'{base_output}_V{idx}.nii.gz').get_fdata()
assert ref.shape == fit.shape
inner = (ref * fit).sum(-1)
testing.assert_allclose(abs(inner), 1.)
sse = nib.load(f'{base_output}_sse.nii.gz').get_fdata()
testing.assert_allclose(sse, 0., atol=1e-8)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment