Skip to content
Snippets Groups Projects
Commit eb103a10 authored by Michiel Cottaar's avatar Michiel Cottaar
Browse files

ENH: testing DTI (no kurtosis)

single- and multi-shell
exact fit (no noise)
parent 39d2c4e0
No related branches found
No related tags found
No related merge requests found
#!/usr/bin/env fslpython
"""
Generates data following the diffusion tensor model
"""
import sys
import os
from subprocess import run
import numpy as np
from numpy import testing
import nibabel as nib
OUTDIR = sys.argv[0]
def gen_data():
"""
Populates given directory with diffusion data
:yield: directories containing reference noiseless data with the eigen-vectors and eigen-values used to generate the data
"""
directory = 'dti'
# eigen vectors vary along x-axis
eigen_vectors = np.array([
[(1., 0, 0), (0, 1, 0), (0, 0, 1)],
[(1., 0, 0), (0, np.sqrt(0.5), np.sqrt(0.5)), (0, np.sqrt(0.5), -np.sqrt(0.5))],
[(np.sqrt(0.5), -np.sqrt(0.5), 0), (np.sqrt(0.25), np.sqrt(0.25), np.sqrt(0.5)),
(np.sqrt(0.25), np.sqrt(0.25), -np.sqrt(0.5))],
])[:, None, None, :, :]
for idx1 in range(3):
for idx2 in range(3):
testing.assert_allclose((eigen_vectors[..., idx1, :] * eigen_vectors[..., idx2, :]).sum(-1),
1 if idx1 == idx2 else 0., atol=1e-8)
# eigen-values vary along y-axis
# eigen-values can not be the same or eigen-vectors will be ill-defined
eigen_values = np.array([
[1.2, 1., 0.8],
[1., 0.5, 0.],
[2., 1.9, 1.8],
])[None, :, None, :, None] * 1e-3
# S0 varies along the z-axis
S0 = np.array([1., 1.5])[None, None, :, None, None] * 1000.
eigen_vectors, eigen_values, S0 = np.broadcast_arrays(eigen_vectors, eigen_values, S0)
S0 = S0[:, :, :, 0, 0]
diffusion_tensor = (eigen_values[..., None] * eigen_vectors[..., None, :] * eigen_vectors[..., :, None]).sum(-3)
for multi_shell in (False, True): # we should get the same results for single or multi-shell data
directory += '_multi' if multi_shell else '_single'
for kurt in (0, ):#1, 2): # 0: no kurtosis; 1: single kurtosis; 2: parallel and perpendicular kurtosis
if kurt != 0 and not multi_shell:
continue
directory += ['', '_kurt', '_kurtdir'][kurt]
bvals = np.full(50, 1000.)
if multi_shell:
bvals[25:] = 2000.
bvals[::10] = 0.
run(['gps', '--ndir=50', '--out=bvecs'], check=True)
bvecs = np.genfromtxt('bvecs')
assert bvecs.shape == (50, 3), f"GPS produced bvecs-file with shape {bvecs.shape} rather than the expected (50, 3)"
testing.assert_allclose((bvecs ** 2).sum(-1), 1.)
kurt_val = np.array([
[0, 0, 0.],
[1., 1., 1.],
[1., 0.5, 0.5],
][kurt])
data = S0[..., None] * np.exp(np.sum(
-(bvals[:, None] * eigen_values[..., None, :, 0] +
kurt_val * eigen_values[..., None, :, 0] ** 2 * bvals[:, None] ** 2) *
np.sum(bvecs[:, None, :] * eigen_vectors[..., None, :, :], -1) ** 2, axis=-1
))
if (data / S0[..., None]).min() < 0.01:
raise ValueError("dtifit rounds attenuations below 0.01 up to 0.01, "
"so these low values should not be in the test data")
for flipped in (False, True):
if flipped:
directory += '_flipped'
if not os.path.isdir(directory):
os.mkdir(directory)
if flipped:
np.savetxt(f'{directory}/bvals', bvals[:, None])
np.savetxt(f'{directory}/bvecs', bvecs.T)
else:
np.savetxt(f'{directory}/bvals', bvals[None, :])
np.savetxt(f'{directory}/bvecs', bvecs)
affine = np.eye(4) * 1.25
affine[-1, -1] = 1.
for idx in range(3):
nib.Nifti1Image(eigen_vectors[..., idx, :], affine=affine).to_filename(f'{directory}/ref_V{idx + 1}.nii.gz')
nib.Nifti1Image(eigen_values[..., idx, 0], affine=affine).to_filename(f'{directory}/ref_L{idx + 1}.nii.gz')
nib.Nifti1Image(S0, affine=affine).to_filename(f'{directory}/ref_S0.nii.gz')
nib.Nifti1Image(data, affine=affine).to_filename(f'{directory}/ref_data.nii.gz')
nib.Nifti1Image(np.ones(data.shape[:3], dtype=int), affine=affine).to_filename(f'{directory}/nodif_brain_mask.nii.gz')
tensor_components = diffusion_tensor[:, :, :, [0, 0, 0, 1, 1, 2], [0, 1, 2, 1, 2, 2]]
nib.Nifti1Image(tensor_components, affine=affine).to_filename(f'{directory}/ref_tensor.nii.gz')
yield directory, kurt
def fit_data(directory, kurt=0):
for wls in (False, True): # in this noise-free data the --wls flag should not matter
base_output = f'{directory}/dti{"_wls" if wls else ""}'
cmd = [
'dtifit',
'-k', f'{directory}/ref_data.nii.gz',
'-m', f'{directory}/nodif_brain_mask.nii.gz',
'-r', f'{directory}/bvecs',
'-b', f'{directory}/bvals',
'-o', base_output,
'--sse',
'--save_tensor',
]
if wls:
cmd += ['--wls']
if kurt == 1:
cmd += ['--kurt']
if kurt == 2:
cmd += ['--kurt']
run(cmd, check=True)
yield base_output
for directory, kurt in gen_data():
for base_output in fit_data(directory, kurt):
def compare(name):
ref = nib.load(f'{directory}/ref_{name}.nii.gz').get_fdata()
fit = nib.load(f'{base_output}_{name}.nii.gz').get_fdata()
assert ref.shape == fit.shape, f'incorrect NIFTI image shape for {name}'
testing.assert_allclose(ref, fit, atol=1e-8,
err_msg=f'mismatch in {name}')
compare('S0')
compare('tensor')
for idx in (3, 2, 1):
compare(f'L{idx}')
ref = nib.load(f'{directory}/ref_V{idx}.nii.gz').get_fdata()
fit = nib.load(f'{base_output}_V{idx}.nii.gz').get_fdata()
assert ref.shape == fit.shape
inner = (ref * fit).sum(-1)
testing.assert_allclose(abs(inner), 1.)
sse = nib.load(f'{base_output}_sse.nii.gz').get_fdata()
testing.assert_allclose(sse, 0., atol=1e-8)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment