Newer
Older
Mark Jenkinson
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/* groupttest.cc
Mark Jenkinson, FMRIB Image Analysis Group
Ana Juric, Mental Health Research Institute,
Centre for Neuroscience, University of Melbourne
Copyright (C) 2004 University of Oxford */
/* CCOPYRIGHT */
// Calculates the surface normals for a mask, using a smoothed
// gradient calculation (all non-surface points get zero ouput)
#define _GNU_SOURCE 1
#define POSIX_SOURCE 1
#include <vector>
#include <algorithm>
#include "newimage/newimageall.h"
#include "miscmaths/miscmaths.h"
#include "utils/options.h"
#include "miscmaths/t2z.h"
using namespace MISCMATHS;
using namespace NEWIMAGE;
using namespace Utilities;
// The two strings below specify the title and example usage that is
// printed out as the help or usage message
string title="groupttest (Version 1.1)\nCopyright(c) 2004, University of Oxford (Mark Jenkinson)";
string examples="groupttest --na=<number in group A> --nb=<number in group B> -m <maskvol> -o <groupres> [options] <list of images for group A> <list of images for group B>\ne.g. groupttest --na=15 --nb=15 -m maskvol -o groupres groupA/*.hdr* groupB/*.hdr*";
// Each (global) object below specificies as option and can be accessed
// anywhere in this file (since they are global). The order of the
// arguments needed is: name(s) of option, default value, help message,
// whether it is compulsory, whether it requires arguments
// Note that they must also be included in the main() function or they
// will not be active.
Option<bool> verbose(string("-v,--verbose"), false,
string("switch on diagnostic messages"),
false, no_argument);
Option<bool> help(string("-h,--help"), false,
string("display this message"),
false, no_argument);
Option<bool> conservativetest(string("--conservative"), false,
string("use conservative FDR correction factor"),
false, no_argument);
Option<int> numa(string("--na"),0,
string("number of members of group A (normals)"),
true, requires_argument);
Option<int> numb(string("--nb"),0,
string("number of members of group B (patients)"),
true, requires_argument);
Option<string> ordername(string("--order"), string(""),
string("~\toutput image of order values"),
false, requires_argument);
Option<string> maskname(string("-m"), string(""),
string("input mask filename"),
true, requires_argument);
Option<string> outname(string("-o"), string(""),
string("output base filename"),
true, requires_argument);
int nonoptarg;
////////////////////////////////////////////////////////////////////////////
// Support functions
int save_as_image(const string& filename, const volume<float>& mask,
const Matrix& valmat)
{
// put values back into volume format
if (verbose.value()) { cerr << "Saving results to " << filename << endl; }
volume4D<float> outvals;
outvals.addvolume(mask);
outvals.setmatrix(valmat.t(),mask);
return save_volume4D(outvals,filename);
}
Matrix get_coord_matrix(const volume<float>& mask)
{
// construct a matrix of index values 1 -> Ntot
volume4D<float> outvals;
outvals.addvolume(mask);
Matrix index = outvals.matrix(mask);
int Ntot = index.Ncols();
for (int j=1; j<=Ntot; j++) {
index(1,j) = j;
}
outvals.setmatrix(index,mask);
// go through volume and set up new matrix *with coordinates*
Matrix coords(Ntot,3);
for (int z=mask.minz(); z<=mask.maxz(); z++) {
for (int y=mask.miny(); y<=mask.maxy(); y++) {
for (int x=mask.minx(); x<=mask.maxx(); x++) {
if (mask(x,y,z)>0.5) {
int idx = MISCMATHS::round(outvals(x,y,z,0));
coords(idx,1) = x;
coords(idx,2) = y;
coords(idx,3) = z;
}
}
}
}
return coords;
}
volume<float> calc_edge_mask(const volume<float>& vmask)
{
volume<float> vtmp = vmask;
bool atedge;
if (verbose.value()) { cerr << "Extracting Edge Voxels" << endl; }
for (int z=vmask.minz(); z<=vmask.maxz(); z++) {
for (int y=vmask.miny(); y<=vmask.maxy(); y++) {
for (int x=vmask.minx(); x<=vmask.maxx(); x++) {
atedge = false;
if ( (vmask(x,y,z)>0.5) ) {
if (vmask(x,y,z-1)<0.5) atedge=true;
else {
if (vmask(x,y-1,z)<0.5) atedge=true;
else {
if (vmask(x-1,y,z)<0.5) atedge=true;
else {
if (vmask(x+1,y,z)<0.5) atedge=true;
else {
if (vmask(x,y+1,z)<0.5) atedge=true;
else {
if (vmask(x,y,z+1)<0.5) atedge=true;
}
}
}
}
}
}
if (atedge) {
vtmp(x,y,z)=1;
} else {
vtmp(x,y,z)=0;
}
}
}
}
return vtmp;
}
//Function written by Ana Juric
// Gentleman and Jenkins approximation for the t-distribution p-values (Biometrika, 55(3), p 571, 1968)
// NB: gives coefficents (c1,..,c5) for:
// p(|t|<X) = 1 - (c5*X^5 + c4*X^4 + c3*X^3 + c2*X^2 + c1*X + 1)^(-8)
double tTesting(double degreesOfFreedom, int coefficientNum)
{
double coefficientMatrix[5][7]={
{0.09979441, -0.5818210, 1.390993, -1.222452, 2.151185, -5.537409, 11.42343},
{0.04431742,-0.2206018, -0.03317253, 5.679969, -12.96519, -5.166733, 13.49862},
{0.009694901, -0.1408854, 1.889930, -12.75532, 25.77532, -4.233736, 14.39630},
{-0.00009187228, 0.03789901, -1.280346, 9.249528, -19.08115, -2.777816, 16.46132},
{0.0005796020, -0.02763334, 0.4517029, -2.657697, 5.127212, -0.5657187, 21.83269} };
double coefficient;
double v=degreesOfFreedom;
double c6, c5, c4, c3, c2, c1, c0;
c6 = coefficientMatrix[coefficientNum][6];
c5 = coefficientMatrix[coefficientNum][5];
c4 = coefficientMatrix[coefficientNum][4];
c3 = coefficientMatrix[coefficientNum][3];
c2 = coefficientMatrix[coefficientNum][2];
c1 = coefficientMatrix[coefficientNum][1];
c0 = coefficientMatrix[coefficientNum][0];
// old version
/*
coefficient=
(((coefficientMatrix[coefficientNum][4]*(pow(degreesOfFreedom,(-4))))+
(coefficientMatrix[coefficientNum][3]*(pow(degreesOfFreedom,(-3))))+
(coefficientMatrix[coefficientNum][2]*(pow(degreesOfFreedom,(-2))))+
(coefficientMatrix[coefficientNum][1]*(pow(degreesOfFreedom,(-1))))+
(coefficientMatrix[coefficientNum][0]))
/((coefficientMatrix[coefficientNum][6]*(pow(degreesOfFreedom,(-2))))+
(coefficientMatrix[coefficientNum][5]*(pow(degreesOfFreedom,(-1))))+1));
*/
// new version - note that both denom & numerator are multiplied by v^4 in order to
// have positive powers of v only (not v^(-4), etc.)
coefficient = (c4 + v*(c3 + v*(c2 + v*(c1 + v*c0))))
/ (v*v*(c6 + v*(c5 + v)));
return coefficient;
}
double pvalue(double tX, double dof) {
// return the ONE SIDED t-test p-values: p(t>X)
// based on the two-sided formula:
// p(|t|>X) = (c5*X^5 + c4*X^4 + c3*X^3 + c2*X^2 + c1*X + 1)^(-8)
double p1, p, x;
// Code fragment by Ana Juric
// "initialises the coeffMatrix with the relevent values"
double c[5];
for(int anaj=0; anaj<5; anaj++) { c[anaj]=tTesting(dof,anaj); }
x = fabs(tX);
p = pow((1 + x*(c[0] + x*(c[1] + x*(c[2] + x*(c[3] + x*c[4]))))),-8.0);
if (tX>0) {
p1 = p/2.0;
} else {
p1 = 1 - p/2.0;
}
return p1;
}
Mark Jenkinson
committed
vector<int> get_sortindex(const Matrix& vals)
{
// return the mapping of old indices to new indices in the
// new *ascending* sort of vals
int length=vals.Nrows();
vector<pair<double, int> > sortlist(length);
for (int n=0; n<length; n++) {
sortlist[n] = pair<double, int>((double) vals(n+1,1),n+1);
}
sort(sortlist.begin(),sortlist.end()); // O(N.log(N))
vector<int> idx(length);
for (int n=0; n<length; n++) {
Mark Jenkinson
committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
}
return idx;
}
////////////////////////////////////////////////////////////////////////////
// Main function - this does all the work
int do_work(int argc, char* argv[], int nonoptarg)
{
string basename = fslbasename(outname.value());
volume<float> vmask, vtmp;
read_volume(vmask,maskname.value());
if (verbose.value()) print_info(vmask,"vmask");
vmask = calc_edge_mask(vmask);
// get ready to read in flow images
int Ntot = MISCMATHS::round(vmask.sum());
int N1=numa.value();
int N2=numb.value();
if (verbose.value()) { cerr << "Ntot = " << Ntot << " ; Na,Nb = " << N1 << " , " << N2 << endl; }
Matrix newcol(Ntot,1), bigmatrix(Ntot,N1+N2), tvalmat(Ntot,1);
Matrix pmat(Ntot,1), logqmat(Ntot,1);
Matrix meana(Ntot,1), meanb(Ntot,1);
// read in images and accumulate values into bigmatrix
for (int n=1; n<=(N1+N2); n++) {
volume4D<float> vstat;
string filename = argv[nonoptarg + n - 1];
if (verbose.value()) { cerr << "Reading file " << filename << endl; }
read_volume4D(vstat,filename);
if (verbose.value()) { print_info(vstat,"vstat"); }
newcol = vstat.matrix(vmask);
for (int j=1; j<=Ntot; j++) {
bigmatrix(j,n) = newcol(1,j);
}
}
// Calculate t-values and relevant means and standard deviations
for (int j=1; j<=Ntot; j++) {
double sumx1=0, sumx2=0, sumx1sq=0, sumx2sq=0, meanx1=0, meanx2=0, sdx1=0, sdx2=0;
for (int m=1; m<=N1; m++) {
double x1 = bigmatrix(j,m);
sumx1 += x1;
sumx1sq += x1*x1;
}
for (int m=N1+1; m<=(N1+N2); m++) {
double x2 = bigmatrix(j,m);
sumx2 += x2;
sumx2sq += x2*x2;
}
meanx1 = sumx1 / N1;
meanx2 = sumx2 / N2;
meana(j,1) = meanx1;
meanb(j,1) = meanx2;
sdx1 = sqrt(sumx1sq/N1 - meanx1*meanx1);
sdx2 = sqrt(sumx2sq/N2 - meanx2*meanx2);
double sediff = sqrt(sdx1*sdx1 / N1 + sdx2*sdx2 / N2);
double tval = (meanx1 - meanx2)/sediff;
// Welch's degree of freedom (for unequal variances)
double dof = Sqr(sdx1*sdx1/N1 + sdx2*sdx2/N2) /
( Sqr(sdx1*sdx1/N1)/(N1-1) + Sqr(sdx2*sdx2/N2)/(N2-1) );
// store t value
tvalmat(j,1) = tval;
// convert t values to p values
pmat(j,1) = pvalue(tval,dof);
}
// save the image results
save_as_image(basename+"_meanA",vmask,meana);
save_as_image(basename+"_meanB",vmask,meanb);
save_as_image(basename+"_tvals",vmask,tvalmat);
save_as_image(basename+"_pvals",vmask,pmat);
// save the matrix result (coords + group means)
{
Matrix coords = get_coord_matrix(vmask);
Matrix save_result = ( coords | meana ) | meanb ;
write_ascii_matrix(save_result,basename+"_matrix");
}
// calculate FDR threshold required to make each voxel significant
// FDR formula is: p = n*q / (N * C)
// where n=order index, N=total number of p values,
// C=1 for the simple case, and
// C=1/1 + 1/2 + 1/3 + ... + 1/N for the most general correlation
// We use the inverse formula: q_{min} = N*C*p / n
if (verbose.value()) { cerr << "Calculating FDR values" << endl; }
float C=1.0;
if (conservativetest.value()) {
for (int n=2; n<=Ntot; n++) { C+=1.0/((double) n); }
}
vector<int> norder = get_sortindex(pmat);
for (int j=1; j<=Ntot; j++) {
double qval = pmat(j,1) * Ntot * C / norder[j-1];
// qval isn't a probability - it can be greater than 1, but don't show these
if (qval>1.0) qval=1.0;
logqmat(j,1) = -log10(qval);
}
// save the FDR log(q_min) results
save_as_image(basename+"_qvals",vmask,logqmat);
// save the order values, if requested
if (ordername.set()) {
Matrix ordermat(Ntot,1);
for (int j=1; j<=Ntot; j++) { ordermat(j,1) = norder[j-1]; }
save_as_image(ordername.value(),vmask,ordermat);
}
return 0;
}
////////////////////////////////////////////////////////////////////////////
int main(int argc,char *argv[])
{
Tracer tr("main");
OptionParser options(title, examples);
try {
// must include all wanted options here (the order determines how
// the help message is printed)
options.add(maskname);
options.add(outname);
options.add(numa);
options.add(numb);
options.add(ordername);
options.add(conservativetest);
options.add(verbose);
options.add(help);
nonoptarg = options.parse_command_line(argc, argv);
// line below stops the program if the help was requested or
// a compulsory option was not set
if ( (help.value()) || (!options.check_compulsory_arguments(true)) )
{
options.usage();
exit(EXIT_FAILURE);
}
} catch(X_OptionError& e) {
options.usage();
cerr << endl << e.what() << endl;
exit(EXIT_FAILURE);
} catch(std::exception &e) {
cerr << e.what() << endl;
}
// Call the local functions
return do_work(argc,argv,nonoptarg);
}